UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Cognitive Communications. Managing Complexity in Wireless Communications Systems

Ligia Cremene

Adaptive Systems Laboratory

http://asl.utcluj.ro/asl

http://users.utcluj.ro/~cligia

Outline

- Telecommunications ecosystem
 - □ What builds complexity?
- Adaptive techniques in wireless communications systems.
 A critical perspective
 - Limitations of current adaptive approaches
 - □ Adaptability vicious cycle
- Unified approach to adaptability in communications systems – a proposal
 - Cognitive radio technologies
- Illustrative model a cognitive antenna system

Telecommunications ecosystem What builds complexity?

- Context convergence of the great three: telecom, media, and IT
- Increasing number of users, systems, technologies, applications, and services,
- Their development and accelerated dynamics,
- Their heterogeneity.
- Adaptation*) a key feature of a communications system
- Manual configuration impossible
- Cognitive radio technologies enabler for complexity management in communications systems.

The need for adaptive techniques

- The dynamic development of communications systems generates a degree of complexity that may impair on the functioning of the informational ecosystem.
- The heterogeneous infrastructure, user requirements, and the constantly changing environment in which communications systems operate require the existence of flexible radio interfaces capable of managing such dynamics.

Adaptive Radio Techniques

- An adaptive technique involves:
 - Dynamic change of system parameters in order to compensate variations in the operation environment
 - □ Goal: to ensure performance link availability and capacity, spectral efficiency, coverage
 - ☐ Criteria: SNR or QoS maximization, BER or PER minimization, etc.
 - Controlled Parameters: signal power, modulation&coding scheme, combining technique, equalizing method, antenna geometry/configuration, etc.

Adaptive techniques at different levels of the wireless Tx – Rx chain

Tx - Transmitter

Rx - Receiver

PHY - Physical Layer

DL – Data Link Layer

NET – Network Layer

Adaptive radio techniques - limitations

- they have more or less independent approaches,
- their joint operation is not much studied.
- are usually specific, short-term solutions, having a local effect.
- lack of correlation (in order to asses the global effect).
- most of them are hard-coded and therefore not able to evolve, not sustainable.
- processing that considers time and frequency variability of the channel exploits only partially the spatial component information.

Adaptability vicious cycle

Focusing on short-term adaptation solutions led to the formation of a vicious cycle of adaptation

*) Adaptation builds complexity.

Unified approach to adaptability in communications systems

- Design of sustainable adaptation solutions requires extended time, effort, and sometimes leads to greater complexity.
- A unitary yet flexible approach is needed, so that local problems may be solved locally and global ones globally, while considering the effects of a local action at global level, and vice versa.
- Such an approach of adaptation solutions in nowadays wireless systems may be conceived by taking the model of living organisms' cognition mechanisms.

Holistic approach

- A holistic approach to adaptation in communications systems is proposed.
- An illustrating model is presented the Cognitive Antenna System.
- Essential to this model are:
 - (i) integration of cognitive mechanisms (perception, reasoning, learning, action), and
 - (ii) natural computing metaheuristics for optimizing processes and decision making.

Cognitive radio technologies

- Enabler for complexity management in communications systems
- Transferring cognitive mechanisms to telecom systems
- Interdisciplinary approach telecom, AI, economics.

The Cognition Cycle (J. Mitola, 2000)

Illustrative model Cognitive Antenna System

- Long-term dynamic adaptation for wireless receiver chains
- The antenna a pivotal element in determining and assessing quality in wireless communication systems.
- The antenna takes an active role in characterizing and learning the operation environment (wireless propagation channel).
- Proactive reception
- Radio scene analysis (analyzing the signal space in terms of space, time, frequency, code and location)
- Advantages: higher received SNR, no additional noise, higher AoA estimation accuracy.

Cognitive Antenna System – proposed conceptual model

Bio-inspired model

Integrates cognitive mechanisms

Improves reliability of the wireless link by performing radio scene analysis and responding to changes in the RF signal environment.

Decision making

Multi-criteria optimization

Metaheuristics, Evolutionary computing

Signal - fishing

Sensing & Actuating

Self-structuring array

Sensorial and actuatorial memories

Primary processing, \$hort-term adaptation

Antenna vision

ENVIRONMENT

(radio scene, signal space)

Compound eye section thousands of ommatidia

Modified Rotman lens control

© Ligia Cremene

ACT

Conclusions

- Future communications systems are imagined as sufficiently flexible to cope with complexity generated by emerging services and applications, unforeseen needs and technologies.
- In order to manage the complexity and dynamics of current telecommunication systems a holistic approach is required to their design, centred on the human user.
- Integrate the operating restrictions of resources and cost components in order to optimize the solutions.
- Integration can be achieved by applying computational intelligence techniques, still underused in the telecommunications sector.

Hopefully, the proposed model will contribute to materializing the emerging paradigm of Cognitive Communications.

Acknowledgment

- This paper was supported by CNCSIS-UEFISCDI of Romania, PD, project number 637/2010.
- This presentation was supported by the project "Develop and support multidisciplinary postdoctoral programs in primordial technical areas of national strategy of the research development - innovation 4D-POSTDOC", contract nr. POSDRU/89/1.5/S/52603, project co-funded from European Social Fund through Sectorial Operational Program Human Resources 2007-2013, Romania.

Thank you for your attention.

No problem can be solved from the same level of consciousness that created it.

A. Einstein