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Abstract – The paper presents the designing of a 
software tool for real-time measurement of the following 
quality of service parameters: one-way delay, average 
one-way delay, IP packet delay variation and average IP 
packet delay variation. The solution is an improved 
version of OreNETa (One-way delay REaltime 
NETwork Analyzer), by optimizing the traffic between 
the meter and the analyzer. When a new flow is detected, 
the meter assemblies a flow descriptor and sends it to the 
analyzer. Following the flow recording, it will announce 
the meter to send a shorter message, called header, for 
all the packets belonging to the newly registered flow.  
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I. INTRODUCTION 
 

A major step toward the next generation networks is 
to implement the quality of service mechanisms for IP 
parameters. The work carried out in this paper is 
related to the FP6 European project EUQoS, focused 
on end-to-end quality of service support over 
heterogeneous networks. Its main objectives address: 
a) the standardization of end-to-end QoS issues in 
European and International bodies (especially the 
IETF); b) promoting the creation of new business 
models to enable the deployment of QoS applications 
by the Internet community and; c) foster the 
interoperability of end-to-end QoS solutions for the 
end user, across heterogeneous research, scientific and 
industrial network domains [1]. A flexible and secure 
QoS assurance system could be validated within 
EUQoS by using the herein proposed software tool for 
passive real-time measurement. Moreover, this 
application can be used in monitoring the SLA 
(Service Level Agreement) between partners and spot 
some errors during the testing phase. The initial 
functionalities of the Abel Navaro’s OreNETa (One-
way delay REaltime NETwork Analyzer), described in 
[2], were extended. The new proposed version 

passively captures the traffic already existing on a 
network and it measures a series of QoS parameters 
(one-way delay, IP packet delay variation) in real-
time. It also logs all the captured data for offline 
processing. The passive measurements were chosen 
because they provide information about the existing 
current traffic within the network section investigated. 
Since no test traffic is generated, they can be applied 
for most applications where statements about the 
actual situation in the network are required (like SLA 
validation, traffic engineering). Active measurements 
can always be applied supplementary, in order to 
predict the future network situation during times 
where no regular traffic is transmitted. The reliability 
and quality of the link can be expressed in terms of 
number of packets lost too. Every time a packet 
belonging to a flow does not reach its destination, a 
counter is incremented to express the packet loss. 
  

II. QUALITY OF SERVICE PARAMETERS 
 

The QoS  parameters that are intended to be measured 
herein using the proposed software tool are the 
following: one-way delay, average one-way delay, IP 
packet delay variation, average IP packet delay 
variation and packet loss. OWD (One-Way Delay) 
represents the time that takes a packet to travel 
through the network from source to destination, which 
means the time passing between the moment when the 
first bit of the packet leaves the source host and the 
moment when the last bit of the same packet reaches 
the destination host. This definition can be expressed 
mathematically by: 
  

ititiOWD 01 −= , for 1≤i≤N .                      (1) 
 

where N is the total number of packets belonging to a 
flow. Fig. 1 illustrates the one-way delay for an n-byte 
packet traversing a network segment. The same 



packet i sent at it0 by the source is received at it1  by 
the destination. 

 
Fig. 1. One-Way Delay 
 
AOWD (Average OWD) could be computed as 
follows: 

N

N

i
iOWD

AOWD
∑
== 1 .                     (2) 
 

The term "jitter" refers to the variation of a parameter 
with respect to some reference parameter. A definition 
of IPDV (IP Packet Delay Variation), also referred to 
as delay jitter, can be given for packets inside a 
stream of packets. The IPDV is defined for a given 
pair of consecutive packets within the stream going 
from measurement point MP1 to measurement point 
MP2. It is actually the difference between the one-
way-delays of two consecutive packets. 
 

OWDiiOWDIPDVi −−= )1( , for 1 < i ≤ N .      (3) 

 
Fig. 2. IP Packet Delay Variation 

 
In Fig. 2 the source is MP1, whilst MP2 is the 
destination. If a packet is lost (e.g. packet 4), the 
IPDV (with respect to its adjacent packets) cannot be 
computed. Similar to one-way delay, AIPDV 
(Average IPDV) can be calculated as: 
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III. DESIGNING OF THE MEASUREMENT TOOL 
 
The main building blocks for implementing a 
measurement tool are shown in Fig. 3. The processes 
involved are packet capturing, time-stamping, 

generation of flow ID, classification, generation of a 
packet ID and transfer of measurement data. Each of 
these processes adds a piece of information to the 
final message sent to the control application.  
 

 
Fig. 3. Building Blocks 
 
A. Packet Capturing 
 
A certain amount of bytes needs to be captured per 
packet as basis for the generation of a packet ID. The 
packet ID collision probability (see subsection E) 
depends on the generation function and the number of 
bytes that are used as input. The first 40 Bytes starting 
at the IP header are considered to be sufficient for this 
purpose. However, the number of bytes that can be 
captured also depends on the processing power 
remaining for the measurement task. The packet 
capturing performance of a machine is limited by the 
following parameters: number of interrupts generated 
by the NIC; number of context switches; amount of 
bytes transferred to user space; and current load of the 
machine caused by other processes (e.g. packet ID 
generation) [3]. 
 
B. Time-stamping 
 
A number of issues have to be considered for the 
basic function of assigning timestamps to packets for 
subsequent delay calculation. Internal buffering in the 
hardware and on the way through the kernel causes 
additional packet delay. Even if all involved 
measurement devices are equipped with the same 
hardware and operating system, packets can 
experience different delays (e.g. due to CPU load and 
the level of buffer filling). In order to reduce effects 
from additional variable delays, the timestamp should 
be assigned to the packet as early as possible. A 
further problem that has to be solved when using two 
measurement points is clock synchronization between 
both points. Best results are based on GPS (Global 
Positioning System). 
 
C.  Flow ID Generation 
 
A flow is a sequence of packets sent from the same 
source to the same destination and receiving the same 



level of service from the nodes. In order to obtain the 
same ID for every packet belonging to a given flow 
we must refer to a combination of fields found within 
Layer 3 and Layer 4 headers [4]. A similar process 
can be found in routers also, and is often referred to as 
flow identification. Since there is no specific 
information in the packet header to indicate if a 
packet belongs to a given flow or not, flow 
identification must be performed on every packet. 
However, modern routers must support wire-speed 
forwarding. To support that, a router must cope with 
the worst-case scenario rather than the average one. In 
the worst case, multiple packets that belong to 
reserved flows may arrive at the speed of the 
incoming link; that is, packets arrive back-to-back. A 
router must be able to deal with such a scenario. 

 

 
Fig. 4. IPv4 and IPv6 Five-Tuple 
 
At high speeds the per-packet processing time is 
extremely small. For example, to support 64-byte 
packets at OC12 speed (622 Mbps), the per-packet 
processing time is less than 1 microsecond. Service 
providers are expected to upgrade their backbone to 
OC48 (2.5 Gbps) and OC192 (10 Gbps) soon. As the 
Internet expands, the number of concurrent flows can 
also be very large. An OC12 backbone trunk currently 
may have tens of thousands of concurrent flows. Thus 
the design of a flow identification module must be 
able to perform lookup at high speeds with a large 
number of flows [4]. 
 
D.  Classification 
 
After the flow ID has been generated for the captured 
packet we are able to take some decisions based on 
the flow identified by the new flow ID. There can be a 
discussion upon where to place the classification in 
the processing chain; before time-stamping or after it. 
Placing the classification before the time-stamping 
will introduce a variable delay equal to the 
classification processing time. Depending on the size 
of the classification table, this delay can be 
significant, and will lead to erroneous measurements. 
The benefit is that the timestamps will be generated 
only for relevant packets (i.e. with proper flow ID). 
The best option is to go for an early time-stamping to 
obtain accurate results. 
 
E.  Packet ID Generation 
 
In order to get the same packet ID for one packet at 
two or more measurement points the packet ID 
generation should be based on the following fields 
that: a) already exist within the packet; b) are 
invariant or predictable during the transport; c) are 
highly variable between the different packets. The 

goal is to achieve an acceptable low probability of 
collisions with a packet ID that does not exceed the 
available capacity for the measurement result data 
transfer [3]. As for the timestamp, the packet ID only 
needs to be unique in the given time interval. This 
limits the possible combinations to the number of 
packets that can be observed within this interval. For 
example, on an 155 Mbps link with an average packet 
size of 512 bytes and a maximum time to traverse the 
network of 10 seconds, the maximum number of 
packets would be 378,421 (19,375,000/ 512*10 = 
378,421). This amount of combinations can be 
represented by 19 bits (219 = 524,288). Knowledge 
about the expected traffic mix therefore can reduce 
the number of required bits. 
 
F.  Measurement Result Transfer 
 
In order to calculate the QoS parameters herein at 
least two timestamps have to be compared. If more 
than one measurement point is involved the results 
(timestamps and packet ID) from the different MPs 
have to be collected at a common location. This point 
can be located on a separate host or it can be co-
located with one of the MPs. The transfer of the 
measurement results involved the following methods: 
 
a) in-packet: timestamps and packet ID are carried 

within the packet, which should be modified.  
b) in-band: the results are sent directly on the same 

path as the data.  
c) out-of-band: a separate path is needed.  
 
In all the cases additional capacity (either on the 
existing network or on a separate network) is 
required. For economic reasons even a separate 
reporting network would probably have a lower 
capacity then the “production network”. Therefore to 
save resources (storage capacity and bandwidth) the 
measurement results traffic should be kept as low as 
possible. 
 
IV. PROPOSED ARCHITECTURE FOR PASSIVE 

REAL-TIME MEASUREMENTS 
 
In order to fulfill the requirements especially that ones 
related to resource restrictions, real-time 
representation and data collection, a distributed 
architecture is proposed, with four components as in 
OreNETa, but with extended functionalities.  

 

 
Fig. 5. Proposed Architecture 



The meter is the component responsible for the first 
five processes (packet capturing, time-stamping, flow 
ID generation, classification and packet ID 
generation). This component can be placed either on 
the routers of the network being tested, either on 
dedicated machine for capturing traffic (behind a 
monitoring port of a switch or behind an optical 
splitter). For packet capturing and time-stamping, the 
meter uses a shared library libpcap (involved in 
applications like tcpdump and ethereal).  

The analyzer is the control application responsible for 
collecting the measurements results from all the 
meters deployed in the tested network. It is the core 
component of the architecture and performs the 
synchronization of the received messages and the 
computation of QoS parameters. Other functionalities 
include logging the received measurement results in a 
data repository, converting the logged data to 
standardized formats (like MGEN) and supplying 
real-time statistics about the current traffic. The 
analyzer determines the functionality of the meters by 
sending control messages.  

 A data store is represented by a set of binary files 
containing all the measurement results received from 
each meter. The reason for not using a dedicated 
database engine was related to the poor performance 
of inserting records at very high rates. As an 
improvement one can develop a conversion tool for 
moving the data from the binary files to a database. 

The graphical client is no more than a proof-of-
concept application for highlighting the blueprints in 
extracting real-time statistics from the analyzer. 

In Fig. 5 one can observe a flow of control messages 
along with the data flow between the four 
components. In order to address the requirements 
regarding the size of the messages and the limited 
resources of the control network, a special 
communication protocol needs to be designed. The 
bottleneck of the communication is represented by the 
segments joining the meters and the analyzer. All 
other segments presented in Fig. 5 are not relevant, 
since the analyzer and the data store are deployed on 
the same machine (and the operating system will be 
responsible for exchanging of information), and the 
messages between the analyzer and the graphical 
client are very rare (one every second). Before going 
any further with the explanation we need to define the 
term - flow, as the collection of packets having the 
same unique combination of Layer 3 Address, Layer 4 
Protocol Type and Layer 4 Ports. The first version of 
the communication protocol between the meter and 
the analyzer was defined in [2]. The major drawback 
of this version is represented by the big amount of 
redundant data sent between the two components, 
especially for IPv6 measurements. For each captured 
packet on the meter, a packet report message was 
aggregated and sent to the analyzer. The fields “L3 
Protocol”, “IPv4 Src Address”, “IPv4 Dst Address”, 
“L4 Protocol”, “L4 Src Port” and “L4 Dst Port” are 

the same for each packet belonging to a flow. 
Therefore, this data characterizes a flow, not a unique 
packet and the set of bytes was sent along with each 
packet report, increasing the redundancy: 14 bytes for 
IPv4, 38 bytes for IPv6. In order to optimize the 
traffic between the meter and the analyzer, a 
mechanism was developed to send two kinds of 
messages: flow descriptors and headers, as in Fig. 6. 

 
Fig. 6. Flow descriptor and header 

When a new flow is detected (a packet is captured and 
it does not belong to an already detected flow), the 
meter assemblies a flow descriptor and sends it to the 
analyzer. Using this message, the analyzer, creates a 
structure which uniquely identifies the new flow. All 
packets captured later will be “routed” internally by 
the analyzer into one of these structures. This action is 
equivalent to the “Flow Identification” performed by 
real routers. After the flow has been recorded by the 
analyzer, it will announce the meter to send a shorter 
message, called header, for all the packets belonging 
to the newly registered flow. The information 
contained in the header is represented by data that is 
different from one packet to another and uniquely 
identifies it. One must not mistake this header for the 
IP or TCP headers. The name was chosen like this 
because the information sent in each header is 
extracted mainly from the real headers of the packets. 
By means of this mechanism, an important amount of 
traffic is reduced, mainly because the values 
identifying a flow (five-tuple) are only sent with the 
flow descriptor. This reduces the size of old packet 
reports from 28 bytes to 23 in the case of IPv4 and 
from 52 to 23 bytes for IPv6 (more than twice). 

Another problem encountered within the first version 
of OreNETa was the fact that packet reports were sent 
for all captured packets, including those which were 
not part of any flow. For instance ICMP and ARP 
packets are not relevant to measuring OWD and 
IPDV, since a flow is defined using TCP or UDP. In 
the current version of the program, all the irrelevant 
packets are discarded at the meter, improving though 
the bandwidth used for the control network. 

 

V. EXPERIMENTAL RESULTS 

 
In order to test the new proprietary protocol, the 
testbed included two Debian Linux-based computers 
(pampol and verdi) running the meter, and one 



Slackware Linux-based computer hosting the 
analyzer. 
 

 
Fig. 7. Communication Protocol Stress Test 

 
The connection between pampol and verdi represents 
the tested network, while the link connecting the 
meters with the analyzer would be the control 
network. These two networks are separated using 
VLANs configured on a Catalyst 2950 switch.  
 

 
Fig. 8. Testbed   
 
Experiment 1. The test consists in generating a large 
number of packets per second and monitoring any 
buffer overflows that might occur at the meters or at 
the analyzer. For this scenario, MGEN tool is 
installed on pampol, and different UDP flows are 
generated through the tested network using the 
following command: 
 
root@pampol:~# mgen -i eth0 -b 192.168.11.4 
2000000 -s <packet_size> -r <packet_rate> 
 
The packet size did not exceed 1500 bytes, i.e. the 
Layer 2’s MTU (Maximum Transmission Unit), to 
avoid the packet fragmentation. MGEN generated a 
set of up to 17,000 pps to verdi. The maximum packet 
rate is limited because of too many resynchronizations 

needed at the analyzer side, the packets being lost due 
to the limitations of libpcap, which is too slow. A new 
capturing solution may increase the performances of 
this software tool.  

 
Fig. 9. OWD at 100 packets/s with 370 bytes/packet 

 

 
Fig. 10. OWD at 8,000 packets/s with 1,300 bytes/packet 

 
Fig. 11. OWD at 14,000 packets/s with 872 bytes/packet 
 
Experiment 2. To prove that the software modules 
developed are able to measure the QoS parameters 
over a heterogeneous network, a more complex 
testbed, presented in Fig. 8, has been used. It included 
several Linux-based computers, as well as two Cisco 
7600 routers. The links tested were Ethernet, Fast 
Ethernet, 802.11 WLAN and ATM. Table 1 presents 
the configuration used for all four capture points. The 
test traffic will be generated from portatil to presario 
using MGEN. The capture points and the direction of 
the traffic are marked with arrows. 

Meter verdi is used twice in this configuration, but the 
two instances running on this computer will extract 
the traffic at different capture points and with 
different directions (eth1-IN vs. eth1-OUT). The same 



interface is used on verdi both for incoming and 
outgoing traffic, so the meters should be able to 
distinguish the direction of the traffic. 
 
Table 1 Experiment 2 Network Configuration 
Meter Control 

network 
Tested 
network 

Intf. Link I/O 

Pampol 147.83.130.163 192.168.13.1 eth1 802.11 I 
Verdi 147.83.130.171 192.168.11.4 eth1 FE I 
verdi 147.83.130.171 192.168.11.4 eth1 FE O 
malvasia 147.83.160.164 192.168.31.1 eth0 ETH O 

   
root@portatil:~# mgen -i eth1 -b 192.168.31.2 
2000000 -s 512 -r 200 

 
Fig. 12. Experiment 2 results  

 
Note that the number of packets captured on each 
segment is exactly as expected (200 packets/s). The 
packet loss is zero since the network is not under 
stress (108,000 bytes/s). The throughput recorded is 
bigger than the expected one (200 packets x 512 
bytes/packet = 102,400 bytes). The difference in 
throughput was due to the fact that MGEN appends 
another 28 bytes to each sent packet. Therefore the 
size would grow to 512 + 28 = 540 bytes (in this case 
the computation is correct: 200 packets x 540 
bytes/packet = 108,000 bytes). IPDV has negative 
values, which is correct since the variation of OWD 
might lead to negative results. Note that the resolution 
of 6 digits after the decimal point could be extended 
to improve the granularity of the results. The OWD 
obtained may vary depending on the Layer 2 link. The 
very small value of OWD (0.000180 seconds) 
between meter 2 and meter 3 is correct since the two 
meters run on the same computer. The biggest OWD 
is obtained for the segment which contains the extra 
to Cisco hops and the ATM line. Since the routers 
might be heavily used, by other traffic from the 
production network, the OWD will increase. 

 
Experiment 3. Suppose the meters are perfectly 
synchronized in time. The analyzer is able to 
determine the route for the requested flows 
irrespective of the order of the meters supplied at 
command line. Let us change now the order of the 
meters, by placing M[4] not at the edge of the testbed, 
but on one of verdi’s interfaces. The new 
configuration is presented in Table 2. We generate the 
same traffic as in the previous test using MGEN. 
 
Table 2 Experiment 3 Network Configuration 
Meter Control 

network 
Tested 
network 

Intf. Link I/O 

pampol 147.83.130.163 192.168.13.1 eth1 802.11 I 
verdi 147.83.130.171 192.168.11.4 eth1 FE O 
malvasia 147.83.130.164 192.168.31.1 eth0 ETH O 
verdi 147.83.160.171 192.168.11.4 eth1 FE I 

 
Fig. 13. Experiment 3 results 

 
As expected, the order of the meters changed 
according to the path of the captured flow. M[4] 
follows M[1] since they are close to each other 
(pampol-IN and verdi-IN). The other 2 meters, M[2] 
placed on verdi-OUT and M[3] placed on malvasia-
OUT are ordered accordingly to the route presented in 
Fig. 10. If the time synchronization between the 
meters is not accurate, this functionality will be 
useless, as well as the whole project. If the time 
difference between two meters is almost equal to the 
OWD value, we might expect to obtain negative 
values for the OWDs.  

 

VI. CONCLUSIONS 
 
Compared to the previous version of OreNETa the 
present work came up with a set of improvements, 
optimizations and additional functionalities. In order 
to optimize the traffic between the meter and the 
analyzer, a mechanism to send two kinds of messages 
(flow descriptors and headers) was developed. An 
important amount of traffic is reduced, mainly 
because the values identifying a flow (five-tuple) are 
only sent with the flow descriptor. This reduces the 
size of old packet reports from 28 to 23 bytes in the 
case of IPv4, and from 52 to 23 bytes for IPv6. All the 
irrelevant packets (e.g. ICMP and ARP) were 
discarded at the meter, improving though the 
bandwidth used for the control network. Another 
improvement is the possibility to connect more than 
one analyzer to a meter and vice-versa. The flow 
processing was implemented based on the fact that the 
packet IDs will always be captured in the same order 
by every meter, so the headers will be arranged 
chronologically when they arrive at the analyzer. A 
mechanism was implemented to order the meters on 
the tested network by comparing the timestamps of 
the first packets received. This simple mechanism is 
useful for tracing a route a flow is using, in case all 
the meters are perfectly synchronized in time. The 
tool uses pure binary files to store only the needed 
data, and the processing is performed later, when the 
capture is finished. 
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