
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 1-2, 2006

Software Tool for Passive Real-Time Measurement of QoS
Parameters

Mihai Vlad 1, Ionut Sandu 1, Virgil Dobrota 2, Ionut Trestian 2, Jordi Domingo-Pascual 3

1 Alcatel Romania, Strada Gheorghe Lazar 9, 300081 Timisoara, Romania, e-mail {Mihai.Vlad, Ionut.Sandu}@alcatel.ro
2 Technical University of Cluj-Napoca, Communications Department, Strada George Baritiu 26-28, 400027 Cluj-Napoca, Romania,

e-mail {Virgil.Dobrota, Ionut.Trestian}@com.utcluj.ro
3 Universitat Politecnica de Catalunya, Jordi Girona 1-3, Barcelona, Spain, e-mail Jordi.Domingo@ac.upc.es

Abstract – The paper presents the designing of a
software tool for real-time measurement of the following
quality of service parameters: one-way delay, average
one-way delay, IP packet delay variation and average IP
packet delay variation. The solution is an improved
version of OreNETa (One-way delay REaltime
NETwork Analyzer), by optimizing the traffic between
the meter and the analyzer. When a new flow is detected,
the meter assemblies a flow descriptor and sends it to the
analyzer. Following the flow recording, it will announce
the meter to send a shorter message, called header, for
all the packets belonging to the newly registered flow.

Keywords: measurement tool, OreNETa, QoS
parameters

I. INTRODUCTION

A major step toward the next generation networks is
to implement the quality of service mechanisms for IP
parameters. The work carried out in this paper is
related to the FP6 European project EUQoS, focused
on end-to-end quality of service support over
heterogeneous networks. Its main objectives address:
a) the standardization of end-to-end QoS issues in
European and International bodies (especially the
IETF); b) promoting the creation of new business
models to enable the deployment of QoS applications
by the Internet community and; c) foster the
interoperability of end-to-end QoS solutions for the
end user, across heterogeneous research, scientific and
industrial network domains [1]. A flexible and secure
QoS assurance system could be validated within
EUQoS by using the herein proposed software tool for
passive real-time measurement. Moreover, this
application can be used in monitoring the SLA
(Service Level Agreement) between partners and spot
some errors during the testing phase. The initial
functionalities of the Abel Navaro’s OreNETa (One-
way delay REaltime NETwork Analyzer), described in
[2], were extended. The new proposed version

passively captures the traffic already existing on a
network and it measures a series of QoS parameters
(one-way delay, IP packet delay variation) in real-
time. It also logs all the captured data for offline
processing. The passive measurements were chosen
because they provide information about the existing
current traffic within the network section investigated.
Since no test traffic is generated, they can be applied
for most applications where statements about the
actual situation in the network are required (like SLA
validation, traffic engineering). Active measurements
can always be applied supplementary, in order to
predict the future network situation during times
where no regular traffic is transmitted. The reliability
and quality of the link can be expressed in terms of
number of packets lost too. Every time a packet
belonging to a flow does not reach its destination, a
counter is incremented to express the packet loss.

II. QUALITY OF SERVICE PARAMETERS

The QoS parameters that are intended to be measured
herein using the proposed software tool are the
following: one-way delay, average one-way delay, IP
packet delay variation, average IP packet delay
variation and packet loss. OWD (One-Way Delay)
represents the time that takes a packet to travel
through the network from source to destination, which
means the time passing between the moment when the
first bit of the packet leaves the source host and the
moment when the last bit of the same packet reaches
the destination host. This definition can be expressed
mathematically by:

ititiOWD 01 −= , for 1≤i≤N . (1)

where N is the total number of packets belonging to a
flow. Fig. 1 illustrates the one-way delay for an n-byte
packet traversing a network segment. The same

packet i sent at it0 by the source is received at it1 by
the destination.

Fig. 1. One-Way Delay

AOWD (Average OWD) could be computed as
follows:

N

N

i
iOWD

AOWD
∑
== 1 . (2)

The term "jitter" refers to the variation of a parameter
with respect to some reference parameter. A definition
of IPDV (IP Packet Delay Variation), also referred to
as delay jitter, can be given for packets inside a
stream of packets. The IPDV is defined for a given
pair of consecutive packets within the stream going
from measurement point MP1 to measurement point
MP2. It is actually the difference between the one-
way-delays of two consecutive packets.

OWDiiOWDIPDVi −−=)1(, for 1 < i ≤ N . (3)

Fig. 2. IP Packet Delay Variation

In Fig. 2 the source is MP1, whilst MP2 is the
destination. If a packet is lost (e.g. packet 4), the
IPDV (with respect to its adjacent packets) cannot be
computed. Similar to one-way delay, AIPDV
(Average IPDV) can be calculated as:

N

N

i
IPDVi

AIPDV
∑
== 2 . (4)

III. DESIGNING OF THE MEASUREMENT TOOL

The main building blocks for implementing a
measurement tool are shown in Fig. 3. The processes
involved are packet capturing, time-stamping,

generation of flow ID, classification, generation of a
packet ID and transfer of measurement data. Each of
these processes adds a piece of information to the
final message sent to the control application.

Fig. 3. Building Blocks

A. Packet Capturing

A certain amount of bytes needs to be captured per
packet as basis for the generation of a packet ID. The
packet ID collision probability (see subsection E)
depends on the generation function and the number of
bytes that are used as input. The first 40 Bytes starting
at the IP header are considered to be sufficient for this
purpose. However, the number of bytes that can be
captured also depends on the processing power
remaining for the measurement task. The packet
capturing performance of a machine is limited by the
following parameters: number of interrupts generated
by the NIC; number of context switches; amount of
bytes transferred to user space; and current load of the
machine caused by other processes (e.g. packet ID
generation) [3].

B. Time-stamping

A number of issues have to be considered for the
basic function of assigning timestamps to packets for
subsequent delay calculation. Internal buffering in the
hardware and on the way through the kernel causes
additional packet delay. Even if all involved
measurement devices are equipped with the same
hardware and operating system, packets can
experience different delays (e.g. due to CPU load and
the level of buffer filling). In order to reduce effects
from additional variable delays, the timestamp should
be assigned to the packet as early as possible. A
further problem that has to be solved when using two
measurement points is clock synchronization between
both points. Best results are based on GPS (Global
Positioning System).

C. Flow ID Generation

A flow is a sequence of packets sent from the same
source to the same destination and receiving the same

level of service from the nodes. In order to obtain the
same ID for every packet belonging to a given flow
we must refer to a combination of fields found within
Layer 3 and Layer 4 headers [4]. A similar process
can be found in routers also, and is often referred to as
flow identification. Since there is no specific
information in the packet header to indicate if a
packet belongs to a given flow or not, flow
identification must be performed on every packet.
However, modern routers must support wire-speed
forwarding. To support that, a router must cope with
the worst-case scenario rather than the average one. In
the worst case, multiple packets that belong to
reserved flows may arrive at the speed of the
incoming link; that is, packets arrive back-to-back. A
router must be able to deal with such a scenario.

Fig. 4. IPv4 and IPv6 Five-Tuple

At high speeds the per-packet processing time is
extremely small. For example, to support 64-byte
packets at OC12 speed (622 Mbps), the per-packet
processing time is less than 1 microsecond. Service
providers are expected to upgrade their backbone to
OC48 (2.5 Gbps) and OC192 (10 Gbps) soon. As the
Internet expands, the number of concurrent flows can
also be very large. An OC12 backbone trunk currently
may have tens of thousands of concurrent flows. Thus
the design of a flow identification module must be
able to perform lookup at high speeds with a large
number of flows [4].

D. Classification

After the flow ID has been generated for the captured
packet we are able to take some decisions based on
the flow identified by the new flow ID. There can be a
discussion upon where to place the classification in
the processing chain; before time-stamping or after it.
Placing the classification before the time-stamping
will introduce a variable delay equal to the
classification processing time. Depending on the size
of the classification table, this delay can be
significant, and will lead to erroneous measurements.
The benefit is that the timestamps will be generated
only for relevant packets (i.e. with proper flow ID).
The best option is to go for an early time-stamping to
obtain accurate results.

E. Packet ID Generation

In order to get the same packet ID for one packet at
two or more measurement points the packet ID
generation should be based on the following fields
that: a) already exist within the packet; b) are
invariant or predictable during the transport; c) are
highly variable between the different packets. The

goal is to achieve an acceptable low probability of
collisions with a packet ID that does not exceed the
available capacity for the measurement result data
transfer [3]. As for the timestamp, the packet ID only
needs to be unique in the given time interval. This
limits the possible combinations to the number of
packets that can be observed within this interval. For
example, on an 155 Mbps link with an average packet
size of 512 bytes and a maximum time to traverse the
network of 10 seconds, the maximum number of
packets would be 378,421 (19,375,000/ 512*10 =
378,421). This amount of combinations can be
represented by 19 bits (219 = 524,288). Knowledge
about the expected traffic mix therefore can reduce
the number of required bits.

F. Measurement Result Transfer

In order to calculate the QoS parameters herein at
least two timestamps have to be compared. If more
than one measurement point is involved the results
(timestamps and packet ID) from the different MPs
have to be collected at a common location. This point
can be located on a separate host or it can be co-
located with one of the MPs. The transfer of the
measurement results involved the following methods:

a) in-packet: timestamps and packet ID are carried

within the packet, which should be modified.
b) in-band: the results are sent directly on the same

path as the data.
c) out-of-band: a separate path is needed.

In all the cases additional capacity (either on the
existing network or on a separate network) is
required. For economic reasons even a separate
reporting network would probably have a lower
capacity then the “production network”. Therefore to
save resources (storage capacity and bandwidth) the
measurement results traffic should be kept as low as
possible.

IV. PROPOSED ARCHITECTURE FOR PASSIVE

REAL-TIME MEASUREMENTS

In order to fulfill the requirements especially that ones
related to resource restrictions, real-time
representation and data collection, a distributed
architecture is proposed, with four components as in
OreNETa, but with extended functionalities.

Fig. 5. Proposed Architecture

The meter is the component responsible for the first
five processes (packet capturing, time-stamping, flow
ID generation, classification and packet ID
generation). This component can be placed either on
the routers of the network being tested, either on
dedicated machine for capturing traffic (behind a
monitoring port of a switch or behind an optical
splitter). For packet capturing and time-stamping, the
meter uses a shared library libpcap (involved in
applications like tcpdump and ethereal).

The analyzer is the control application responsible for
collecting the measurements results from all the
meters deployed in the tested network. It is the core
component of the architecture and performs the
synchronization of the received messages and the
computation of QoS parameters. Other functionalities
include logging the received measurement results in a
data repository, converting the logged data to
standardized formats (like MGEN) and supplying
real-time statistics about the current traffic. The
analyzer determines the functionality of the meters by
sending control messages.

 A data store is represented by a set of binary files
containing all the measurement results received from
each meter. The reason for not using a dedicated
database engine was related to the poor performance
of inserting records at very high rates. As an
improvement one can develop a conversion tool for
moving the data from the binary files to a database.

The graphical client is no more than a proof-of-
concept application for highlighting the blueprints in
extracting real-time statistics from the analyzer.

In Fig. 5 one can observe a flow of control messages
along with the data flow between the four
components. In order to address the requirements
regarding the size of the messages and the limited
resources of the control network, a special
communication protocol needs to be designed. The
bottleneck of the communication is represented by the
segments joining the meters and the analyzer. All
other segments presented in Fig. 5 are not relevant,
since the analyzer and the data store are deployed on
the same machine (and the operating system will be
responsible for exchanging of information), and the
messages between the analyzer and the graphical
client are very rare (one every second). Before going
any further with the explanation we need to define the
term - flow, as the collection of packets having the
same unique combination of Layer 3 Address, Layer 4
Protocol Type and Layer 4 Ports. The first version of
the communication protocol between the meter and
the analyzer was defined in [2]. The major drawback
of this version is represented by the big amount of
redundant data sent between the two components,
especially for IPv6 measurements. For each captured
packet on the meter, a packet report message was
aggregated and sent to the analyzer. The fields “L3
Protocol”, “IPv4 Src Address”, “IPv4 Dst Address”,
“L4 Protocol”, “L4 Src Port” and “L4 Dst Port” are

the same for each packet belonging to a flow.
Therefore, this data characterizes a flow, not a unique
packet and the set of bytes was sent along with each
packet report, increasing the redundancy: 14 bytes for
IPv4, 38 bytes for IPv6. In order to optimize the
traffic between the meter and the analyzer, a
mechanism was developed to send two kinds of
messages: flow descriptors and headers, as in Fig. 6.

Fig. 6. Flow descriptor and header

When a new flow is detected (a packet is captured and
it does not belong to an already detected flow), the
meter assemblies a flow descriptor and sends it to the
analyzer. Using this message, the analyzer, creates a
structure which uniquely identifies the new flow. All
packets captured later will be “routed” internally by
the analyzer into one of these structures. This action is
equivalent to the “Flow Identification” performed by
real routers. After the flow has been recorded by the
analyzer, it will announce the meter to send a shorter
message, called header, for all the packets belonging
to the newly registered flow. The information
contained in the header is represented by data that is
different from one packet to another and uniquely
identifies it. One must not mistake this header for the
IP or TCP headers. The name was chosen like this
because the information sent in each header is
extracted mainly from the real headers of the packets.
By means of this mechanism, an important amount of
traffic is reduced, mainly because the values
identifying a flow (five-tuple) are only sent with the
flow descriptor. This reduces the size of old packet
reports from 28 bytes to 23 in the case of IPv4 and
from 52 to 23 bytes for IPv6 (more than twice).

Another problem encountered within the first version
of OreNETa was the fact that packet reports were sent
for all captured packets, including those which were
not part of any flow. For instance ICMP and ARP
packets are not relevant to measuring OWD and
IPDV, since a flow is defined using TCP or UDP. In
the current version of the program, all the irrelevant
packets are discarded at the meter, improving though
the bandwidth used for the control network.

V. EXPERIMENTAL RESULTS

In order to test the new proprietary protocol, the
testbed included two Debian Linux-based computers
(pampol and verdi) running the meter, and one

Slackware Linux-based computer hosting the
analyzer.

Fig. 7. Communication Protocol Stress Test

The connection between pampol and verdi represents
the tested network, while the link connecting the
meters with the analyzer would be the control
network. These two networks are separated using
VLANs configured on a Catalyst 2950 switch.

Fig. 8. Testbed

Experiment 1. The test consists in generating a large
number of packets per second and monitoring any
buffer overflows that might occur at the meters or at
the analyzer. For this scenario, MGEN tool is
installed on pampol, and different UDP flows are
generated through the tested network using the
following command:

root@pampol:~# mgen -i eth0 -b 192.168.11.4
2000000 -s <packet_size> -r <packet_rate>

The packet size did not exceed 1500 bytes, i.e. the
Layer 2’s MTU (Maximum Transmission Unit), to
avoid the packet fragmentation. MGEN generated a
set of up to 17,000 pps to verdi. The maximum packet
rate is limited because of too many resynchronizations

needed at the analyzer side, the packets being lost due
to the limitations of libpcap, which is too slow. A new
capturing solution may increase the performances of
this software tool.

Fig. 9. OWD at 100 packets/s with 370 bytes/packet

Fig. 10. OWD at 8,000 packets/s with 1,300 bytes/packet

Fig. 11. OWD at 14,000 packets/s with 872 bytes/packet

Experiment 2. To prove that the software modules
developed are able to measure the QoS parameters
over a heterogeneous network, a more complex
testbed, presented in Fig. 8, has been used. It included
several Linux-based computers, as well as two Cisco
7600 routers. The links tested were Ethernet, Fast
Ethernet, 802.11 WLAN and ATM. Table 1 presents
the configuration used for all four capture points. The
test traffic will be generated from portatil to presario
using MGEN. The capture points and the direction of
the traffic are marked with arrows.

Meter verdi is used twice in this configuration, but the
two instances running on this computer will extract
the traffic at different capture points and with
different directions (eth1-IN vs. eth1-OUT). The same

interface is used on verdi both for incoming and
outgoing traffic, so the meters should be able to
distinguish the direction of the traffic.

Table 1 Experiment 2 Network Configuration
Meter Control

network
Tested
network

Intf. Link I/O

Pampol 147.83.130.163 192.168.13.1 eth1 802.11 I
Verdi 147.83.130.171 192.168.11.4 eth1 FE I
verdi 147.83.130.171 192.168.11.4 eth1 FE O
malvasia 147.83.160.164 192.168.31.1 eth0 ETH O

root@portatil:~# mgen -i eth1 -b 192.168.31.2
2000000 -s 512 -r 200

Fig. 12. Experiment 2 results

Note that the number of packets captured on each
segment is exactly as expected (200 packets/s). The
packet loss is zero since the network is not under
stress (108,000 bytes/s). The throughput recorded is
bigger than the expected one (200 packets x 512
bytes/packet = 102,400 bytes). The difference in
throughput was due to the fact that MGEN appends
another 28 bytes to each sent packet. Therefore the
size would grow to 512 + 28 = 540 bytes (in this case
the computation is correct: 200 packets x 540
bytes/packet = 108,000 bytes). IPDV has negative
values, which is correct since the variation of OWD
might lead to negative results. Note that the resolution
of 6 digits after the decimal point could be extended
to improve the granularity of the results. The OWD
obtained may vary depending on the Layer 2 link. The
very small value of OWD (0.000180 seconds)
between meter 2 and meter 3 is correct since the two
meters run on the same computer. The biggest OWD
is obtained for the segment which contains the extra
to Cisco hops and the ATM line. Since the routers
might be heavily used, by other traffic from the
production network, the OWD will increase.

Experiment 3. Suppose the meters are perfectly
synchronized in time. The analyzer is able to
determine the route for the requested flows
irrespective of the order of the meters supplied at
command line. Let us change now the order of the
meters, by placing M[4] not at the edge of the testbed,
but on one of verdi’s interfaces. The new
configuration is presented in Table 2. We generate the
same traffic as in the previous test using MGEN.

Table 2 Experiment 3 Network Configuration
Meter Control

network
Tested
network

Intf. Link I/O

pampol 147.83.130.163 192.168.13.1 eth1 802.11 I
verdi 147.83.130.171 192.168.11.4 eth1 FE O
malvasia 147.83.130.164 192.168.31.1 eth0 ETH O
verdi 147.83.160.171 192.168.11.4 eth1 FE I

Fig. 13. Experiment 3 results

As expected, the order of the meters changed
according to the path of the captured flow. M[4]
follows M[1] since they are close to each other
(pampol-IN and verdi-IN). The other 2 meters, M[2]
placed on verdi-OUT and M[3] placed on malvasia-
OUT are ordered accordingly to the route presented in
Fig. 10. If the time synchronization between the
meters is not accurate, this functionality will be
useless, as well as the whole project. If the time
difference between two meters is almost equal to the
OWD value, we might expect to obtain negative
values for the OWDs.

VI. CONCLUSIONS

Compared to the previous version of OreNETa the
present work came up with a set of improvements,
optimizations and additional functionalities. In order
to optimize the traffic between the meter and the
analyzer, a mechanism to send two kinds of messages
(flow descriptors and headers) was developed. An
important amount of traffic is reduced, mainly
because the values identifying a flow (five-tuple) are
only sent with the flow descriptor. This reduces the
size of old packet reports from 28 to 23 bytes in the
case of IPv4, and from 52 to 23 bytes for IPv6. All the
irrelevant packets (e.g. ICMP and ARP) were
discarded at the meter, improving though the
bandwidth used for the control network. Another
improvement is the possibility to connect more than
one analyzer to a meter and vice-versa. The flow
processing was implemented based on the fact that the
packet IDs will always be captured in the same order
by every meter, so the headers will be arranged
chronologically when they arrive at the analyzer. A
mechanism was implemented to order the meters on
the tested network by comparing the timestamps of
the first packets received. This simple mechanism is
useful for tracing a route a flow is using, in case all
the meters are perfectly synchronized in time. The
tool uses pure binary files to store only the needed
data, and the processing is performed later, when the
capture is finished.

REFERENCES

[1] ***, EuQoS End-to-end Quality of Service Support over
Heterogeneous Networks, http://www.euqos.org/
[2] A. Navarro, “OreNETa”. Master Thesis, Universitat Politecnica
de Catalunya, Barcelona, Spain, 2004
[3] T. Zseby, S. Zander, G. Carle, „Evaluation of Building Blocks
for Passive One-Way Delay Measurements”, GMD FOKUS, 2001
[4] Z. Wang, Internet QoS: Architectures and Mechanisms for
Quality of Service. Morgan Kaufmann Publishers, 2001
[5] ***, MGEN-UDP Traffic Generator Tool,
http://manimac.itd.nrl.navy.mil/MGEN/
[6] ***, IST-MOME Cluster of European Projects Aimed at
Monitoring and Measurements,
http://www.ist-mome.org/cluster/associated.html

