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On the Degree of Exactness of Some Positive Cubature

Formulas on the Sphere

DANIELA RoscA

ABSTRACT:  In [3] we studied some interpolatory cubature formulas associated to a funda-
mental system of (n+1)? (n € N odd) points on the sphere, equidistributed
on n+ 1 latitudinal circles. Being interpolatory, these formulas have the de-
gree of exactness n, meaning that they are exact for spherical polynomials
of degree < n. We gave also equivalent conditions under which the degree
of exactness is n + 1. In this paper we show that n + 1 is the maximal
degree of exactness attained by these formulas, under the assumption that
the weights are positive.

1 Preliminaries

Let S? = {x € R?: ||z||2 = 1} denote the unit sphere of the Euclidean space R? and let

T:[0,7] x [0,27) — S%
(p,0) — (sinpcosé,sin psinf, cosp)

be its parametrization in spherical coordinates (p,6). The coordinate p of a point £(¥(p,0)) €
S? is usually called the latitude of &.

We denote by II,, the set of univariate polynomials of degree less than or equal to n, by
Py, k=0,1,..., the Legendre polynomials of degree k on [—1, 1], normalized by the condition
P;(1) =1 and by V,, be the space of spherical polynomials of degree less than or equal to n.
The dimension of V;, is dim V;, = (n + 1)2 = N and an orthogonal basis of V}, is given by

{¥4(0.0) = Pll(cos p)e™, —m <1<m, 0<m<n}.

Here P! denotes the associated Legendre functions, defined by

—v)! 1/2 v
PY(t) = (E:TVD (1 —tQ)V/Z%Pm(t), v=0,...,m, t €[-1,1]

and for given functions f,g:S? — C, the inner product is taken as

()= [ £©5 dulo)
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where dw(€) stands for the surface element of the sphere.
The reproducing kernel of the space V,, is defined by

Kn(fan)zz2k4;tlpk(£n):kn(gn)a 5’77€S2‘

k=0

For given n we consider a set of points {&}i—1,. v C S? and the polynomial functions
QD?ZSQ —C, 1=1,...,N, defined by

k
07 (0) = Kn(&,0) = 2kt b te0), i=1,....N.
k=0

These polynomials are called scaling functions. A set of points {;};=1,. n for which the
scaling functions {¢['};—1,. ~ constitute a basis for V;, is called a fundamental system for V;,.
Recently, Lain Fernandez proved the following result.

Proposition 1.1 [1, 2] Let n € N be an odd number, a € (0,2) and let 0 < p1 < p2 < ... <
prt1 < T2, ppio—j=m—p;, j=1,...,(n+1)/2, denote a system of symmetric latitudes.
2

Then the set of points Sy (a) = {gj’k(\lf(pj, Qi)), b k=1...,n+ 1} , where

2k e .
i — =1 if § is odd,
E— 2(k—1)4o e
=gT T ifJ is even,

constitutes a fundamental system for V.

Let us mention that for @« = 0 or @ = 2, the set S,(a) does not constitute a fundamental
system of points and not many fundamental systems of points are known in the present.

In [3] we studied the interpolatory cubature formula

n+1n+1

/SQ F(&)dw(©) = Y > whF(&r), (1)

j=1 k=1

for odd n, with the nodes ;1 in S,(«). For the weights of this formula we have proved the

equalities w?) = w] = wj for j, k € {1,...,n+ 1} and the fact that the weights w;, j =

1,...,n+ 1, take ¢ = ”TH distinct values denoted f—j:laj, j = 1,...,q. As expected, we
obtained that wp42_; = w; for j = 1,...,n + 1, meaning that the weights corresponding to

symmetric latitudes are equal.

Being interpolatory, this cubature formula has the degree of exactness n. In [3], Theorem
7, we proved that the degree of exactness can be n + 1 if and only if = 1 and

n+1

Z w;jPpy1(cos pj) =0, (2)
j=1

under the assumption that the weights are positive. A possible case is when p; are taken
as the roots of the Legendre polynomial P, 1. In the sequel we intend to study whether the
degree of exactness can be greater than n + 1.
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2 The degree of exactness n + 2 cannot be reached

We want to study whether the cubature formula (1) can have positive weights and at the
same time can be exact for all spherical polynomials in V,,12. So we need to suppose a = 1
and that condition (2) is fulfilled. Therefore

0, if jis odd,

—m, if j is even.

B; + 2km

6 =
k n+1

, with 3; = {
In addition, we impose exactness for the spherical polynomials

{Y,L_Q(G,p), l:fan,...,n+2},

knowing that this set constitutes a basis of the space HarmV, 1 = Vj,42 © V1. On the one
hand, evaluating the integral in (1) for these spherical polynomials we get

2
/ Pr|u|r2 (cosp)e 2walw / P,L‘H (cosp smpdp/ e0dp.
0

2w
; 2m, forl =0
il0 _ ) )
/0 edb = { 0, otherwise.

On the other hand, evaluating the sums in (1) for these spherical polynomials we get

But

n+1n+1 n+1

| | 1[03 B BJ+2k7r
ZZMJP?H? cos pj)ek = Zw] n+2 (cos pj Ze n+l
7j=1 k=1
n+1 5] n+1 ok
= ij n+2 (cos p;)etntt Zednjl.
k=1

The last sum is zero if [ ¢ (n+1)Z andisn+1ifl € (n+1)Z.

With the above remarks, the quadrature formula (1) is exact for V!, , with { # 0 and |I| # n+1.

It remains to impose that (1) is exact for Y,?,, and Y, Jr(g ),

e In order to be exact for [ = 0, we should have

n+1 n+1

™
27r/ P, ia(cosp)sinpdp = (n+1) Z wj Z Py 2(cos pj),
0 j=1 k=1
which yields
1 n+1
+ 1
0=) [ Prsate)de - (cos py).
-1

With the notations cos p; = r;, a; = "Q—J;le, we get

n+1

Z a;jPyia(r;) = 0. (3)
=1
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This last condition, added to the conditions of exactness for the polynomials on for

j=0,...,n+ 1, conditions which can be written as
n+1
Zaij(rj)zo, for k=0,1,...,n+1, (4)
j=1

means that the one-dimensional quadrature formula

n+1
/ flayds = () (5)
should be exact for the Legendre polynomials Fp,..., P,+2 and therefore for all uni-

variate polynomials in II,, ;9. Actually, condition (3) brings the additional condition
that formula (5) is exact for the monomial z""2. This fact is true for odd n, due to
the symmetry of the weights and of the latitudinal circles. In conclusion formula (1) is
exact for the spherical polynomial Y, Lo

In order to be exact for the spherical polynomials Y, nﬂ:_(;l H), we should have

n+1
S s reibomae =0

and further, replacing ng% and (3;, this condition becomes
n+1 '
D (=1)a(1—r2)ir; =0, (6)
j=1

again with r; = cosp; for j = 1,...,n+ 1 and ¢ = (n + 1)/2. Moreover, it can be
rewritten as

n+1 n+1
Z a;(1— sz)qrj - Z a;(1— T‘?)qu =0. (7)
Jj=1, j even j=1, j odd

On the other hand, using the fact that (5) is exact for the odd polynomial (1 — x2)4x,

we obtain that
n+1

Zaﬂ] q—O

whence
n+1 n+1
(1 — 2\ — (1 — 2)4ge .
- E a;(1 rj) rj = E a;(1 Tj) Tj.
j=1, j odd Jj=1, j even
Thus (7) becomes
n+1
) 2\q,..
g aj(1—r5)ir; = 0.
j=1, j even

This equality cannot be true under the assumption that the weights are positive, there-

fore formula (1) cannot be exact for the spherical polynomials Y, ni(g e Vita
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In conclusion the maximal degree attained by the interpolatory positive cubature formula
(1)isn+ 1.

Remark 2.1 An improvement of the degree of exactness can be however achieved (see [4])
by taking more than n + 1 equidistributed points on each latitudinal circle and arbitrary de-
viations B;. Thus we do not use fundamental systems of points anymore and therefore the
corresponding cubature formulas are not interpolatory. In this way we could obtain positive
cubature formulas with (n + 1)(2n + 1) points and degree of exactness 2n + 1.
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