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On the Degree of Exactness of Some Positive Cubature

Formulas on the Sphere

Daniela Roşca

Abstract: In [3] we studied some interpolatory cubature formulas associated to a funda-

mental system of (n+1)2 (n ∈ N odd) points on the sphere, equidistributed
on n+1 latitudinal circles. Being interpolatory, these formulas have the de-

gree of exactness n, meaning that they are exact for spherical polynomials

of degree ≤ n. We gave also equivalent conditions under which the degree
of exactness is n + 1. In this paper we show that n + 1 is the maximal

degree of exactness attained by these formulas, under the assumption that

the weights are positive.

1 Preliminaries

Let S2 = {x ∈ R3 : ‖x‖2 = 1} denote the unit sphere of the Euclidean space R3 and let

Ψ : [0, π]× [0, 2π) → S2,

(ρ, θ) 7→ (sin ρ cos θ, sin ρ sin θ, cos ρ)

be its parametrization in spherical coordinates (ρ, θ). The coordinate ρ of a point ξ(Ψ(ρ, θ)) ∈
S2 is usually called the latitude of ξ.
We denote by Πn the set of univariate polynomials of degree less than or equal to n, by

Pk, k = 0, 1, . . . , the Legendre polynomials of degree k on [−1, 1], normalized by the condition
Pk(1) = 1 and by Vn be the space of spherical polynomials of degree less than or equal to n.
The dimension of Vn is dimVn = (n+ 1)

2 = N and an orthogonal basis of Vn is given by

{
Y lm(θ, ρ) = P

|l|
m (cos ρ)e

ilθ, −m ≤ l ≤ m, 0 ≤ m ≤ n
}
.

Here P νm denotes the associated Legendre functions, defined by

P νm(t) =

(
(k − ν)!
(k + ν)!

)1/2
(1− t2)ν/2

dν

dtν
Pm(t), ν = 0, . . . ,m, t ∈ [−1, 1]

and for given functions f, g : S2 → C, the inner product is taken as

〈f, g〉 =
∫

S2
f(ξ)g(ξ) dω(ξ),
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where dω(ξ) stands for the surface element of the sphere.

The reproducing kernel of the space Vn is defined by

Kn(ξ, η) =
n∑

k=0

2k + 1

4π
Pk(ξ ∙ η) = kn(ξ ∙ η), ξ, η ∈ S

2.

For given n we consider a set of points {ξi}i=1,...,N ⊂ S2 and the polynomial functions
ϕni : S

2 → C, i = 1, . . . , N, defined by

ϕni (◦) = Kn(ξi, ◦) =
n∑

k=0

2k + 1

4π
Pk(ξi ∙ ◦), i = 1, . . . , N.

These polynomials are called scaling functions. A set of points {ξi}i=1,...,N for which the
scaling functions {ϕni }i=1,...,N constitute a basis for Vn is called a fundamental system for Vn.
Recently, Láın Fernández proved the following result.

Proposition 1.1 [1, 2] Let n ∈ N be an odd number, α ∈ (0, 2) and let 0 < ρ1 < ρ2 < . . . <
ρn+1
2
< π/2, ρn+2−j = π− ρj , j = 1, . . . , (n+1)/2, denote a system of symmetric latitudes.

Then the set of points Sn(α) =
{
ξj,k(Ψ(ρj , θ

j
k)), j, k = 1, . . . , n+ 1

}
, where

θ
j
k =

{
2kπ
n+1 , if j is odd,
2(k−1)+α
n+1 π, if j is even,

constitutes a fundamental system for Vn.

Let us mention that for α = 0 or α = 2, the set Sn(α) does not constitute a fundamental
system of points and not many fundamental systems of points are known in the present.

In [3] we studied the interpolatory cubature formula

∫

S2
F (ξ) dω(ξ) ≈

n+1∑

j=1

n+1∑

k=1

wnj,kF (ξj,k), (1)

for odd n, with the nodes ξj,k in Sn(α). For the weights of this formula we have proved the
equalities wnj,k = w

n
j = wj for j, k ∈ {1, . . . , n + 1} and the fact that the weights wj , j =

1, . . . , n + 1, take q = n+1
2 distinct values denoted 2π

n+1aj , j = 1, . . . , q. As expected, we
obtained that wn+2−j = wj for j = 1, . . . , n + 1, meaning that the weights corresponding to
symmetric latitudes are equal.

Being interpolatory, this cubature formula has the degree of exactness n. In [3], Theorem
7, we proved that the degree of exactness can be n+ 1 if and only if α = 1 and

n+1∑

j=1

wjPn+1(cos ρj) = 0, (2)

under the assumption that the weights are positive. A possible case is when ρj are taken
as the roots of the Legendre polynomial Pn+1. In the sequel we intend to study whether the
degree of exactness can be greater than n+ 1.
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2 The degree of exactness n+ 2 cannot be reached

We want to study whether the cubature formula (1) can have positive weights and at the
same time can be exact for all spherical polynomials in Vn+2. So we need to suppose α = 1
and that condition (2) is fulfilled. Therefore

θ
j
k =
βj + 2kπ

n+ 1
, with βj =

{
0, if j is odd,
−π, if j is even.

In addition, we impose exactness for the spherical polynomials

{
Y ln+2(θ, ρ), l = −n− 2, . . . , n+ 2

}
,

knowing that this set constitutes a basis of the space HarmVn+1 = Vn+2 	 Vn+1. On the one
hand, evaluating the integral in (1) for these spherical polynomials we get

∫

S2
P
|l|
n+2(cos ρ)e

ilθdω(ξ) =

∫ π

0
P
|l|
n+2(cos ρ) sin ρ dρ

∫ 2π

0
eilθdθ.

But ∫ 2π

0
eilθdθ =

{
2π, for l = 0,
0, otherwise.

On the other hand, evaluating the sums in (1) for these spherical polynomials we get

n+1∑

j=1

n+1∑

k=1

wjP
|l|
n+2(cos ρj)e

ilθ
j
k =

n+1∑

j=1

wjP
|l|
n+2(cos ρj)

n+1∑

k=1

eil
βj+2kπ

n+1

=
n+1∑

j=1

wjP
|l|
n+2(cos ρj)e

il
βj
n+1

n+1∑

k=1

eil
2kπ
n+1 .

The last sum is zero if l /∈ (n+ 1)Z and is n+ 1 if l ∈ (n+ 1)Z.
With the above remarks, the quadrature formula (1) is exact for Y ln+2 with l 6= 0 and |l| 6= n+1.

It remains to impose that (1) is exact for Y 0n+2 and Y
±(n+1)
n+2 .

• In order to be exact for l = 0, we should have

2π

∫ π

0
Pn+2(cos ρ) sin ρ dρ = (n+ 1)

n+1∑

j=1

wj

n+1∑

k=1

Pn+2(cos ρj),

which yields

(0 =)

∫ 1

−1
Pn+2(x) dx =

n+ 1

2π

n+1∑

j=1

wjPn+2(cos ρj).

With the notations cos ρj = rj , aj =
n+1
2π wj , we get

n+1∑

j=1

ajPn+2(rj) = 0. (3)
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This last condition, added to the conditions of exactness for the polynomials Y 0j for
j = 0, . . . , n+ 1, conditions which can be written as

n+1∑

j=1

ajPk(rj) = 0, for k = 0, 1, . . . , n+ 1, (4)

means that the one-dimensional quadrature formula

∫ 1

−1
f(x)dx ≈

n+1∑

j=1

ajf(rj) (5)

should be exact for the Legendre polynomials P0, . . . , Pn+2 and therefore for all uni-
variate polynomials in Πn+2. Actually, condition (3) brings the additional condition
that formula (5) is exact for the monomial xn+2. This fact is true for odd n, due to
the symmetry of the weights and of the latitudinal circles. In conclusion formula (1) is
exact for the spherical polynomial Y 0n+2.

• In order to be exact for the spherical polynomials Y ±(n+1)n+2 , we should have

n+1∑

j=1

ajP
n+1
n+2 (cos ρj)e

iβj = 0,

and further, replacing Pn+1n+2 and βj , this condition becomes

n+1∑

j=1

(−1)jaj(1− r
2
j )
qrj = 0, (6)

again with rj = cos ρj for j = 1, . . . , n + 1 and q = (n + 1)/2. Moreover, it can be
rewritten as

n+1∑

j=1, j even

aj(1− r
2
j )
qrj −

n+1∑

j=1, j odd

aj(1− r
2
j )
qrj = 0. (7)

On the other hand, using the fact that (5) is exact for the odd polynomial (1 − x2)qx,
we obtain that

n+1∑

j=1

ajrj(1− r
2
j )
q = 0,

whence

−
n+1∑

j=1, j odd

aj(1− r
2
j )
qrj =

n+1∑

j=1, j even

aj(1− r
2
j )
qrj .

Thus (7) becomes
n+1∑

j=1, j even

aj(1− r
2
j )
qrj = 0.

This equality cannot be true under the assumption that the weights are positive, there-

fore formula (1) cannot be exact for the spherical polynomials Y
±(n+1)
n+2 ∈ Vn+2.
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In conclusion the maximal degree attained by the interpolatory positive cubature formula
(1) is n+ 1.

Remark 2.1 An improvement of the degree of exactness can be however achieved (see [4])
by taking more than n + 1 equidistributed points on each latitudinal circle and arbitrary de-
viations βj. Thus we do not use fundamental systems of points anymore and therefore the
corresponding cubature formulas are not interpolatory. In this way we could obtain positive
cubature formulas with (n+ 1)(2n+ 1) points and degree of exactness 2n+ 1.
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