
SNMP Agent for WLAN networks

Cristian Mihai Vancea, Virgil Dobrota
Communications Department

Technical University of Cluj Napoca
Cluj Napoca, Romania

e-mail: {Mihai.Vancea, Virgil.Dobrota}@com.utcluj.ro

Abstract — The solution presented is dedicated to WLAN
monitoring using SNMP. The idea was to replace the existing
equipment-oriented MIB with a new one that is network-
oriented.. The solution is based on a specialized AirPcap
interface, on Wireshark protocol analyzer and on a new
software agent.

Keywords- management SNMP, WLAN

I. INTRODUCTION
Managing a WLAN with existing SNMP implementation

does not allow a comprehensive vision of the status of all
stations and access points. To get an overview of wireless
networks, we should replace the existing MIB (which is
focused on stations and access points) with another MIB that
gives the global information. This requires creating a new
SNMP agent, which will be able to offer the new
information. The solution presented addresses the Windows
operating system and relies on a hardware interface that can
capture frames travelling across the network and a packet
analyzer that will decode the captured frames. Besides these,
one module is needed to extract from the captured frames,
the information defined in the MIB.

II. DESCRIPTION OF THE PROPOSED SYSTEM

A. Protocol analyzer Wireshark
In 1998 Gerald Combs launched the first version of a tool

for analyzing and decoding frames moving across computer
networks, called Ethereal. In 2006 the project was renamed
Wireshark due to copyright issues. Currently, he is the most
popular protocol analyzer and is a "de facto" standard (often
"de jure") in many sectors of activity and learning
environments [1].

Wireshark runs on most Unix platforms, Apple and
Windows. It is a "open source” project , which is distributed
under GPL license. The number of protocols can be decoded
is 96,000 (at time of writing this paper).

Wireshark uses LibPcap library (for Windows is called
WinPcap) to effectively capture the network frames. For the
decoding of frames modules are used (called by the authors -
dissectors) that interprets the captured frame, according to

information from the fields. These modules can be included
directly in Wireshark or can be loaded dynamically (this
allows a new protocol to be added without changing the
application).

The user interface can be in graphical or text mode, the
last giving the possibility to use Wireshark with other
applications for obtaining information. This mechanism was
used for by the SNMP agent described later in this paper.

Figure 1. Wireshark Architecture.

B. PCAP file structure
Wireshark can be configured to save the captured frames

in files in binary format by WireTap module or in predefined
text formats. Binary format defined by the module Libpcap.

There are several versions of the binary format that it is
used and described is 2.4. Last modified format was released
in 1998, and is not expected to change anytime soon [2].

The files contain a global header including general
information and a number of records for each frame
captured.

Figure 2. PCAP file structure.

It will not always contain all bytes as were taken,
sometimes only the first "n" bytes of the frame. In fact this
number depends on a parameter called "snapshot length"
which is defined by the user. The default value is 65535,
usually higher than the current length of frames.

Global header is 24 bytes long and contains the following
fields:

• magic_number (32 bits): it is used to identify the file
format and to save the order of bytes in file.
Application that saves data (in this case Wireshark)
writes 8 bytes (0xa1b2c3d4) using byte order
defined on that machine. It will read data
0xa1b2c3d4 (same as the application that saves) or
0xd4c3b2a1 (reversed version).

• version_major, version_minor (16 + 16 bits): - it
defines the file format version used

• thiszone (32 bits): the number of seconds difference
between GMT and local time zone

• sigfigs (32 bits): it defines the precision of capture
time

• snaplen (32 bits): the maximum length used in
capture

• network (32 bits): identifier for the protocol used in
data link layer

At the beginning of each captured frame a header is
added (header frame), which has a length of 16 bytes and
contains the following fields:

• ts_sec (32 bits): date and time of capture frame. It is
reported as the number of seconds passed from
January 1, 1970 00:00:00 GMT

• ts_usec (32 bits): the number of microseconds (it is
considered as an "offset" for ts_sec)

• incl_len (32 bits): the number of bytes actually
captured and saved

• orig_len (32 bits): the number of bytes of network
frame

The captured frame follows after the header.

Figure 3. Example of the fields in the global header and frame header

files Pcap.

C. AirPcap Interface
Capturing IEEE 802.11 frames in Windows, using

Wireshark (or similar applications) is almost impossible.
This is due to the implementation of WinPcap library and
drivers used for network cards. Most times data frames are
captured, without access to the control or management
frames and their headers will be converted by network card
driver in the Ethernet frame header. AirPcap interface was
specifically designed for all IEEE 802.11 frames and offers
them to Wireshark in Windows. More information can be
found in [3].

There is an application that allows configuration of radio
channel monitored, determines the type of capture and adds
the RadioTap header to the WLAN frames.

D. RadioTap Header
This header RadioTap [4] was introduced to provide

information about the received frame, initially implemented
in the NetBSD operating system only. It has a fixed part of 8
bytes, followed by a variable number of bytes in length. The
fields in the fix part are:
• it_version (8 bits) – version of header type used (current

value is 0)
• it_pad (8 bits) - unused
• it_len (16 bits) – specific header length (fixed + variable

part)
• it_present (32 bits) – Bit mask indicating the variable

fields
The following fields may exist within the variable part:
• Antenna
• Antenna noise
• Antenna signal
• Channel
• FHSS
• Flags
• Lock quality
• RX flags
• Rate
• TSFT
• TX attenuation
• dB TX attenuation
• dB antenna noise
• dB antenna signal
• dBm TX power

III. MIB PROPOSAL FOR IEEE 802.11
The structure of proposed MIB contains information

about physical and data link layers for WLANs. MIB
description was made taking into account the rules specified
by SMIv2. A single section called wLANStatistics, with 20
different objects was designed. We took the decision to enter
the MIB under the experimental branch, choosing the
random value 7330, from the numbers not allocated by
IANA [5]. Actual traffic information described in this MIB
may be used by network administrators for a better allocation
of resources and can be combined with those obtained in
theory by applying the traffic prediction algorithms in

wireless networks [6]. The objects defined can be seen in
Figure 4.

Figure 4. Objects defined in the MIB WLAN.

• 1.3.6.1.3.7330.1 – is the total number of frames
captured and is obtained by counting all frames from
captured file

• 1.3.6.1.3.7330.2 – is the total number of erroneous
frames and is obtained by counting all erroneous
frame from captured file

• 1.3.6.1.3.7330.3 – is the total number of Beacon
frames and is obtained by counting all beacon
frames

• 1.3.6.1.3.7330.4 – is the total number of
acknowledge frame and is obtained by counting all
acknowledge frame

• 1.3.6.1.3.7330.5 – is the total number of Probe
Request frames

• 1.3.6.1.3.7330.6 – is the total number of data frames
and is obtained by counting all data frames from
captured file

• 1.3.6.1.3.7330.7 – the number of frames not included
in other categories

• 1.3.6.1.3.7330.8 – is the time of capture of the first
frame and is obtained by reading from file the
moment of time saved for the first frame

• 1.3.6.1.3.7330.9 – is the length of the monitoring
interval in seconds

• 1.3.6.1.3.7330.10 – is the number of beacon frames
per second and is obtained by dividing the number of
beacon frames with the number of seconds in the
monitoring interval

• 1.3.6.1.3.7330.11 – is the number of acknowledge
frames per second and is obtained by dividing the
number of acknowledge frames by the number of
seconds in the monitoring interval

• 1.3.6.1.3.7330.12 – is the number of Probe Request
frames per second and is obtained by dividing the
number of type Probe Request frames to the number
of seconds in the monitoring interval

• 1.3.6.1.3.7330.13 – is the number of data frames per
second and is obtained by dividing the number of
data frames to the number of seconds in the
monitoring interval

• 1.3.6.1.3.7330.14 – the number of different
destination addresses

• 1.3.6.1.3.7330.15 – the number of different source
addresses found in capture file

• 1.3.6.1.3.7330.16 – the number of different AP
• 1.3.6.1.3.7330.17 – the average value of SSI for

signal
• 1.3.6.1.3.7330.18 – the average value of SSI for

noise
• 1.3.6.1.3.7330.19 – the average signal quality
• 1.3.6.1.3.7330.20 – number of frames on each

channel

IV. IMPLEMENTATION OF SOFTWARE SNMP AGENT FOR
IEEE 802.11

The software agent developed for wireless networks
consists on two software applications: NetAnalyzer for data
collection and WLAN_Agent for communication with the
SNMP manager [7]. Other approaches for SNMP usage in
WLAN can be found in [8].

Figure 5. Connection of the modules for WLAN Agent .

A. Installing and configuring software of WLAN agent
The programs were developed to be used in Windows,

and for proper operation they should be installed in the same
directory. One is NetAnalyzer.exe, with the role of extracting
information from files generated by Wireshark
WLAN_Agent.exe, which is responsible for the
communication with managers, and MIB_Data.xml file,
which is intended to be the connection file between the two
applications. In addition to these three files, application
Wireshark need to be installed on this machine.

Figure 6. Files needed for WLAN agent

NetAnalyzer was created for processing captured files
generated by the Wireshark. The application was created
using Borland Delphi 7 development environment. This
application will start automatically Wireshark at the begin of
the capture, Wireshark beeing configured with the
parameters introduced in NetAnalyzer. Among the
configuration options are time interval used by Wireshark to
save capture file and the name of the fiel. At the time
specified NetAnalyzer read capture file and write values
obtained in MIB_Data.xml file. The results obtained
MIB_Data.xml file can be seen in Figure 8. Processing a file
containing about 55,000 frames took about 500 milliseconds.

Figure 7. The GUI of the application NetAnalyzer

Figure 8. Sample values from the file MIB_Data.xml

Figure 9. The algorithm used to obtain information from the MIB

Figure 10. Information used to identify the type frame acknowledge.

B. Test architecture
To demonstrate the functionality and to validate the MIB

developed for agent, we created a test architecture according
to Figure 11. The complete test requires a PC that will run
the application management and a second computer which
installed all the applications required by wireless agent. For
validation several experiments have been performed, all
having the same configuration, the difference between them
consisting of WLAN traffic. In experiments that were
performed the number of available AP was different,
experiments with more than 10 AP, experiments in which the
number of available AP was between 5 and 10 and
experiments in which the number of AP was below 5.

Another parameter that was changed during various tests
was the interval used by Wireshark to save file and
NetAnalyzer to process the saved files. It was varied between
5 minutes and 30 minutes. NetAnalyzer application can be
configured to process files with data from up to 24 hours but
at greater interval is more difficult to run tests (test duration
can reach several days). The management application used
was SNMPManager.

Figure 11. Test architecture used for WLAN software agent.

A first set of experiments was carried out in an area
where the number of AP was relatively small (under 5 APs
available). We’ve monitored parameters defined in the MIB
and the monitoring interval was up to several hours.

In TABLE I some of the values of monitored parameters
from this set of experiments can be seen.

Nr.
Crt. OID Mean

Value
Min

Value
Max

Value
1 1.3.6.1.3.7330.1 8500 7821 20411
2 1.3.6.1.3.7330.2 2 2 17
3 1.3.6.1.3.7330.3 5850 4293 6769
4 1.3.6.1.3.7330.6 1620 550 7031
5 1.3.6.1.3.7330.14 30 14 71
6 1.3.6.1.3.7330.16 3 2 5

TABLE I. VALUES OF PARAMETERS FROM FIRST SET OF
EXPERIMENTS

Figure 12. Changes in total number of packets over time.

Figure 13. Changes in the number of beacon packets.

A second set of experiments was carried out in an area
where the number of APs was medium (between 5 and 10
AP available). The parameters defined in the MIB were
monitored for several hours.

The third set of experiments was carried out in an area
where the number of APs was relatively high (at least 10
available APs), being monitored all the parameters defined in
the MIB, a monitoring interval of several hours.

The results obtained in the set 2 and set 3 of experiments
are similar to those obtained in the set 1, changes in the
number of frames being similar.

V. CONCLUSION AND FUTURE WORK
Managing a WLAN with existing SNMP implementation

does not allow a comprehensive vision of the status of all
stations and access points. We have designed a software
agent to be independent to the version of the standard IEEE
802.11 a, b, g, n, s and to provide statistical information on
traffic captured from the wireless network. The solution is
based on the collection with a specialized interface AirPcap
(Cace Technologies) and interpretation of data with
Wireshark protocol analyzer, running under Windows. The
results are stored in .xml files and are accessed by the agent
which implements communication with SNMP manager
(version 1 and 3). Note that the version of SNMP agent
implemented by Windows could not be used because it was
based on MIB-II.

Although the standard was developed for usage SNMP in
wireless networks, MIB used (i.e. MIB-II) does not provide
specific information to WLAN. For this reason we have
created a MIB based on 20 items (characterized by the type
and value) to provide relevant information about: the number
of frames (total, Beacon, ACK, data, ProbeRequest, wrong,
other), the instantaneous values (number beacon frames/s,
ACK/s ProbeRequest/s, date/s), number of different
destination addresses, number of different source addresses,
number of access points. The management information can
be used to improve network design, to justify the
enlargement/ reduction of the network and to improve the
network security.

REFERENCES
[1] ***, About Wireshark, 2009,

http://www.wireshark.org/about.html
[2] ***, Libpcap File Format, 2009,

http://wiki.wireshark.org/Development/LibpcapFileFor
mat.

[3] ***, AirPcap Family, CACE Technologies, 2009,
http://www.cacetech.com/products/airpcap.html

[4] J.Berg, „Radiotap Header Description”, 2009,
http://www.radiotap.org/

[5] ***, Network Management Parameters, IANA, 2009,
http://www.iana.org/assignments/smi-numbers

[6] H.Feng, Y.Shu, S.Wang, M.Ma, „SVM-based models
for predicting WLAN traffic”, Proc. IEEE ICC, 2006,
pp. 591 - 596, June 2006.

[7] C.M.Vancea & V.Dobrota, “Retrieving Call Detail
Records from Asterisk using SNMP”, ACTA
TECHNICA NAPOCENSIS, Electronics and
Telecommunications, ISSN 1221-6542, Vol.50, No.3,
2009

[8] J.Kerdsri, „SNMP Over Wi-Fi Wireless Networks”,
Storming Media, 2003

