Finite element operators for scattered data

Daniela Roşca

Abstract. Given a set of scattered data, we construct a triangulation and a bivariate finite element operator associated to this triangulation. This operator has the degree of exactness one and is local, in the sense that the information around the interpolation nodes are taken from a small neighborhood of that node. Then we determine a bound for the rest of the interpolation formula and make a comparison with another operator with degree of exactness one, constructed as a combined finite element operator.

1 Preliminaries

Given a set of V distinct points in \mathbb{R}^{2}, we construct a triangulation \mathcal{T} and denote $\Delta \subseteq \mathbb{R}^{2}$ the set covered by the triangles of \mathcal{T}. Then, for each of the triangle of the given triangulation \mathcal{T}, some functions will be associated in the following way. Consider the triangle $T \in \mathcal{T}$ with the vertices $M_{1}\left(x_{1}, y_{1}\right), M_{2}\left(x_{2}, y_{2}\right), M_{3}\left(x_{3}, y_{3}\right)$ and the number $D_{T}=\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$. Using D_{T}, we define the functions

$$
\begin{aligned}
A^{T}, B^{T}, C^{T}: \mathbb{R}^{2} \rightarrow & \mathbb{R} \\
A^{T}(x, y) & =\frac{\left(x_{3}-x_{2}\right)\left(y-y_{3}\right)-\left(y_{3}-y_{2}\right)\left(x-x_{3}\right)}{D_{T}} \\
& =\frac{\left(x_{3}-x_{2}\right)\left(y-y_{2}\right)-\left(y_{3}-y_{2}\right)\left(x-x_{2}\right)}{D_{T}} \\
B^{T}(x, y) & =\frac{\left(x_{1}-x_{3}\right)\left(y-y_{1}\right)-\left(y_{1}-y_{3}\right)\left(x-x_{1}\right)}{D_{T}} \\
& =\frac{\left(x_{1}-x_{3}\right)\left(y-y_{3}\right)-\left(y_{1}-y_{3}\right)\left(x-x_{3}\right)}{D_{T}} \\
C^{T}(x, y) & =\frac{\left(x_{2}-x_{1}\right)\left(y-y_{2}\right)-\left(y_{2}-y_{1}\right)\left(x-x_{2}\right)}{D_{T}} \\
& =\frac{\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)}{D_{T}}
\end{aligned}
$$

In the following definition, in order to simplify the writing we denote $A=A^{T}, B=B^{T}, C=C^{T}$.

Definition 1.1 The functions $f_{M_{1}}^{T}, g_{M_{1}}^{T}, h_{M_{1}}^{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}$, associated to the vertex M_{1} of the triangle T, defined by

$$
\begin{aligned}
f_{M_{1}}^{T}= & 2 C^{3}+2 B^{3}-3 C^{2}-3 B^{2}+1+\alpha A B C \\
g_{M_{1}}^{T}= & \left(x_{3}-x_{1}\right)\left(C^{3}-C B^{2}-2 C^{2}\right)+\left(x_{2}-x_{1}\right)\left(B^{3}-B C^{2}-2 B^{2}\right) \\
& +x-x_{1}+\beta A B C \\
h_{M_{1}}^{T}= & \left(y_{3}-y_{1}\right)\left(C^{3}-C B^{2}-2 C^{2}\right)+\left(y_{2}-y_{1}\right)\left(B^{3}-B C^{2}-2 B^{2}\right) \\
& +y-y_{1}+\gamma A B C,
\end{aligned}
$$

are called shape functions.
Analogously, for the vertices M_{2} and M_{3}, the functions are defined by circular permutations of the functions A, B, C.

The following proposition summarizes some immediate properties of these functions.

Proposition 1.2 The following statements are true for $i, j \in\{1,2,3\}$

1. $f_{M_{i}}^{T}\left(M_{j}\right)=\delta_{i j}, \frac{\partial f_{M_{i}}^{T}}{\partial x}\left(M_{j}\right)=0, \frac{\partial f_{M_{i}}^{T}}{\partial y}\left(M_{j}\right)=0$,
2. $g_{M_{i}}^{T}\left(M_{j}\right)=0, \frac{\partial g_{M_{i}}^{T}}{\partial x}\left(M_{j}\right)=\delta i j, \frac{\partial g_{M_{i}}^{T}}{\partial y}\left(M_{j}\right)=0$,
3. $h_{M_{i}}^{T}\left(M_{j}\right)=0, \frac{\partial h_{M_{i}}^{T}}{\partial x}\left(M_{j}\right)=0, \frac{\partial h_{M_{i}}^{T}}{\partial y}\left(M_{j}\right)=\delta_{i j}$,
4. Along the edges of the triangle $M_{1} M_{2} M_{3}$, the functions $f_{M_{i}}^{T}, g_{M_{i}}^{T}, h_{M_{i}}^{T}$ depend only on the corresponding vertices,
5. $f_{M_{1}}^{T}+f_{M_{2}}^{T}+f_{M_{3}}^{T}=1$ if and only if $\alpha=-4$.

2 A local interpolant

Now, to a given function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}, \varphi \in C^{1}(\Delta)$, we associate the polynomial function
$\left(\mathcal{P}_{T} \varphi\right)(x, y)=\sum_{i=1}^{3} \varphi\left(M_{i}\right) f_{M_{i}}^{T}(x, y)+\frac{\partial \varphi}{\partial x}\left(M_{i}\right) g_{M_{i}}^{T}(x, y)+\frac{\partial \varphi}{\partial y}\left(M_{i}\right) h_{M_{i}}^{T}(x, y)$,
for $(x, y) \in T$. This polynomial function satisfies the interpolating conditions

$$
\left(\mathcal{P}_{T} \varphi\right)\left(M_{i}\right)=\varphi\left(M_{i}\right), \frac{\partial \mathcal{P}_{T}}{\partial x}\left(M_{i}\right)=\frac{\partial \varphi}{\partial x}\left(M_{i}\right), \frac{\partial \mathcal{P}_{T}}{\partial y}\left(M_{i}\right)=\frac{\partial \varphi}{\partial y}\left(M_{i}\right)
$$

for $i \in\{1,2,3\}$.
We define now the "global" interpolating piecewise polynomial function associated to the function φ as

$$
\begin{equation*}
(\mathcal{P} \varphi)(x, y)=\sum_{i=1}^{V} \varphi\left(M_{i}\right) F_{i}(x, y)+\frac{\partial \varphi}{\partial x}\left(M_{i}\right) G_{i}(x, y)+\frac{\partial \varphi}{\partial y}\left(M_{i}\right) H_{i}(x, y) \tag{2.1}
\end{equation*}
$$

for $(x, y) \in \Delta$, where

$$
F_{i}(x, y)=\left\{\begin{array}{cc}
f_{M_{i}}^{T}(x, y), & \text { if }(x, y) \text { is inside or on the edges of the } \\
& \text { triangle } T \in \mathcal{T} \text { which has } M_{i} \text { as vertex } \\
0, & \text { on the triangles which do not contain } M_{i}
\end{array}\right.
$$

and analogous definitions for the functions G_{i} and H_{i}. Figures 1,2 and 3 show the graphs of some functions F_{i}, G_{i}, H_{i}.
The functions F_{i}, G_{i}, H_{i} are continuous on Δ due to the property 4 of Proposition 1.2 , so the piecewise polynomial function \mathcal{P} is continuous on Δ.

Figure 1: A function F_{i}.

Figure 2: A function G_{i}.

Figure 3: A function H_{i}.

It is also immediate that $\mathcal{P} \varphi$ satisfies the interpolating conditions

$$
\begin{equation*}
(\mathcal{P} \varphi)\left(M_{i}\right)=\varphi\left(M_{i}\right), \frac{\partial(\mathcal{P} \varphi)}{\partial x}\left(M_{i}\right)=\frac{\partial \varphi}{\partial x}\left(M_{i}\right), \frac{\partial(\mathcal{P} \varphi)}{\partial y}\left(M_{i}\right)=\frac{\partial \varphi}{\partial y}\left(M_{i}\right), \tag{2.2}
\end{equation*}
$$

for $i=1, \ldots, V$.
Other properties of the interpolating operator $\mathcal{P}: C^{1}(\Delta) \rightarrow C^{1}(\Delta)$ defined in (2.1), are given in the following proposition.

Proposition 2.1 The operator \mathcal{P} has the following reproducing properties

1. $\mathcal{P} \varphi=\varphi$ for $\varphi=$ constant if and only if $\alpha=-4$,
2. $\mathcal{P} \varphi=\varphi$ for $\varphi(x, y)=x$ if and only if $\beta=0$,
3. $\mathcal{P} \varphi=\varphi$ for $\varphi(x, y)=y$ if and only if $\gamma=0$.

Proof. A calculation shows that

$$
\begin{align*}
\sum_{i=1}^{V} F_{i}(x, y) & =1, \tag{2.3}\\
\sum_{i=1}^{V} x_{i} F_{i}(x, y)+G_{i}(x, y) & =x . \tag{2.4}\\
\sum_{i=1}^{V} y_{i} F_{i}(x, y)+H_{i}(x, y) & =y . \tag{2.5}
\end{align*}
$$

if and only if $\alpha=-4$ and $\beta=\gamma=0$. Thus, for $\alpha=-4$ and $\beta=\gamma=0$, the operator reproduces the polynomials of degree ≤ 1 in variables x and y. In this particular case, the bounds of the shape functions $f_{M_{1}}^{T}, g_{M_{1}}^{T}, h_{M_{1}}^{T}$ were established in [2], where the following result was proved.

Proposition 2.2 Let $T=M_{1} M_{2} M_{3}, M_{i}\left(x_{i}, y_{i}\right), i=1,2,3$, be a triangle of \mathcal{T} Then, for all $(x, y) \in T$, the functions $f_{M_{1}}^{T}, g_{M_{1}}^{T}, h_{M_{1}}^{T}$ have th ϵ following properties.

1. $0 \leq f_{M_{1}}^{T}(x, y) \leq 1$,
2. $\left|g_{M_{1}}^{T}(x, y)\right| \leq \max \left\{\frac{1}{4}\left|x_{2}-x_{1}\right|, \frac{1}{4}\left|x_{3}-x_{1}\right|\right\}$,
3. $\left|h_{M_{1}}^{T}(x, y)\right| \leq \max \left\{\frac{1}{4}\left|y_{2}-y_{1}\right|, \frac{1}{4}\left|y_{3}-y_{1}\right|\right\}$.

Regarding the rest $\mathcal{R} \varphi$ of the interpolation formula

$$
\begin{equation*}
\varphi=\mathcal{P} \varphi+\mathcal{R} \varphi \tag{2.6}
\end{equation*}
$$

we have the following theorem.

Theorem 2.3 Let $\varphi \in C^{2}(\Delta)$. Then we have

$$
\begin{equation*}
\|\mathcal{R} \varphi\|_{\infty}=\sup _{(x, y) \in \Delta}|\varphi(x, y)-(\mathcal{P} \varphi)(x, y)| \leq 3(1+\sqrt{2} / 2) K_{2} L_{\max }^{2} \tag{2.7}
\end{equation*}
$$

where

$$
K_{2}=\sup _{(x, y) \in \text { int } \Delta}\left\{\left|\frac{\partial^{2} \varphi}{\partial x^{2}}(x, y)\right|,\left|\frac{\partial^{2} \varphi}{\partial y^{2}}(x, y)\right|,\left|\frac{\partial^{2} \varphi}{\partial x \partial y}(x, y)\right|\right\}
$$

and $L_{\text {max }}$ is the length of the greatest edge of the triangles of \mathcal{T}.

Proof. Before starting the proof we remark that, for given (x, y), in the sum (2.1), only at most three terms ${ }^{1}$ are nonzero, namely those which correspond to the vertices of the triangle T for which $(x, y) \in T$.
So, let $(x, y) \in \operatorname{int} \Delta$. Writing some Taylor formulas around the point (x, y) we get, for all $1 \leq i \leq V$,

$$
\begin{aligned}
\varphi\left(M_{i}\right) & =\varphi(x, y)+\left(x_{i}-x\right) \frac{\partial \varphi}{\partial x}(x, y)+\left(y_{i}-y\right) \frac{\partial \varphi}{\partial y}(x, y)+R_{i}(x, y) \\
\frac{\partial \varphi}{\partial x}\left(M_{i}\right) & =\frac{\partial \varphi}{\partial x}(x, y)+S_{i}(x, y) \\
\frac{\partial \varphi}{\partial y}\left(M_{i}\right) & =\frac{\partial \varphi}{\partial y}(x, y)+T_{i}(x, y)
\end{aligned}
$$

[^0]where
\[

$$
\begin{aligned}
R_{i}(x, y) & =\frac{1}{2}\left(x_{i}-x\right)^{2} \frac{\partial^{2} \varphi}{\partial x^{2}}\left(c_{i}^{1}, c_{i}^{2}\right)+\left(x_{i}-x\right)\left(y_{i}-y\right) \frac{\partial^{2} \varphi}{\partial x \partial y}\left(c_{i}^{1}, c_{i}^{2}\right) \\
& +\frac{1}{2}\left(y_{i}-y\right)^{2} \frac{\partial^{2} \varphi}{\partial y^{2}}\left(c_{i}^{1}, c_{i}^{2}\right) \\
S_{i}(x, y) & =\left(x_{i}-x\right) \frac{\partial^{2} \varphi}{\partial x^{2}}\left(d_{i}^{1}, d_{i}^{2}\right)+\left(y_{i}-y\right) \frac{\partial^{2} \varphi}{\partial x \partial y}\left(d_{i}^{1}, d_{i}^{2}\right) \\
T_{i}(x, y) & =\left(x_{i}-x\right) \frac{\partial^{2} \varphi}{\partial x \partial y}\left(e_{i}^{1}, e_{i}^{2}\right)+\left(y_{i}-y\right) \frac{\partial^{2} \varphi}{\partial y^{2}}\left(e_{i}^{1}, e_{i}^{2}\right)
\end{aligned}
$$
\]

with $\left(c_{i}^{1}, c_{i}^{2}\right),\left(d_{i}^{1}, d_{i}^{2}\right),\left(e_{i}^{1}, e_{i}^{2}\right)$ situated 'between' the points (x, y) and $M_{i}\left(x_{i}, y_{i}\right)$. Replacing these expressions into (2.1) we obtain

$$
\begin{aligned}
& \mathcal{P} \varphi(x, y) \\
= & \varphi(x, y) \sum_{i=1}^{V} F_{i}(x, y)+\frac{\partial \varphi}{\partial x}(x, y)\left(\sum_{i=1}^{V}\left(x_{i}-x\right) F_{i}(x, y)+G_{i}(x, y)\right) \\
+ & \frac{\partial \varphi}{\partial y}(x, y)\left(\sum_{i=1}^{V}\left(y_{i}-y\right) F_{i}(x, y)+H_{i}(x, y)\right) \\
+ & \sum_{i=1}^{V} R_{i}(x, y) F_{i}(x, y)+S_{i}(x, y) G_{i}(x, y)+T_{i}(x, y) H_{i}(x, y)
\end{aligned}
$$

Using the properties (2.3),(2.4) and (2.5), we can write

$$
\begin{aligned}
& (\mathcal{P} \varphi)(x, y)-\varphi(x, y) \\
= & \sum_{i=1}^{V} R_{i}(x, y) F_{i}(x, y)+S_{i}(x, y) G_{i}(x, y)+T_{i}(x, y) H_{i}(x, y)
\end{aligned}
$$

Then, for all $i=1, \ldots, V$ we have

$$
\left|R_{i}(x, y)\right| \leq \frac{1}{2} K_{2}\left(\left|x-x_{i}\right|+\left|y-y_{i}\right|\right)^{2}
$$

If (x, y) is situated inside a triangle T, then the sum $\sum_{i=1}^{V} R_{i}(x, y) F_{i}(x, y)$ has at most three terms which are not zero, namely those corresponding
to the vertices of the triangle T. In this case we can write

$$
\sum_{i=1}^{V}\left|R_{i}(x, y)\right| \leq K_{2} \sum_{i=1}^{3}\left(x-x_{\tau(i)}\right)^{2}+\left(y-y_{\tau(i)}\right)^{2} \leq 3 K_{2} L_{\max }^{2}
$$

where $\left(x_{\tau(i)}, y_{\tau(i)}\right)$ are the vertices of the triangle T.
If (x, y) is situated on an edge E, then at least two terms of this sum are nonzero, namely those which correspond to the end-points of the edge E. In this case we have

$$
\sum_{i=1}^{V}\left|R_{i}(x, y)\right| \leq 2 K_{2} L_{\max }^{2}
$$

Then, using Proposition 2.2 we obtain, in the case when (x, y) is situated inside a triangle T,

$$
\begin{aligned}
\sum_{i=1}^{V}\left|S_{i}(x, y)\right| \cdot\left|G_{i}(x, y)\right| & \leq \frac{1}{4} \sum_{i=1}^{3}\left|S_{\tau(i)}(x, y)\right| \cdot \max _{j=1,2,3}\left|x_{\tau(i)}-x_{\tau(j)}\right| \\
& \leq \frac{L_{\max }}{4} K_{2} \sum_{i=1}^{3}\left|x-x_{\tau(i)}\right|+\left|y-y_{\tau(i)}\right| \\
& \leq \frac{3 \sqrt{2}}{4} K_{2} L_{\max }^{2}
\end{aligned}
$$

and analogously

$$
\sum_{i=1}^{V}\left|T_{i}(x, y)\right| \cdot\left|H_{i}(x, y)\right| \leq \frac{3 \sqrt{2}}{4} K_{2} L_{\max }^{2}
$$

When (x, y) is situated on an edge with the end-points M_{k}, M_{j}, we have $G_{k}(x, y)=H_{j}(x, y)=0$.
Combining all the above inequalities, we finally obtain that

$$
\begin{equation*}
|(\mathcal{P} \varphi)(x, y)-\varphi(x, y)| \leq 3\left(1+\frac{\sqrt{2}}{2}\right) K_{2} L_{\max }^{2} \tag{2.8}
\end{equation*}
$$

whence the conclusion.
Note that, if we refine the triangulation, then the rest of the interpolation formula (2.6) tends to zero. Actually, to improve the approximation, it is enough to refine only the two triangles of \mathcal{T} which contain the greatest
edge.

3 A combined operator

We use now the idea of construction of Sheppard combined operators (see [1]) and construct the operator

$$
\left(\mathcal{P}_{1} \varphi\right)(x, y)=\sum_{i=1}^{V} F_{i}(x, y)\left(\varphi\left(M_{i}\right)+\frac{\partial \varphi}{\partial x}\left(M_{i}\right)\left(x-x_{i}\right)+\frac{\partial \varphi}{\partial y}\left(M_{i}\right)\left(y-y_{i}\right)\right),
$$

which is also preserves the functions $1, x$ and y. Using again the relations (2.8), (2.8) and (2.8), we obtain

$$
\begin{aligned}
& -\left(\mathcal{R}_{1} \varphi\right)(x, y) \\
= & \left(\mathcal{P}_{1} \varphi\right)(x, y)-\varphi(x, y) \\
= & \sum_{i=1}^{V} F_{i}(x, y)\left(R_{i}(x, y)+\left(x-x_{i}\right) S_{i}(x, y)+\left(y-y_{i}\right) T_{i}(x, y)\right) .
\end{aligned}
$$

With the same arguments as in Theorem 2.3, we obtain

$$
\left|\left(\mathcal{P}_{1} \varphi\right)(x, y)-\varphi(x, y)\right| \leq 15 K_{2} L_{\max }^{2}
$$

Note that this bound is greater than the one obtained in (2.8) for the operator \mathcal{P}.

References

[1] D. D. Stancu, G. Coman, P. Blaga. Analizã numericã şi Teorid aproximãrii, vol. 2, Presa Universitarã Clujeanã, 2002.

2] D. Roşca. Bounds of some shape functions, to appear.
[3] O. C. Zienkievicz, R. L. Taylor, The finite element method, vol. 2. Solid Mechanics, Butterworth-Heinemann, 2000.

[^1]
[^0]: ${ }^{1}$ In the case when (x, y) is situated on an edge, then the sum (2.1) has at most two nonzero terms, namely those containing F_{i} associated to the adjacent vertices of this edge.

[^1]: Daniela Roşca
 Technical University
 of Cluj-Napoca
 Dept. of Mathematics
 Str. Daicoviciu nr. 15
 Daniela.Rosca@math.utcluj.ro

