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Bounds for some shape functions

Daniela Roşca

Abstract: In the finite element methods, some functions called shape functions are

used. More precisely, given a triangulation T in R2, to each vertex and
triangle of T one associates some shape functions. In this paper we deter-
mine bounds for some shape functions, with respect to the length of the

adjacent edges. These bounds are useful in establishing properties for some

interpolation operators (see [1]).
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1 Preliminaries

Given a set of V distinct points in R2, we construct a triangulation T . Then, for each of
the triangle of the given triangulation T , some functions will be associated in the following
way. Consider the triangle T ∈ T with the vertices M1 (x1, y1) ,M2 (x2, y2) ,M3 (x3, y3) and

the number DT =

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣
. Using DT , we define the functions A

T , BT , CT : R2 → R,

AT (x, y) =
(x3 − x2) (y − y3)− (y3 − y2) (x− x3)

DT

=
(x3 − x2) (y − y2)− (y3 − y2) (x− x2)

DT
,

BT (x, y) =
(x1 − x3) (y − y1)− (y1 − y3) (x− x1)

DT

=
(x1 − x3) (y − y3)− (y1 − y3) (x− x3)

DT
,

CT (x, y) =
(x2 − x1) (y − y2)− (y2 − y1) (x− x2)

DT

=
(x2 − x1) (y − y1)− (y2 − y1) (x− x1)

DT
.

The following proposition gives some immediate properties of these functions.

Proposition 1.1 The following statements are true.

1. If M(x, y) is a point inside the triangle T , then AT (x, y) = area(MM2M3)area(M1M2M3) ;
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2. AT (x, y) ∈ [0, 1], for all (x, y) ∈ T,

3. AT +BT + CT = 1 in T ;

4. The restrictions of the function AT , BT , CT to the edges of the triangle T are

AT |
M2M3

= 0, AT |
M1M3

=
x− x3
x1 − x3

=
y − y3
y1 − y3

, AT |
M1M2

=
x− x2
x1 − x2

=
y − y2
y1 − y2

,

BT |
M1M3

= 0, BT |
M1M2

=
x− x1
x2 − x1

=
y − y1
y2 − y1

, BT |
M2M3

=
x− x3
x2 − x3

=
y − y3
y2 − y3

,

CT |
M1M2

= 0, CT |
M2M3

=
x− x2
x3 − x2

=
y − y2
y3 − y2

, CT |
M3M1

=
x− x1
x3 − x1

=
y − y1
y3 − y1

.

In the following definition, in order to simplify the writing we denote A = AT , B = BT , C =
CT .

Definition 1.2 The functions fT
M1
, gT
M1
, hT
M1
: R2 → R, associated to the vertex M1 of the

triangle T , defined by

fT
M1

= 2C3 + 2B3 − 3C2 − 3B2 + 1− 4ABC,

gT
M1

= (x3 − x1)(C
3 − CB2 − 2C2) + (x2 − x1)(B

3 −BC2 − 2B2) + x− x1,

hT
M1

= (y3 − y1)(C
3 − CB2 − 2C2) + (y2 − y1)(B

3 −BC2 − 2B2) + y − y1,

are called shape functions.
Analogously, for the vertices M2 and M3, the functions are defined by circular permutations
of the functions A,B,C.

The following proposition summarizes some immediate properties of these functions.

Proposition 1.3 The following statements are true for i, j ∈ {1, 2, 3}.

1. fT
Mi
(Mj) = δij ,

∂fT
Mi
∂x (Mj) = 0,

∂fT
Mi
∂y (Mj) = 0;

2. gT
Mi
(Mj) = 0,

∂gT
Mi
∂x (Mj) = δij,

∂gT
Mi
∂y (Mj) = 0;

3. hT
Mi
(Mj) = 0,

∂hT
Mi
∂x (Mj) = 0,

∂hT
Mi
∂y (Mj) = δij ;

4. Along the edges of the triangle M1M2M3, the functions f
T
Mi
, gT
Mi
, hT
Mi
depend only on the

corresponding vertices;

5. fT
M1
+ fT

M2
+ fT

M3
= 1.

2 Bounds of the shape functions

We are interested in finding bounds for the shape functions fT
Mi
, gT
Mi
, hT
Mi
.

Proposition 2.1 Let T = M1M2M3, with Mi(xi, yi), be a triangle of T . Then, for all
(x, y) ∈ T, the functions fT

M1
, gT
M1
, hT
M1
have the following properties.
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1. 0 ≤ fTM1(x, y) ≤ 1;

2.
∣
∣
∣gT
M1
(x, y)

∣
∣
∣ ≤ max

{
1
4 |x2 − x1|,

1
4 |x3 − x1|

}
;

3.
∣
∣hTM1(x, y)

∣
∣ ≤ max

{
1
4 |y2 − y1|,

1
4 |y3 − y1|

}
.

Proof. In order to simplify the writing, we denote fTM1 = fM1 , g
T
M1
= gM1 , h

T
M1
= hM1 .

1. Making the transform μ : R2 → R2 described by the equations

u = u(x, y) = B + C,

v = v(x, y) = B ∙ C, (x, y) ∈ R2,

the triangle T maps into the domain W and the function f
M1
(x, y) = f

M1

(
μ−1(u, v)

)
=

ξ(u, v) can be written as

ξ(u, v) = 2u3 − 3u2 − 2uv + 2v + 1.

The stationary point of the function ξ is (u, v) = (1, 0), where ξ takes the value 0. On
the edges of the triangle T we have

f
M1
|
M1M2

(x, y) = 2

(
x− x1
x2 − x1

)3
− 3

(
x− x1
x2 − x1

)2
+ 1 = 2t3 − 3t2 + 1,

with t = (x− x1)/(x2 − x1), t ∈ [0, 1]. The function τ : [0, 1]→ R,

τ(t) = 2t3 − 3t2 + 1

satisfies the inequalities 0 ≤ τ(t) ≤ 1 for all t ∈ [0, 1] and thus

0 ≤ f
M1
|
M1M2

≤ 1.

Similarly,
0 ≤ f

M1
|
M1M3

≤ 1.

Since on the edge M2M3 we have B + C = 1−A = 1, one obtains

f
M1
|
M2M3

= ξ(1, v) = 0.

Therefore
0 ≤ f

M1
(x, y) ≤ 1 for all (x, y) ∈ T.

2. Using the identity x−x1−C(x3−x1)−B(x2−x1) = 0, the function gM1 can be written
as

g
M1
= (1−B − C) (aC(1− C +B) + bB(1−B + C)) ,

where a = x3 − x1, b = x2 − x1. We consider two cases:
Case 1 x2 = x3. Denoting

ϕ(B,C) = (1−B − C) (C(1− C +B) +B(1−B + C)) ,

we have to find the extremes of ϕ when 0 ≤ B ≤ 1, 0 ≤ C ≤ 1, B + C ≤ 1. The
stationary points of the function ϕ are (B,C) ∈

{
(1, 0), (0, 1),

(
1
4 ,
1
4

)}
, and at these
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points ϕ takes the values ϕ (1, 0) = ϕ (0, 1) = 0, ϕ
(
1
4 ,
1
4

)
= 1
4 . Therefore, in this case

the extremes of g
M1
are

min
(x,y)∈T

g
M1
(x, y) = min

{
0,
a

4

}
,

max
(x,y)∈T

g
M1
(x, y) = max

{
0,
a

4

}
,

whence the conclusion
∣
∣
∣gM1 (x, y)

∣
∣
∣ ≤

∣
∣a
4

∣
∣ , for all (x, y) ∈ T.

Case 2 x2 6= x3. Making the transform ω : R2 → R2 described by the functions

u = u(x, y) = C −B, v = v(x, y) = B + C, (u, v) ∈ R2,

the triangle T maps into the domain U and the function g
M1
(x, y) = g

M1

(
ω−1(u, v)

)
=

ψ(u, v) becomes

ψ(u, v) =
1

2
(v − 1) (b(1 + u)(u− v) + a(u− 1)(u+ v)) .

The values of g
M1
on the edges are

g
M1
|
M1M2

= bB(1−B)2,

g
M1
|
M1M3

= aC(1− C)2,

g
M1
|
M2M3

= 0.

Since the stationary points of the function σ(η) = η(1−η)2 are η = 1
3 and η = 1 and the

values of σ at these points are σ(13) =
4
27 , σ(1) = 0, we conclude that gM1 |M1M2 takes

values between 0 and 4b27 , while gM1 |M1M3 takes values between 0 and
4a
27 .

The stationary points of the function ψ are

(u, v) ∈

{

(1, 1), (−1, 1),

(

ρ,
b− a+ 2ρ(a+ b)

b− a

)}

,

where ρ is a root of the equation 3 (b− a) z2 + 4 (b+ a) z + b− a = 0, that is

ρ = −
1

3(b− a)

(
2(a+ b)±

√
a2 + 14ab+ b2

)
.

The values of the function ψ(u, v) at the stationary points are

ψ(1, 1) = ψ(−1, 1) = 0,

ψ

(

ρ,
b− a+ 2ρ(a+ b)

b− a

)

=

=
2(a+ b)2

27(a− b)4

(
(a+ b)(a2 − 34ab+ b2)∓ (a2 + 14ab+ b2)

3
2

)
.

We have to decide which of the stationary points (u, v) are situated inside the domain
U. The stationary points (1, 1 and (−1, 1) are situated on the border of U . Then we

calculate that, at the stationary point Pρ

(
ρ,
b−a+2ρ(a+b)

b−a

)
, the functions B and C have
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the values

B =
u+ v

2
=
1

2

(

1 + ρ
3b+ a

b− a

)

,

C =
v − u
2

=
1

2

(

1 + ρ
3a+ b

b− a

)

,

and with the notation t = a/b, these values can be written as

B =
1

2

(

1 + ρ
3 + t

1− t

)

,

C =
1

2

(

1 + ρ
3t+ 1

1− t

)

The condition that the stationary point Pρ is situated inside the domain U is equivalent
to B ∈ (0, 1), C ∈ (0, 1), B+C ≤ 1. Conditions B ∈ (0, 1), C ∈ (0, 1) are satisfied only
by the root

ρ2 = −
1

3(b− a)

(
2(a+ b)−

√
a2 + 14ab+ b2

)

= −
1

3(1− t)

(
2(1 + t)−

√
1 + 14t+ t2

)
,

only in the case a/b ≥ 0. Condition B + C ≤ 1 means v ≤ 1 or, equivalently,

1 + 2ρ2
a+ b

b− a
≤ 1,

a+ b

3(b− a)2

(
2(a+ b)−

√
a2 + 14ab+ b2

)
≥ 0. (1)

Thus, from the stationary points P1 and P2, only one of them (P2) can be situated inside
the domain U , if a/b ∈ [0,∞) \ {1}. If a = 0, then it is situated on an edge.
Subsequently, we consider now three subcases:
Subcase 2a) a/b < 0. In this case the stationary points P1 and P2 are situated outside
the domain U , so the extremes are taken on the edges. Therefore

min
(x,y)∈T

g
M1
(x, y) = min

{

0,
4a

27
,
4b

27

}

= min

{
4a

27
,
4b

27

}

max
(x,y)∈T

g
M1
(x, y) = max

{
4a

27
,
4b

27

}

and finally we conclude that

∣
∣
∣gM1 (x, y)

∣
∣
∣ ≤ max

{
4|a|
27

,
4|b|
27

}

≤ max

{
|a|
4
,
|b|
4

}

. (2)

for all (x, y) ∈ T,
Subcase 2b ) a < 0, b < 0. In this case condition (1) becomes, with t = a/b,

(t+ 1)
(
2(1 + t)−

√
1 + 14t+ t2

)
≤ 0,
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which, together with the condition t ≥ 0 has no solution. Therefore, in this case the
point P2 is situated outside the domain U .
In conclusion, if a < 0, b < 0 the extreme values are taken on the edges and

|g
M1
(x, y)| ≤ max

{
4|a|
27

,
4|b|
27

}

≤ max

{
|a|
4
,
|b|
4

}

. (3)

Subcase 2c ) a > 0, b > 0. With t = a/b, Condition (1) becomes

(t+ 1)
(
2(1 + t)−

√
1 + 14t+ t2

)
≥ 0,

which, together with t ≥ 0 gives t ∈ [0,∞) \ {1}. We have to compare the values of g
M1

on the edges with the values of g
M1
at the stationary point P2. The value of gM1 at the

stationary point P2 is

g
M1
(P2) =

2(a+ b)2

27(a− b)4

(
(a+ b)(a2 − 34ab+ b2) + (a2 + 14ab+ b2)3/2

)
.

Condition g
M1
(P2) > max

{
4a
27 ,

4b
27

}
reduces to

2(t+ 1)2

27(t− 1)4

(
(t+ 1)(t2 − 34t+ 1) + (t2 + 14t+ 1)3/2

)
≤
4

27
t,

where

t =

{
a/b if a < b,

b/a if b < a
=
min{a, b}
max{a, b}

which is satisfied for all t ≥ 0, t 6= 1.
Thus, g(P2) ≥ 4a

27 , g(P2) ≥
4b
27 hold for all

a
b ≥ 0, a 6= b. Hence,

max
(x,y)∈T

g
M1
(x, y) = g

M1
(P2).

and subsequently ∣
∣
∣gM1 (x, y)

∣
∣
∣ ≤ gM1 (P2)

for all (x, y) ∈ T . Let us remark that, for a = 0, g
M1
(P2) =

4b
27 , while for

b = 0, g
M1
(P2) =

4a
27 .

Next we wish to find the smallest possible α such that

g
M1
(P2) ≤ αa, (4)

g
M1
(P2) ≤ αb. (5)

Denoting t = min{a,b}
max{a,b} , requirements (4) and (5) reduce to

φ(t) =
2(1 + t)2

27(1− t)4

(
(1 + t)(t2 − 34t+ 1) + (t2 + 14t+ 1)3/2

)
≤ αt, t ∈ [0, 1].

The function φ increases on [0, 1] and lim
t↗1

φ(t)
t =

1
4 , therefore the smallest possible α for
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which φ(t) ≤ αt is α = 1/4, whence

g
M1
(P2) ≤ max

{
|a|
4
,
|b|
4

}

.

Summarizing all the above arguments, we conclude that in all cases we have

∣
∣
∣gM1 (x, y)

∣
∣
∣ ≤ max

{
1

4
|x2 − x1|,

1

4
|x3 − x1|

}

,

for all (x, y) ∈ T.

3. The proof is analogous with 2.
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