
Chapter 2
A System Overview

Martin Johnsson

Abstract The 4WARD System Model is described, defining the structure and be-
havior of a communication system that is to be constructed as well as its genera-
tivity, i.e., how bigger and more complex future systems and networks can be built
by using a small set of generic concepts. It presents the project four tenets. Then,
an Architecture Framework is shown, providing a unified component-based design
process, which defines a seamless step-wise though iterative process for deriving a
software-based network architecture using as input a set of technical requirements.
The Architecture Pillars, described in detail, are: In-Network Domain Management,
Network of Information, Generic Path, and the Physical Virtualized Substrate. The
Architecture Framework is presented in terms of Strata, Netlets, and the Design
Repository. The Design Process is also addressed.

2.1 Background and Motivation

This section describes the 4WARD System Model, which defines the structure and
behavior of a communication system that is to be constructed as well as its gener-
ativity, i.e., how bigger and more complex future systems and networks could be
built by using a small set of generic concepts.

Through 4WARD, a new approach to networking based on the analysis of both
the success factors of the Internet (seen as the core Internet design principles and
core IP protocols) as well as the factors that have led to ossification and the patch-
work type of the IP evolution of recent years has been developed.

The Network of the Future must be based on a new set of Internetworking prin-
ciples. These principles are characterized below as four programmatic tenets:

M. Johnsson (�)
Ericsson Research, Stockholm, Sweden

L.M. Correia et al. (eds.), Architecture and Design for the Future Internet,
Signals and Communication Technology,
DOI 10.1007/978-90-481-9346-2_2, © Springer Science+Business Media B.V. 2011

15

http://dx.doi.org/10.1007/978-90-481-9346-2_2


16 M. Johnsson

1. Let 1000 Networks Bloom
We will explore a new approach to a multitude of networks: the best network for
each task, each device, each customer, and each technology. Unlike the multi-
tude we had in the past, where different incompatible technologies were compet-
ing with each other, we want to create a framework that will allow these many
networks to bloom as a family of interoperable networks coexisting and comple-
menting each other.

2. Let Networks Manage Themselves
The main limits of current technologies are the scaling up to very large network
sizes, and the needed human intervention which is associated with considerable
cost, errors and with an inherent slowness in reacting to changing network condi-
tions. What we would like to have is a management entity as an inseparable part
of the network itself, generating extra value in terms of guaranteed performance
in a cost effective way, and capable of adjusting itself to different network sizes,
configuration, and external conditions.

3. Let a Network Path Be an Active Unit
We want to consider a path as an active part of the network that controls itself
and provides customized transport services. An active path can provide resilience
and fail-over, offer mobility, simultaneously use multiple different sequences of
links, secure and compress transmitted data, and optimize its performance all by
itself.

4. Let Networks Be Information-Centric
Users are primarily interested in using services and accessing information, not
in accessing nodes that host information or provide services. Consequently, we
want to build a network as a network of information and services that may be
mobile and distributed. In such a network, the users just accesses items of interest
by their name while the data locations can be completely hidden.

These tenets, together with the understanding of the current situation of today’s
Internet, formed the main drivers for the definition of the 4WARD Technical Re-
quirements [1], which laid the foundation for technical work within the 4WARD
project. This work ultimately resulted in the 4WARD System Model, which is de-
scribed in the following section.

2.2 The 4WARD System Model

Figure 2.1 depicts the 4WARD System Model, which has been developed with the
Tenets and the 4WARD Technical Requirements [1] as main principal input. The
system model gives the necessary definitions, specifications, principles and guide-
lines for designing, building, deploying, and manage interoperable network archi-
tectures. For that purpose, the 4WARD System Model consists of an Architecture
Framework and a set of Architecture Pillars which provides the essential technolo-
gies in many of the network architectures anticipated and required for the future
networks, though it is possible to also deploy and use them in migration scenarios.
With the 4WARD System Model we expect significant efficiency gains in the de-



2 A System Overview 17

Fig. 2.1 The 4WARD System Model

sign, management and operation of networks, which is one of the key challenges in
both current and future networks. The Architecture Pillars have been defined using
a new set of concepts and technologies to address emerging business models and
new types of applications:

• A new abstraction and model of the physical and virtualized infrastructure, in-
cluding all of transmission, processing, and storage resources.

• ONE modular and extensible connectivity concept, supporting all modes and
topologies of endpoint associations.

• A new open model and API for content and information management. Search and
retrieval of information objects using a persistent identity.

• Management providing an inherent capability of the functions in the network.

The Architecture Framework provides a unified component-based design pro-
cess, which defines a seamless step-wise though iterative process for deriving a
software-based network architecture using as input a set of technical requirements.
The design process includes the architectural principles and re-usable design pat-
terns at various levels of abstractions out of which families of interoperable network
architectures can be defined.

The Architecture Pillars: In-Network Domain Management, NetInf, Generic
Path, and the Physical but virtualized substrate (and each of them in turn define
their own respective frameworks or architectures) themselves to be defined by using
the Architecture Framework.



18 M. Johnsson

The Physical Substrate provides an abstraction of the physical resources of any
network spanning from the smallest to the largest. The abstraction is the key for co-
herent virtualization and management of those underlying resources across domain
borders. The result of a virtualization operation is a virtualized network, providing
resources onto which an operator is free to instantiate its own choice of functions,
protocols, etc., for example Generic Paths and NetInf.

The Generic Path provides a generalized transport mechanism to transfer data
between entities in the network. The recursive Generic Path concept is able to
model virtually any type and level of transport, be it point-to-point or multipoint-
to-multipoint, or supporting transport on links at the physical level, or end-to-end
across networks. Generic Paths specifically give support for the dissemination of
information objects.

NetInf (Network of Information) provides for identification, management, and
dissemination of information objects. NetInf is a new abstraction of information
(and service) management, where applications do not need to be aware of where an
information object is stored.

In-Network Management (INM) is omni-present in all network functionalities.
It provides design patterns and interfaces as well as more specific mechanisms, fa-
cilitating various degrees of self-management capabilities. This spans from such
capabilities living ‘beside’ the functionality it is supposed to manage, and then all
through to functionalities being fully and inherently self-managed.

A special case of In-Network Management is In-Network Domain Management,
which provides self-management capabilities on domain as well as inter-domain
scale. The Knowledge function (also known as Knowledge stratum) discovers, gath-
ers and further infers status of network topologies, resource and context status by
querying the network functionalities operating in the network, for example Generic
Paths and NetInf. The Governance function (also known as Governance stratum)
provides control and management of network functionalities, and governs by query-
ing the status of the network from the Knowledge function. The Governance func-
tion will decide out from policies (provided by a network administrator) as well as
the network status what network functionalities shall operate in the network. Gov-
ernance and Knowledge functions are also instrumental for the interconnection and
composition of networks and domains, where dynamic and highly automized cre-
ation of SLAs is supported.

The following sections provide an overview and introduction of the concepts and
technologies that make up the foundation of the Architecture Pillars, and it serves
as an introduction to the contents provided through Chap. 4–10.

2.3 The Architecture Framework

2.3.1 Strata, Netlets, and the Design Repository

The Architecture Framework must provide ways to (i) guide the Network Architect
to allocate the required network functionalities and (ii) assure the interoperability
within families of network architectures.



2 A System Overview 19

Fig. 2.2 High-level view of 4WARD Architecture Framework

As can be seen in Fig. 2.2, the following main components constitute this frame-
work (see Chap. 4 for further detail):

• A Stratum is modelled as a set of logical Nodes which are connected through
a Medium that provides the means for communication between the Nodes in-
side this stratum. This stratum encapsulates functions that are distributed over the
nodes. These functions are provided to other strata through two well known in-
terfaces (that can be also distributed over the nodes): The SSP (Service Stratum
Point) that provides the services to the other strata located on top of the respective
Stratum and to the vertical strata. Figure 2.2 shows Stratum Y using the services
provided by Stratum X through SSPX. The SGP (Service Gateway Point) offers
peering relations to other strata of the same type.

• Strata can manage themselves. For example, when a routing service stratum is
deployed, it organizes itself onto the physical infrastructure. The deployment will
be in accordance with the specification of the logical nodes and the medium of the
stratum, taking then into account the topology, capabilities, and resource status of
the nodes and links in the physical infrastructure.

• Horizontally stacked strata (as shown in the middle of Fig. 2.2) are related to the
transport and management of data across networks. Within such strata, Netlets
can be considered as containers for networking services. They consist of func-
tions/protocols inside a Node that are needed to provide the services. By virtue
of containing protocols, Netlets can provide the Medium for different Strata, i.e.
inside the same Netlet there could be functionalities that are related to different
strata. Figure 2.2 shows such Netlets implementing media for different strata in-
side the same node.

• The two vertically oriented strata provide Governance and Knowledge for an en-
tire network (i.e. a set of horizontal strata). The Knowledge Stratum provides and
maintains a topology database as well as context and resource allocation status as
reported by a horizontal stratum. The Governance Stratum uses this information,
together with input provided via policies, to continuously determine an optimal



20 M. Johnsson

configuration of horizontal strata to meet the performance criteria for a network.
The Governance Stratum also establishes and maintains relations and agreements
with other networks.

The Repository contains the set of Building Blocks and Design Patterns for the
composition of functionalities (i.e., to construct the strata and the netlets) for specific
network architectures, including best practices and constraints to ensure interoper-
ability between network architectures.

2.3.2 The Design Process

Evolution of today’s networks including the Internet suffers from the inability to be
extended in a consistent and reliable way while maintaining certain assured prop-
erties, such as security, quality of service, reliability even in the broader context.
Much effort has to be spent for standardization, development and regression testing
when introducing even minor feature improvements, before deploying them on a
network-wide basis. Upgrading of a large installed base of network elements means
a big technological challenge and financial risk to the network operator and service
provider.

4WARD has succeeded in setting up a design process that in the future will enable
new network designs to be developed, tested and deployed without impacting the
installed network basis, when based on this 4WARD architecture framework and
building upon the recent progress in network virtualization. The innovative 4WARD
network design process leverages advantages of model-driven software engineering
techniques and the experiences in design and composition of web services, based
on OSGI principles [2].

As shown in Fig. 2.3, the following phases are considered in the design process:

1. Requirements Analysis: Starting from the business idea and requirements, the
goal of this step is to decompose them into the high level functionalities that
should be realized by the architecture to be designed. The output of this phase is
mainly the identification of the macroscopic architectural view of Strata, a first
draft of the main network components, and the specification of technical require-
ments for further refinement of the architecture.

2. Abstract Service Design: During this phase, the technical requirements and the
high level functionalities derived from these will be turned into abstract func-
tionalities and ways how they can be composed, following generic principles
and design patterns. The result of this design phase is the specification of the
Netlets operating at node level, and the Strata that constitute the distribution of
functionalities across the network nodes.

3. The Component Design Phase focuses on the detailed specification and com-
position of the Functional Blocks (FBs) used to implement the specific function-
ality. This includes the specification of the interfaces, properties, and require-
ments/prerequisites of the FBs. The output of this phase is the detailed design of



2 A System Overview 21

Fig. 2.3 High-level view of the 4WARD Design Process

the Netlets and software Components, which finally constitutes an “architectural
blueprint” ready for instantiation on a network virtualization platform.

The entire design process is supported by an integrated design environment,
which easily supports backtracking in iterative loops to redesign and improve the
results of previous phases. In order to increase the reuse of architectural constructs
and store the expertise and knowledge of the designing architect, an “architectural
design repository” is used, which contains pre-built architectural constructs (abstract
strata, netlets, components, functional blocks) as well as their derived instantiations,
proven architectural design patterns on service and network composition, interoper-
ability, security, etc.

2.4 In-Network Management

INM specifies two key architectural elements in order to realize distributed man-
agement within and across the network nodes: Management Capabilities (MC) and
Self Managing Entities (SE). The MCs are encapsulations of management logic.
The SEs are associated with a specific service and include relevant MCs for man-
agement of the service. Both elements are central to achieve autonomous behav-
ior.

As part of the INM solution and design, algorithms have been developed for
real-time monitoring, anomaly detection, situation awareness, and self-adaptation



22 M. Johnsson

Fig. 2.4 INM relationship with Governance/Knowledge

schemes. The MC architectural element is the enabler of these algorithms. These
algorithms provide best of breed mechanisms and patterns to address manage-
ment tasks. They become important building blocks when designing networks. The
4WARD design process as described above includes an ‘architectural design repos-
itory’ which houses design patterns and network type building blocks available to
the architect of the future networks. From a management perspective the algorithms
developed for INM are key components of this repository which the architect can
deploy as the need arises.

The ‘management by objective’ approach of INM is intrinsic to governance of
networks and knowledge generation inside networks of the future. Both governance
and knowledge are modelled as strata in the 4WARD architectural framework. Fig-
ure 2.4 shows management objectives being pushed downwards through the gov-
ernance stratum, into the SEs and eventually into multiple MCs which carry out
the tasks in hand. The MCs in the figure could for example implement a mon-
itoring algorithm. The output of the monitoring algorithm is in essence unpro-
cessed data. This is fed into the knowledge stratum and reasoned upon and more
high level knowledge generated. This knowledge is then used, possibly fed back
into governance if some modifications or tweaking are necessary or displayed at
a higher level as feedback on the objectives which an operator applied to the net-
work.

The algorithms developed and the management by objective approach which
INM provides are key enablers in the realization of self managing, interoperable
networks of the future.



2 A System Overview 23

Fig. 2.5 Virtualization ecosystem

2.5 Network Virtualization

Virtualization has by now gained sufficient momentum as one of the key paradigms
for future networking, as it has the potential to resolve the so-called “deployment
stalemate” observed in today’s Internet and foster the development of future net-
works paradigms. The straightforward use case for network virtualization is the
scenario based on the decoupling of infrastructure ownership and virtual network
operation.

The virtualization ecosystem encompasses three basic roles, namely (a) the in-
frastructure provider (having the capability to virtualize the physical infrastructure
by partitioning them into ‘slices’), (b) the virtual network provider (making the pro-
visioning of complete end-to-end VNets by putting together ‘slices’ from the un-
derlying infrastructure), and (c) the virtual network operator who is operating and
managing a VNET. This is illustrated by Fig. 2.5. A service provider is then able to
run specific services and applications on this VNet, which are then offered to end
users.

Communication means between these actors and the definition of the respective
interfaces constitute a cornerstone of the network virtualization architecture. This
requires the specification of a formal virtual network description, allowing for flexi-
bility, extensibility, scalability, interoperability and security. Since multiple business
scenarios can be defined (ranging from vertical integration to a strict separation of
roles), which imply different relationships of trust between them, the capability to
define different levels of abstraction is also a key requirement. The 4WARD Re-
source Description Framework provides a language to describe virtual network re-



24 M. Johnsson

sources and topologies, including all possible constraints that might be applicable
in each case. An object-oriented data model was defined with four basic classes
describing specific network elements, namely nodes, links, interfaces, and paths.

4WARD network virtualization architecture breaks with the traditional clear sep-
aration between a “dumb” core and a feature-rich edge in service provider networks.
In this scenario, scalability will be a major challenge, particularly in terms of provi-
sioning, management and control of virtual networks. A framework and algorithms
for scalable mapping and embedding of virtual resources into the infrastructure,
including discovery, matching, and binding were developed. Initial results suggest
that the efficient construction of virtual networks from shared infrastructure at large
scale is indeed feasible.

One of the most important features of the current Internet, global reachability and
inter-networking, will surely remain a requirement in the future. This means that vir-
tual networks, which by definition are separated and isolated from each other, will
still need to communicate, although in a more controlled way. A concept for facili-
ties to provide interworking between virtual networks, the Folding Points, has been
developed, including the basic elements (Folding Nodes and Folding Links), as well
as mechanisms for deployment using the virtual network provisioning framework.

2.6 Generic Paths

New mechanisms for data transport face contradictory requirements: large flexibility
vs. uniform interfaces to all transport entities and efficient reuse of functionality
are required. This can be partially achieved by new protocols only in end systems,
but in general, an approach how to structure protocols both at the edge and in the
core, at various “layers” is needed. For example, network management needs to
identify, inside the network, data flows of different types; they should be able to
give account of themselves (e.g., about their desired data rate) and obey a common
set of commands.

To support such requirements, we focus on the data flow and its path as a core
abstraction, along with a design process for a variety of path/flow behaviors. This
process can incorporate new networking ideas; examples are network coding, spatial
diversity cooperation, or multi-layer routing and is suitable for both end system
and in-network implementation; the deployment is supported by the Architecture
Framework.

The starting point for the 4WARD transport architecture was to find (1) a de-
velopment model that can support reuse and flexibility, (2) a proper execution en-
vironment within a node (end system or router) with naming and addressing struc-
ture and a resolution scheme, and (3) the core functions and APIs necessary for
a path, as generic as possible. Together, this is the core of the Generic Path ar-
chitecture. It approaches issue (1) by using an object-oriented approach to define
types of Generic Paths and to structure their interfaces; issue (2) by defining a set
of constructs (namely, entity, endpoint, mediation point, compartment, hooks, and



2 A System Overview 25

path) that describe the execution environment of instances of such path types; and is-
sue (3) by selecting which operations should be possible on such paths (e.g., joining,
splicing, or multiplexing). The concept shares some commonalities with OpenFlow,
but concentrates on real-world necessities rather than on experimental usage; it also
goes beyond merely modifying switching tables. To incorporate new networking
ideas, all the relevant flows in a network share crucial commonalities and provide a
common set of APIs with which to manipulate these flows. 4WARD’s “Cooperation
& Coding Framework” exploits such commonalities by addressing an entity that
detects opportunities for turning on cooperation opportunities, like network coding,
and can create the necessary path instances to setup a network coding butterfly. Mo-
bility may be supported at different levels or compartments—and the realization of
mobility at a session level is quite different from the realization of mobility at IP
level, though they still share commonalities that can be defined through generalized
mobility schemes. Thus, the GP framework allows the abstract description of a mo-
bility process in terms of GP constructs, namely, entity, compartment, ports, path,
and mediation point. Its realization can then resort to specific technologies adequate
to the compartment we are considering in each case.

Based on this mindset, it becomes possible to develop powerful, custom-tailored
path types. An example are path types for a Network of Information (described
next), where the download of documents and the updating of location/caching ta-
bles can be tightly integrated and can access topology information to choose, for
a document of interest, topologically close caches. Another example would be a
path type to support the exchange of management information for In-Network Man-
agement entities, e.g., by compressing monitoring information more and more the
further it is away from its source.

2.7 Network of Information

Today’s networking is essentially about exchanging information between nodes.
When accessing information, the request typically includes the host where the in-
formation shall be retrieved from, frequently in the form of a Uniform Resource
Locator. This host-centric approach is often an obstacle for optimized transport of
and easy access to information. Our approach to an information-centric architec-
ture puts the information itself on the center stage. We take existing proposals that
separate the host identity from the locator one step further by introducing informa-
tion objects as first order elements in the network. In addition to classical scenarios
such as content distribution, our work also encompasses scenarios that have so far
not been discussed in the research community, e.g., the notion of real-world object
tracking under the aegis of an information-centric architecture.

For the envisaged Network of Information (NetInf), we have developed an in-
formation model that constitutes a versatile and widely applicable framework for
representing information in a wide sense. A clear split between the information it-
self and the location where it is stored is introduced. This eliminates the need for
overloading locators and avoids putting them in the role of being an identifier and a



26 M. Johnsson

Fig. 2.6 NetInf high-level architecture

locator at the same time. The representation of the actual files containing the pay-
load is called a bit-level object whereas the higher semantic level can be expressed
by information objects that group or aggregate information.

The high-level architecture of a NetInf node is depicted in Fig. 2.6. The NetInf In-
formation Network Interface (INI) at the right is the collection of NetInf protocols
which are used to communicate to other NetInf nodes in the network. A uniform
API exposed towards applications provides standard operations such as retrieving,
publishing or updating information objects. This API can be extended with addi-
tional services. The Resolution Engine co-operates both with the local resolution
engine when and if information objects can be found locally, but also with other
remote resolution engines when such objects are stored elsewhere. Complementing
the mobility schemes offered by the underlying transport, these mechanisms also
provide a means to not only handle the mobility of nodes and networks, but also of
information objects.

The NetInf Transport Control Engine is extremely flexible with regard to the
transport mechanism that is utilized to transport the information objects or the
requests. These transport mechanisms include, but do not mandate, the Generic
Paths. Essentially, a set of adapted and optimized transport mechanisms applica-
ble to information-centric networking are examples of specialized Generic Paths.
The Transport Control Engine closely interacts with the Cache Engine which man-
ages the caches that are used for short-term optimizations of data transport. The
long-term memory of a NetInf system is provided by the (Local) Storage Engine.
It uses the basic NetInf primitives to deliver and retrieve objects, while offering an
advanced API that enables applications to manage the objects in the storage system,
whether locally or remotely.



2 A System Overview 27

2.8 Conclusion, Reading Guidelines

In this chapter we have presented the 4WARD System Model, as well as the Archi-
tecture Pillars. The Architecture Pillars in turn point the key results of 4WARD, and
a brief introduction was given to the concepts and technologies that make up the
foundation of those pillars. The 4WARD System Model, through the definition of
the Architecture Pillars, defines what can be understood as ‘cornerstones’ of what
will be a more precise definition of an architecture for the Future Internet. Such an
architecture will likely include also other building blocks in order to provide a com-
plete and suited architecture for any type of network that would make up a part of
the Future Internet.

The different elements and aspects of the 4WARD System Model are further
described in Chaps. 4 through 10. Chapter 3 provides a description of the business,
socio-economic, and regulatory aspects of future networks which gives important
understanding of the interplay between business models, technical development,
user needs, as well as regulation and governance. Chapter 11 provides a use case to
apply the 4WARD System Model in order to analyze a specific business scenario as
to derive a suitable network architecture for that scenario. Finally, Chap. 12 gives
an overview of the various prototypes that have been implemented for the purpose
of evaluating and demonstrating the 4WARD concepts and technologies.

References

1. M. Achemlal, P. Aranda, A.M. Biraghi, M.A. Callejo, J.M. Cabero, J. Carapinha, F. Cardoso,
L.M. Correia, M. Dianati, I. El Khayat, M. Johnsson, Y. Lemieux, M.P. de Leon, J. Salo,
G. Schultz, D. Sebastião, M. Soellner, Y. Zaki, L. Zhao, M. Zitterbart, 4WARD Deliverable
D-2.1: Technical Requirements (Apr. 2009), http://www.4ward-project.eu

2. OSGi Alliance, http://www.osgi.org

http://www.4ward-project.eu
http://www.osgi.org


http://www.springer.com/978-90-481-9345-5


	A System Overview
	Background and Motivation
	The 4WARD System Model
	The Architecture Framework
	Strata, Netlets, and the Design Repository
	The Design Process

	In-Network Management
	Network Virtualization
	Generic Paths
	Network of Information
	Conclusion, Reading Guidelines
	References


