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ABSTRACT: The paper presents a plane-stress yield criterion in the form of a finite series that can be 

expanded to retain more or less terms, depending on the volume of experimental data. Due to its structure, 

the model is suitable for a variety of practical applications. An identification procedure consisting in the 

minimization of an error-function is used to evaluate the coefficients included in the yield criterion. The 

effectiveness of this strategy is proved for the particular situations when sets of 8 and 16 experimental values 

are available. In both cases, the input quantities (normalized yield stresses and r-coefficients) are obtained 

from uniaxial and biaxial tensile tests. The performances of the yield criterion are evaluated by comparing 

its predictions with the experimental data for an AA2090-T3 aluminium alloy. Another test is performed on 

a fictitious material exhibiting a distribution of the anisotropy parameters that would lead to the occurrence 

of 8 ears in a cylindrical deep-drawing process. 
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1 INTRODUCTION  

The yield criterion is an essential component of the 

mechanical models used for the simulation of sheet 

metal forming processes. Its capability to describe 

the anisotropic behaviour of the material has a 

significant influence on the quality of the results. 

Many researchers have been concerned in the 

development of more accurate yield criteria, 

especially during the last decade [1]. The 

performances of such models are closely related to 

the flexibility of their mathematical formulation. In 

general, the flexibility is enhanced by including a 

larger number of material parameters in the yield 

criterion. As a consequence, the identification 

procedure needs more experimental data as input. 

The tests performed for obtaining this data have 

gradually extended their investigation area from 

uniaxial tension to biaxial tension, plane-strain 

tension and even pure shearing. 

The yield criteria involving a large number of 

material parameters are also more complex from 

the mathematical point of view. This characteristic 

represents in many cases a serious drawback, 

especially when the computational efficiency is 

sought by the users. 

A reasonable balance between the accuracy, 

computational efficiency, identification costs, and 

mathematical complexity is achieved by the 

models that use seven or eight experimental values 

as input. Such yield criteria have been proposed by 

Barlat et al. [2], Banabic et al. [3] and Cazacu [4]. 

When the plasticity of highly-anisotropic sheet 

metals must be described, the use of more complex 

models is unavoidable [5, 6, 7]. In these situations, 

the quality of the simulation results cannot be 

ensured without having an accurate description of 

the yield surface [8]. 

In order to enhance the flexibility of the BBC2005 

yield criterion implemented in AutoForm 4.1 [9], 

the authors propose a new version of this model 

(BBC2008) expressed as a finite series that can be 

expanded to retain more or less terms, depending 

on the volume of experimental data. Two 

identification strategies (using 8 and 16 input 

values) will be described in the next sections, 

together with a series of tests aiming to prove the 

capabilities of the new yield criterion. 

 

2 CONSTITUTIVE ASSUMPTIONS 

The sheet metal is assumed to behave as a 

plastically orthotropic membrane under plane-

stress conditions. We use the following description 

of the yield surface [10]: 

( ) 0Yαβσ σ − =  (1) 

 

where ( ) 0αβσ σ ≥ is the equivalent stress defined 

in §3, 0Y > is the yield parameter, and αβ βασ σ=  
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( , 1,2)α β = are planar components of the stress 

tensor expressed in an orthonormal basis 

superimposed to the axes of plastic orthotropy: 1 – 

rolling direction (RD), 2 – transverse direction 

(TD), 3 – normal direction (ND). The other 

components are subjected to the constraint 

3 3
0, 1,2,3

i i
iσ σ= = =    (2) 

 

arising from the plane-stress hypothesis. Whenever 

not specified, the following convention will be 

adopted: Latin subscripts take the values 1, 2 and 3, 

while the Greek ones take only the values 1 and 2. 

The equivalent stress defined in §3 does not 

enforce constraints on the choice of the parameter 

.Y In fact, any quantity representing a yield stress 

can act as .Y For example, Y may be the uniaxial 

yield stress Yθ associated to a planar direction 

defined by the angle θ measured from RD, an 

average of several uniaxial yield stresses, or the 

biaxial yield stress corresponding to the tension 

along RD and TD. 

The flow rule associated to the yield surface 

described by Eqn (1) is [10] 

( )p

αβ

αβ

σ
ε λ

σ

∂
=

∂
ɺɺ   (3) 

 

where 
( ) ( )p p

αβ βαε ε=ɺ ɺ are planar components of the 

plastic strain-rate tensor (expressed in the same 

basis as the corresponding components of the stress 

tensor), and 0λ ≥ɺ is a scalar multiplier (its 

significance is not essential for our discussion). 

The out of plane components of the plastic strain-

rate are subjected to the constraints 
( ) ( ) ( ) ( ) ( )

3 3 33 11 22
0,p p p p p

α αε ε ε ε ε= = = − −ɺ ɺ ɺ ɺ ɺ    (4) 

 

arising from the plane-stress hypothesis and the 

isochoric character of the plastic deformation [10]. 

 

3 EQUIVALENT STRESS 

The equivalent stress used in Eqn (1) is defined as 

follows: 

{{ }
{ }}
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  (5) 

 The quantities denoted ,k
( ) ( ) ( ) ( ) ( )

1 2 1 2 3
, , , , ,i i i i im m mℓ ℓ  

( ) ( ) ( )

1 2 3
, , ( 1, , )i i in n n i s= … are material parameters. 

One may prove that *
k ∈ N is a sufficient condition 

for the convexity of the yield surface defined by 

Eqns (1) and (5). From this point of view, there is 

no constraint acting on the admissible values of the 

other material parameters. 

It is easily noticeable that Eqn (5) reduces to the 

isotropic formulation proposed by Barlat and 

Richmond [11] if 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 3 1 2 3
1 2,

1, ,

i i i i i i i im m m n n n

i s

= = = = = = = =

=

ℓ ℓ

…

  (6) 

 

Under these circumstances, the exponent k may be 

chosen as in Barlat and Richmond’s model, i.e. 

according to the crystallographic structure of the 

sheet metal: 3k = for BCC materials (2 6)k = , 

and 4k =  for FCC materials (2 8)k = . 

The other parameters involved in Eqn (5) result 

from an identification procedure (see §4). Their 

number ( )
p

n is defined by the summation limit :s  

8
p

n s=  (7) 

 

Let 
e

n be the number of experimental values 

describing the plastic anisotropy. The summation 

limit should be chosen according to the following 

constraint: 

8
p e

n s n= ≤  (8) 

i.e.  
*8,

e
s n s≤ ∈ N  (9) 

 

Apparently, Eqn (5) is usable only when 8.
e

n ≥ In 

fact, it also works with less experimental values. 

When such a situation occurs, the summation limit 

should be 1,s =  and the 8
e

n < identification 

constraints arisen from experiments should be 

accompanied by at least 8
e

n− artificial conditions 

involving the material parameters. For example, if 

6,
e

n = we may enforce the equalities (1) (1)

1 1
m n=  

and (1) (1)

2 2
.m n=  

 

4 IDENTIFICATION PROCEDURE 

Due to the expandable structure of the yield 

criterion, many identification strategies can be 

devised. We shall restrict our discussion to a 

procedure that uses only normalized yield stresses 

and r-coefficients obtained from uniaxial and 

biaxial tensile tests. 

Let Yθ be the yield stress predicted by the yield 

criterion in the case of a uniaxial traction along the 

direction defined by the angle θ  measured from 

RD. The planar components of the stress tensor are 

in this case 
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2 2

11 22

12 21

cos , sin ,

sin cos

Y Y

Y

θ θθ θ

θθ θ

σ θ σ θ

σ σ θ θ

= =

= =
 (10) 

 

After replacing them in Eqn (5), we get the 

associated equivalent stress 

Y Fθ θθ
σ =  (11) 

 

where Fθ is defined by the relationships 
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Eqns (1) and (11) lead to the following expression 

of the normalized uniaxial yield stress: 

1Y
y

Y F

θ
θ

θ

= =  (13) 

 

The r-coefficient corresponding to the uniaxial 

traction along a direction inclined at the angle θ  

measured from RD is defined by the formula [10] 
( )

90

( )

p

p

ND

r θ
θ

ε

ε
+=

�
ɺ

ɺ
 (14) 

 

where 
( )

90

p

θ
ε

+ �
ɺ is the plastic strain-rate component 

associated to the 90θ + � planar direction, and 
( )p

ND
εɺ is the through-thickness component of the 

same tensor. After some simple mathematical 

manipulations, Eqn (14) becomes 

1
F
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where Gθ is defined by the relationships 
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together with Eqn (12). 

Let us denote by 
b

Y the yield stress predicted in the 

case of a biaxial traction along RD and TD. The 

corresponding planar components of the stress 

tensor are 

11 22 12 21
, , 0

b bb b b b
Y Yσ σ σ σ= = = =  (17) 

 

After replacing them in Eqn (5), we get the 

associated equivalent stress 

b bb
Y Fσ =  (18) 

 

where 
b

F is defined by the relationships 
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Eqns (1) and (18) lead to the following expression 

of the normalized biaxial yield stress: 

1b

b

b

Y
y

Y F
= =  (20) 

 

The r-coefficient corresponding to the biaxial 

traction along RD and TD is defined by the 

formula [2] 
( )

( )

p

TD

b p

RD

r
ε

ε
=
ɺ

ɺ
 (21) 

 

where ( )p

RD
εɺ and ( )p

TD
εɺ  are the plastic strain-rate 

components associated to the rolling and transverse 

directions, respectively. After some simple 

mathematical manipulations, Eqn (21) becomes 
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where 
b

G is defined by the relationships 
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together with Eqn (19). 

An identification procedure that strictly enforces a 

large number of experimental constraints on the 

yield criterion would be inefficient in practical 

applications. The failure probability of such a 

strategy increases when the external restrictions 

become stronger. Taking into account this aspect, 

the authors have developed an identification 
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procedure based on the minimization of the 

following error-function: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 3 1 2 3
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(exp)

2
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2
(exp)
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y
r r
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y
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θ
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 = = 

 
 − + − +     

 
 − + −   

 

∑ ∑

ℓ ℓ …

(24) 

where 
j

θ  represents an individual element from a 

finite set of angles defining the orientation of the 

specimens used in the uniaxial tensile tests. One 

may notice that Eqn (24) describes a square-

distance between the experimental and predicted 

values of the anisotropy characteristics. 

The minimization has been performed using the 

subroutine LMDIF1 included in the double-

precision version of the MINPACK-1 library [12]. 

LMDIF1 implements a modified       Levenberg-

Marquardt algorithm. The most important 

advantage of this subroutine consists in the fact 

that the Jacobian of the error-function is evaluated 

numerically by forward-difference approximations. 

 

5 PERFORMANCES OF THE 

YIELD CRITERION 

The results of two tests are presented in this section 

of the paper. The first one makes reference to an 

AA2090-T3 aluminium alloy [8]. The second test 

is performed on a fictitious material (FM) 

exhibiting a distribution of the anisotropy 

characteristics that would lead to the occurrence of 

8 ears in a cylindrical deep-drawing process [8]. 

Table 1 contains the mechanical parameters used as 

input data. 

Two versions of the BBC2008 yield criterion have 

been evaluated from the point of view of their 

performances. They include 8 and 16 material 

coefficients, respectively, and correspond to the 

smallest values of the summation limit ( 1s = and 

2).s =  The identification of the BBC2008 (16 

parameters) model has been performed using all 

the mechanical parameters listed in Table 1. In the 

case of BBC2008 (8 parameters), the input data has 

been restricted to the values
(exp)

0
y � , 

(exp)

45
y � , 

(exp)

90
y � , 

(exp)

b
y , 

(exp)

0
r � , 

(exp)

45
r � , 

(exp)

90
r � ,  and (exp)

b
r . Tables 2 and 

3 contain the results of the identification procedure. 

Figures 1 – 6 show a comparison between the 

experimental data and the predictions of the 

BBC2008 model referring to the planar distribution 

of the normalized yield stress and r-coefficient in 

uniaxial tension, as well as to the shape of the 

normalized yield surface. 

The version with 8 parameters of the BBC2008 

model is able to reproduce exactly all the input data 

used in the identification. This fact seems natural if 

Table 1: Anisotropy characteristics of the materials 
used for testing the yield criterion performances [8] 

Material AA2090-T3 FM 

Structure FCC FCC 
(exp)

0
y �  1.0000 1.0000 

(exp)

15
y �  0.9605 1.0200 

(exp)

30
y �  0.9102 1.0450 

(exp)

45
y �  0.8114 1.0500 

(exp)

60
y �  0.8096 1.0450 

(exp)

75
y �  0.8815 1.0200 

(exp)

90
y �  0.9102 1.0000 

(exp)

b
y  1.0350 1.0000 

(exp)

0
r �  0.2115 0.6000 

(exp)

15
r �  0.3269 1.0000 

(exp)

30
r �  0.6923 0.7500 

(exp)

45
r �  1.5769 0.3000 

(exp)

60
r �  1.0385 0.7500 

(exp)

75
r �  0.5384 1.0000 

(exp)

90
r �  0.6923 0.6000 

(exp)

b
r  0.6700 1.0000 

 
Table 2: Coefficients of the BBC2008 yield criterion 

with 16 parameters ( 2)s =  

Material AA2090-T3 FM 

k   4 4 

w   1.224745 1.224745 
(1)

1
ℓ   0.130866 0.405620 

(1)

2
ℓ   0.621742 0.405620 

(1)

1
m   0.783422 0.767194 

(1)

2
m   0.660402 0.767194 

(1)

3
m   0.000079 0.000192 

(1)

1
n   0.110991 0.001363 

(1)

2
n   0.048245 0.001368 

(1)

3
n   0.307522 0.644695 

(2)

1
ℓ   1.033922 0.532837 

(2)

2
ℓ  -0.071963 0.532837 

(2)

1
m   0.000113 0.274012 

(2)

2
m   0.000077 0.274012 

(2)

3
m   0.538047 0.553576 

(2)

1
n   0.055764 0.597125 

(2)

2
n   1.018603 0.597125 

(2)

3
n   0.778150 0.381241 
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Table 3: Coefficients of the BBC2008 yield criterion 

with 8 parameters ( 1)s =  

Material AA2090-T3 FM 

k  4 4 

w  1.500000 1.500000 
(1)

1
ℓ  0.449938 0.500000 

(1)

2
ℓ  0.513218 0.500000 

(1)

1
m  0.630315 0.532391 

(1)

2
m  0.601445 0.532391 

(1)

3
m  0.727299 0.505797 

(1)

1
n  0.153818 0.425618 

(1)

2
n  0.479391 0.425618 

(1)

3
n  0.499818 0.356739 

 
 

 

Figure 1: Planar distribution of the uniaxial yield 
stress predicted by the BBC2008 model for an 
AA2090-T3 aluminium alloy 

 

Figure 2: Planar distribution of the r-coefficient 
predicted by the BBC2008 model for an AA2090-T3 
aluminium alloy 

 

Figure 3: Normalized yield surface predicted by the 
BBC2008 model for an AA2090-T3 aluminium alloy 

 

Figure 4: Planar distribution of the uniaxial yield 
stress predicted by the BBC2008 model for the 
fictitious material FM 

 

Figure 5: Planar distribution of the r-coefficient 
predicted by the BBC2008 model for the fictitious 
material FM 
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Figure 6: Normalized yield surface predicted by the 
BBC2008 model for the fictitious material FM 

we take into account that the yield surface is 

subjected to less constraints in this case. 

Nevertheless, the predictions of the BBC2008 

model with 16 parameters are superior to those 

given by the 8-parameter version both for the 

AA2090-T3 aluminium alloy and the fictitious 

material FM. The improvement is noticeable 

especially in the case of the r-coefficients. This 

capability of the 16-parameter version is relevant 

for the accurate prediction of the thickness when 

simulating sheet metal forming processes. 

In the case of the fictitious material FM, the planar 

distribution of the r-coefficient (Figure 5) predicted 

by the BBC2008 yield criterion with 8 parameters 

is very inaccurate. This model would not be able to 

predict the occurrence of more than 4 ears at the 

top edge of a cup deep-drawn from a circular 

blank. In contrast, the variation of the r-coefficient 

described by BBC2008 with 16 parameters closely 

follows the reference data. According to Figure 5, 

this model would predict the occurrence of 8 ears 

as reported by Yoon et al. [8]. 

 

6 CONCLUSIONS 

The authors have proposed a plane-stress yield 

criterion in the form of a finite series that can be 

expanded to retain more or less terms, depending 

on the volume of experimental data. As compared 

with other formulations described in the literature, 

the new model does not use linear transformations 

of the stress tensor. Due to this fact, its 

computational efficiency should be superior in the 

simulation of sheet metal forming processes. Even 

in the most reduced form, the yield criterion is able 

to give a sufficiently accurate description of 

medium or high anisotropies. When a larger 

number of terms are retained, the model can be 

used to capture the occurrence of more than 4 ears 

in a cylindrical deep-drawing process. 
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