On the Degree of Exactness of Some Positive Cubature Formulas on the Sphere

Daniela Roşca

Abstract

In [3] we studied some interpolatory cubature formulas associated to a fundamental system of $(n+1)^{2}(n \in \mathbb{N}$ odd) points on the sphere, equidistributed on $n+1$ latitudinal circles. Being interpolatory, these formulas have the degree of exactness n, meaning that they are exact for spherical polynomials of degree $\leq n$. We gave also equivalent conditions under which the degree of exactness is $n+1$. In this paper we show that $n+1$ is the maximal degree of exactness attained by these formulas, under the assumption that the weights are positive.

1 Preliminaries

Let $\mathbb{S}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3}:\|\boldsymbol{x}\|_{2}=1\right\}$ denote the unit sphere of the Euclidean space \mathbb{R}^{3} and let

$$
\begin{aligned}
\Psi:[0, \pi] \times[0,2 \pi) & \rightarrow \mathbb{S}^{2} \\
(\rho, \theta) & \mapsto(\sin \rho \cos \theta, \sin \rho \sin \theta, \cos \rho)
\end{aligned}
$$

be its parametrization in spherical coordinates (ρ, θ). The coordinate ρ of a point $\xi(\Psi(\rho, \theta)) \in$ \mathbb{S}^{2} is usually called the latitude of ξ.

We denote by Π_{n} the set of univariate polynomials of degree less than or equal to n, by $P_{k}, k=0,1, \ldots$, the Legendre polynomials of degree k on $[-1,1]$, normalized by the condition $P_{k}(1)=1$ and by V_{n} be the space of spherical polynomials of degree less than or equal to n. The dimension of V_{n} is $\operatorname{dim} V_{n}=(n+1)^{2}=N$ and an orthogonal basis of V_{n} is given by

$$
\left\{Y_{m}^{l}(\theta, \rho)=P_{m}^{|l|}(\cos \rho) e^{i l \theta},-m \leq l \leq m, 0 \leq m \leq n\right\} .
$$

Here P_{m}^{ν} denotes the associated Legendre functions, defined by

$$
P_{m}^{\nu}(t)=\left(\frac{(k-\nu)!}{(k+\nu)!}\right)^{1 / 2}\left(1-t^{2}\right)^{\nu / 2} \frac{d^{\nu}}{d t^{\nu}} P_{m}(t), \nu=0, \ldots, m, t \in[-1,1]
$$

and for given functions $f, g: \mathbb{S}^{2} \rightarrow \mathbb{C}$, the inner product is taken as

$$
\langle f, g\rangle=\int_{\mathbb{S}^{2}} f(\xi) \overline{g(\xi)} d \omega(\xi)
$$

where $d \omega(\xi)$ stands for the surface element of the sphere.
The reproducing kernel of the space V_{n} is defined by

$$
K_{n}(\xi, \eta)=\sum_{k=0}^{n} \frac{2 k+1}{4 \pi} P_{k}(\xi \cdot \eta)=k_{n}(\xi \cdot \eta), \quad \xi, \eta \in \mathbb{S}^{2}
$$

For given n we consider a set of points $\left\{\xi_{i}\right\}_{i=1, \ldots, N} \subset \mathbb{S}^{2}$ and the polynomial functions $\varphi_{i}^{n}: \mathbb{S}^{2} \rightarrow \mathbb{C}, i=1, \ldots, N$, defined by

$$
\varphi_{i}^{n}(\circ)=K_{n}\left(\xi_{i}, \circ\right)=\sum_{k=0}^{n} \frac{2 k+1}{4 \pi} P_{k}\left(\xi_{i} \cdot \circ\right), i=1, \ldots, N
$$

These polynomials are called scaling functions. A set of points $\left\{\xi_{i}\right\}_{i=1, \ldots, N}$ for which the scaling functions $\left\{\varphi_{i}^{n}\right\}_{i=1, \ldots, N}$ constitute a basis for V_{n} is called a fundamental system for V_{n}.

Recently, Laín Fernández proved the following result.

Proposition 1.1 [1, 2] Let $n \in \mathbb{N}$ be an odd number, $\alpha \in(0,2)$ and let $0<\rho_{1}<\rho_{2}<\ldots<$ $\rho_{\frac{n+1}{2}}<\pi / 2, \rho_{n+2-j}=\pi-\rho_{j}, \quad j=1, \ldots,(n+1) / 2$, denote a system of symmetric latitudes. Then the set of points $\mathcal{S}_{n}(\alpha)=\left\{\xi_{j, k}\left(\Psi\left(\rho_{j}, \theta_{k}^{j}\right)\right), j, k=1, \ldots, n+1\right\}$, where

$$
\theta_{k}^{j}= \begin{cases}\frac{2 k \pi}{n+1}, & \text { if } j \text { is odd } \\ \frac{2(k-1)+\alpha}{n+1} \pi, & \text { if } j \text { is even }\end{cases}
$$

constitutes a fundamental system for V_{n}.

Let us mention that for $\alpha=0$ or $\alpha=2$, the set $\mathcal{S}_{n}(\alpha)$ does not constitute a fundamental system of points and not many fundamental systems of points are known in the present.

In [3] we studied the interpolatory cubature formula

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} F(\xi) d \omega(\xi) \approx \sum_{j=1}^{n+1} \sum_{k=1}^{n+1} w_{j, k}^{n} F\left(\xi_{j, k}\right) \tag{1}
\end{equation*}
$$

for odd n, with the nodes $\xi_{j, k}$ in $\mathcal{S}_{n}(\alpha)$. For the weights of this formula we have proved the equalities $w_{j, k}^{n}=w_{j}^{n}=w_{j}$ for $j, k \in\{1, \ldots, n+1\}$ and the fact that the weights $w_{j}, j=$ $1, \ldots, n+1$, take $q=\frac{n+1}{2}$ distinct values denoted $\frac{2 \pi}{n+1} a_{j}, j=1, \ldots, q$. As expected, we obtained that $w_{n+2-j}=w_{j}$ for $j=1, \ldots, n+1$, meaning that the weights corresponding to symmetric latitudes are equal.

Being interpolatory, this cubature formula has the degree of exactness n. In [3], Theorem 7 , we proved that the degree of exactness can be $n+1$ if and only if $\alpha=1$ and

$$
\begin{equation*}
\sum_{j=1}^{n+1} w_{j} P_{n+1}\left(\cos \rho_{j}\right)=0 \tag{2}
\end{equation*}
$$

under the assumption that the weights are positive. A possible case is when ρ_{j} are taken as the roots of the Legendre polynomial P_{n+1}. In the sequel we intend to study whether the degree of exactness can be greater than $n+1$.

2 The degree of exactness $n+2$ cannot be reached

We want to study whether the cubature formula (1) can have positive weights and at the same time can be exact for all spherical polynomials in V_{n+2}. So we need to suppose $\alpha=1$ and that condition (2) is fulfilled. Therefore

$$
\theta_{k}^{j}=\frac{\beta_{j}+2 k \pi}{n+1}, \text { with } \beta_{j}=\left\{\begin{array}{cl}
0, & \text { if } j \text { is odd } \\
-\pi, & \text { if } j \text { is even. }
\end{array}\right.
$$

In addition, we impose exactness for the spherical polynomials

$$
\left\{Y_{n+2}^{l}(\theta, \rho), l=-n-2, \ldots, n+2\right\}
$$

knowing that this set constitutes a basis of the space $\operatorname{Harm} V_{n+1}=V_{n+2} \ominus V_{n+1}$. On the one hand, evaluating the integral in (1) for these spherical polynomials we get

$$
\int_{\mathbb{S}^{2}} P_{n+2}^{|l|}(\cos \rho) e^{i l \theta} d \omega(\xi)=\int_{0}^{\pi} P_{n+2}^{|l|}(\cos \rho) \sin \rho d \rho \int_{0}^{2 \pi} e^{i l \theta} d \theta
$$

But

$$
\int_{0}^{2 \pi} e^{i l \theta} d \theta= \begin{cases}2 \pi, & \text { for } l=0 \\ 0, & \text { otherwise }\end{cases}
$$

On the other hand, evaluating the sums in (1) for these spherical polynomials we get

$$
\begin{aligned}
\sum_{j=1}^{n+1} \sum_{k=1}^{n+1} w_{j} P_{n+2}^{|l|}\left(\cos \rho_{j}\right) e^{i l \theta_{k}^{j}} & =\sum_{j=1}^{n+1} w_{j} P_{n+2}^{|l|}\left(\cos \rho_{j}\right) \sum_{k=1}^{n+1} e^{i l \frac{\beta_{j}+2 k \pi}{n+1}} \\
& =\sum_{j=1}^{n+1} w_{j} P_{n+2}^{|l|}\left(\cos \rho_{j}\right) e^{i l \frac{\beta_{j}}{n+1}} \sum_{k=1}^{n+1} e^{i l \frac{2 k \pi}{n+1}}
\end{aligned}
$$

The last sum is zero if $l \notin(n+1) \mathbb{Z}$ and is $n+1$ if $l \in(n+1) \mathbb{Z}$.
With the above remarks, the quadrature formula (1) is exact for Y_{n+2}^{l} with $l \neq 0$ and $|l| \neq n+1$. It remains to impose that (1) is exact for Y_{n+2}^{0} and $Y_{n+2}^{ \pm(n+1)}$.

- In order to be exact for $l=0$, we should have

$$
2 \pi \int_{0}^{\pi} P_{n+2}(\cos \rho) \sin \rho d \rho=(n+1) \sum_{j=1}^{n+1} w_{j} \sum_{k=1}^{n+1} P_{n+2}\left(\cos \rho_{j}\right),
$$

which yields

$$
(0=) \int_{-1}^{1} P_{n+2}(x) d x=\frac{n+1}{2 \pi} \sum_{j=1}^{n+1} w_{j} P_{n+2}\left(\cos \rho_{j}\right)
$$

With the notations $\cos \rho_{j}=r_{j}, a_{j}=\frac{n+1}{2 \pi} w_{j}$, we get

$$
\begin{equation*}
\sum_{j=1}^{n+1} a_{j} P_{n+2}\left(r_{j}\right)=0 \tag{3}
\end{equation*}
$$

This last condition, added to the conditions of exactness for the polynomials Y_{j}^{0} for $j=0, \ldots, n+1$, conditions which can be written as

$$
\begin{equation*}
\sum_{j=1}^{n+1} a_{j} P_{k}\left(r_{j}\right)=0, \text { for } k=0,1, \ldots, n+1 \tag{4}
\end{equation*}
$$

means that the one-dimensional quadrature formula

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \sum_{j=1}^{n+1} a_{j} f\left(r_{j}\right) \tag{5}
\end{equation*}
$$

should be exact for the Legendre polynomials P_{0}, \ldots, P_{n+2} and therefore for all univariate polynomials in Π_{n+2}. Actually, condition (3) brings the additional condition that formula (5) is exact for the monomial x^{n+2}. This fact is true for odd n, due to the symmetry of the weights and of the latitudinal circles. In conclusion formula (1) is exact for the spherical polynomial Y_{n+2}^{0}.

- In order to be exact for the spherical polynomials $Y_{n+2}^{ \pm(n+1)}$, we should have

$$
\sum_{j=1}^{n+1} a_{j} P_{n+2}^{n+1}\left(\cos \rho_{j}\right) e^{i \beta_{j}}=0
$$

and further, replacing P_{n+2}^{n+1} and β_{j}, this condition becomes

$$
\begin{equation*}
\sum_{j=1}^{n+1}(-1)^{j} a_{j}\left(1-r_{j}^{2}\right)^{q} r_{j}=0 \tag{6}
\end{equation*}
$$

again with $r_{j}=\cos \rho_{j}$ for $j=1, \ldots, n+1$ and $q=(n+1) / 2$. Moreover, it can be rewritten as

$$
\begin{equation*}
\sum_{j=1, j \text { even }}^{n+1} a_{j}\left(1-r_{j}^{2}\right)^{q} r_{j}-\sum_{j=1, j \text { odd }}^{n+1} a_{j}\left(1-r_{j}^{2}\right)^{q} r_{j}=0 . \tag{7}
\end{equation*}
$$

On the other hand, using the fact that (5) is exact for the odd polynomial $\left(1-x^{2}\right)^{q} x$, we obtain that

$$
\sum_{j=1}^{n+1} a_{j} r_{j}\left(1-r_{j}^{2}\right)^{q}=0
$$

whence

$$
-\sum_{j=1, j \text { odd }}^{n+1} a_{j}\left(1-r_{j}^{2}\right)^{q} r_{j}=\sum_{j=1, j \text { even }}^{n+1} a_{j}\left(1-r_{j}^{2}\right)^{q} r_{j} .
$$

Thus (7) becomes

$$
\sum_{j=1, j \text { even }}^{n+1} a_{j}\left(1-r_{j}^{2}\right)^{q} r_{j}=0
$$

This equality cannot be true under the assumption that the weights are positive, therefore formula (1) cannot be exact for the spherical polynomials $Y_{n+2}^{ \pm(n+1)} \in V_{n+2}$.

In conclusion the maximal degree attained by the interpolatory positive cubature formula (1) is $n+1$.

Remark 2.1 An improvement of the degree of exactness can be however achieved (see [4]) by taking more than $n+1$ equidistributed points on each latitudinal circle and arbitrary deviations β_{j}. Thus we do not use fundamental systems of points anymore and therefore the corresponding cubature formulas are not interpolatory. In this way we could obtain positive cubature formulas with $(n+1)(2 n+1)$ points and degree of exactness $2 n+1$.

References

[1] N. Laín Fernández. Polynomial Bases on the Sphere. Logos-Verlag, Berlin, 2003.
[2] N. Laín Fernández. Localized Polynomial Bases on the Sphere. Electron. Trans. Numer. Anal., 19: 84-93, 2005.
[3] J. Prestin, and D. Roşca. On some cubature formulas on the sphere. J. Approx. Theory, to appear.
[4] D. Roşca. Quadrature rules on the sphere with equidistributed points on latitudinal circles, preprint.

Daniela Roşca
Department of Mathematics
Str. Daicoviciu 15
RO-400020 Cluj-Napoca
Daniela.Rosca@math.utcluj.ro

