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Abstract
We construct piecewise constant wavelets on spherical triangulations, which
are orthogonal with respect to a scalar product on L2(S2), defined in [3]. Our
classes of wavelets include the wavelets obtained by Bonneau in [1] and by
Nielson et all. in [2]. We also proved the Riesz stability and showed some
numerical experiments.

1 Introduction

In [1] and [2] some “nearly orthogonal” piecewise constant wavelets defined on
arbitrary triangulations of the sphere S2 of R3 are presented. In [2] a spherical
wavelet basis is said to be nearly orthogonal if it becomes orthogonal when
the subdivision depth increases (i.e. when the spherical triangles are “near”
planar). Actually, the orthogonality occurs if, at each level of the multireso-
lution, the areas of the spherical triangles are approximated with the areas of
the corresponding planar triangles. Some numerical examples show that this
idea works well in practice, but no mathematical arguments were given to
assure that it works in practice all the time.

In this paper we use a scalar product 〈·, ·〉∗ on L2
(
S2

)
, defined in [3],

which induces a norm ‖·‖∗ equivalent to the usual 2-norm of L2
(
S2

)
. Then

we construct piecewise constant wavelets which are orthogonal with respect to
this scalar product. The equivalence of the norms ‖·‖∗ and the usual 2-norm
of L2

(
S2

)
will help us to prove the Riesz stability in L2

(
S2

)
of our wavelets.
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2 Preliminaries

Consider the unit sphere S2 of R3 with the center in O and Π a convex
polyhedron having triangular faces1 and the vertices situated on the sphere.
Also we have to suppose that no face contains the origin O and O is situated
inside the polyhedron. We denote by T 0 = {T1, T2, . . . , Tn} the set of the faces
of Π and by Ω the surface (the “cover”) of Π. Then we consider the radial
projection onto S2, p : Ω → S2,

p (x, y, z) =
1√

x2 + y2 + z2
(x, y, z) , (x, y, z) ∈ Ω (1)

and its inverse p−1 : S2 → Ω,

p−1 (η1, η2, η3) =
−d

aη1 + bη2 + cη3
(η1, η2, η3) , (η1, η2, η3) ∈ S2,

where ax + by + cz + d = 0 is the equation of the face of Π onto which the
point (η1, η2, η3) ∈ S2 projects. In case this projection is situated on an edge,
then one of the two faces containing that edge is taken.

Being given Ω, we can say that T = T 0 is a triangulation of Ω. Next we
wish to consider its uniform refinement T 1. For a given triangle [M1M2M3]
in T 0, let A1, A2, A3 denote the midpoints of the edges M2M3,M3M1 and
M1M2, respectively. Then we consider the set

T 1 =
⋃

[M1M2M3]∈T 0

{[M1A2A3], [A1M2A3], [A1A2M3], [A1A2A3]} ,

which is also a triangulation of Ω. Proceeding in the same way the refinement
process we can obtain a triangulation T j of Ω, for j ∈ N. The projection of
T j onto the sphere will be Uj =

{
p

(
T j

)
, T j ∈ T j

}
, which is a triangulation

of S2. The number of triangles in Uj will be
∣∣Uj

∣∣ = n · 4j .
Let 〈·, ·〉Ω be the following inner product, based on the initial coarsest

triangulation T 0 :

〈f, g〉Ω =
∑

T∈T 0

1
a (T )

∫

T

f (x) g (x) dx, for f, g ∈ C (T ) ∀T ∈ T 0.

Here a (T ) denotes the area of the triangle T. Also, we consider the induced
norm

‖f‖Ω = 〈f, f〉1/2
Ω .

For the L2−integrable functions F and G defined on S2, the following scalar
product associated to the given polyhedron Π was defined in [3]:
1 The polyhedron could also have faces which are not triangles. In this case we

triangulate each of these faces and consider it as having triangular faces, with
some of the faces coplanar triangles.
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〈F, G〉∗ = 〈F ◦ p,G ◦ p〉Ω . (2)

There it was proved that, in the space L2
(
S2

)
, the norm ‖·‖∗ induced by this

scalar product is equivalent to the usual norm ‖·‖L2(S2) of L2
(
S2

)
and

m ‖F‖2L2(S2) ≤ ‖F‖2∗ ≤ M ‖F‖2L2(S2) , (3)

with m = 1
4 min

T∈T 0

d2
T

a(T )3
, M = 2 max

T∈T 0

1
|dT | , dT =

∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
, for each triangle

T having the vertices Bi (xi, yi, zi) , i = 1, 2, 3. If we use the relation
|dT | = 2a (T ) dist (O, T ) , with dist (O, T ) representing the distance from the
origin to the plane of the triangle T, then the values m and M become

m = min
T∈T 0

dist2 (O, T )
a (T )

,

M = max
T∈T 0

1
a (T ) dist (O, T )

.

In the following we construct a multiresolution on S2 consisting of piecewise
constant functions on the triangles of Uj =

{
U j

1 , U j
2 , . . . , U j

n·4j

}
, j ∈ N.

By definition, a multiresolution of L2
(
S2

)
is a sequence of subspaces{

V j : j ≥ 0
}

of L2
(
S2

)
which satisfies the following properties:

1. V j ⊆ V j+1 for all j ∈ N,

2. closL2(S2)
∞⋃

j=0

V j = L2
(
S2

)
,

3. There are index sets Kj ⊆ Kj+1 such that for every level j there

exists a Riesz basis
{

ϕj
t , t ∈ Kj

}
of the space V j . This means that there exist

constants 0 < c < C < ∞, independent of the level j, such that

c2−j

∥∥∥∥
{

cj
t

}
t∈Kj

∥∥∥∥
l2(Kj)

≤
∥∥∥∥∥

∑

t∈Kj

cj
tϕ

j
t

∥∥∥∥∥
L2(S2)

≤ C2−j

∥∥∥∥
{

cj
t

}
t∈Kj

∥∥∥∥
l2(Kj)

.

3 The spaces V j and W j

For a fixed j ∈ N, to each triangle U j
k ∈ U j , k = 1, 2, . . . , n · 4j , we associate

the function ϕUj
k

: S2 → R,

ϕUj
k
(η) =





1, inside the triangle U j
k ,

1/2, on the edges of U j
k ,

0, in rest.
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Then we define the spaces of functions V j = span
{

ϕUj
k
, k = 1, 2, . . . , n · 4j

}
,

consisting of piecewise constant functions on the triangles of Uj .

It is immediate that the set
{

ϕUj
k
, k = 1, 2, . . . , n · 4j

}
is a basis for V j ,

so
∣∣V j

∣∣ = n · 4j .
We must establish the relation between the spaces V j and V j+1. Let U j ∈

Uj and U j+1
k = p

(
T j+1

k

)
, k = 1, 2, 3, 4, the refined triangles obtained from

U j , as in Figure 1.
We have

ϕUj = ϕUj+1
1

+ ϕUj+1
2

+ ϕUj+1
3

+ ϕUj+1
4

,

equality which holds in L2
(
S2

)
. Thus, V j ⊆ V j+1 for all j ∈ N. With respect

to the scalar product 〈·, ·〉∗ , the spaces V j and V j+1 become Hilbert spaces,
with the corresponding norm ‖·‖∗ = 〈·, ·〉1/2

.
Next we define the space W j as the orthogonal complement, with respect

to the scalar product 〈·, ·〉∗ , of the coarse space V j in the fine space V j+1 :

V j+1 = V j
⊕

W j .

The spaces W j are called the wavelet spaces. The dimension of W j is
∣∣W j

∣∣ =∣∣V j+1
∣∣−

∣∣V j
∣∣ = 3n · 4j .

In the following we will construct a basis of W j . Let us take the triangle
U j and its refinements U j+1

1 , U j+1
2 , U j+1

3 , U j+1
4 and denote F 1

Uj , F 2
Uj , F 3

Uj

the projections onto S2 of the mid-points of the edges of the plane triangle
p−1

(
U j

)
, as in Figure 1.

Uj Uj+1
2

 

 
 

Uj+1
1

Uj+1
4

Uj+1
3

 

F2
U

j 

F3
U

j  

F1
U

j  

Fig. 1. The triangle U j and its refined triangles U j+1
k , k = 1, 2, 3, 4.

Note that, except for the case j = 0, the points F l
Uj , l = 1, 2, 3, are not in

general mid-points of the edges of the spherical triangle U j . To each of these
points F l

Uj a wavelet will be associated in the following way

ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
+ βϕUj+1

2
+ γϕUj+1

4
,

ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
+ βϕUj+1

2
+ γϕUj+1

3
, (4)

ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
+ βϕUj+1

2
+ γϕUj+1

1
,
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with α1, α2, β, γ ∈ R. Let us mention that supp ΨF k
j+1,Uj = U j for k = 1, 2, 3.

Next we will find conditions on the coefficients α1, α2, β, γ, which assure
that the set {

ΨF k
j+1,Uj , k = 1, 2, 3, U j ∈ Uj

}

is an orthonormal basis of W j with respect to the scalar product defined in
(2) .

First we must have 〈
ΨF k

j+1,Uj , ϕSj

〉
∗

= 0, (5)

for k = 1, 2, 3 and U j , Sj ∈ U j . If U j 6= Sj , then the equality is immediate
since supp ΨF k

j+1,Uj = supp ϕUj and supp ϕSj ∩ supp ϕUj is either the ∅ or
an edge, whose measure is zero. For U j = Sj , evaluating the scalar product
(5) we obtain

〈
ΨF 1

j+1,Uj , ϕSj

〉
∗

=
α1Aj+1

1 + α2Aj+1
3 + βAj+1

2 + γAj+1
4

a (p−1 (U))
,

U being the triangle of the initial triangulation U0 which includes the triangle
U j and Aj+1

k = a
(
p−1

(
U j+1

k

))
. Since

Aj+1
k

a (p−1 (U))
= 4−(j+1) for k = 1, 2, 3, 4,

the orthogonality conditions (5) reduce to

α1 + α2 + β + γ = 0. (6)

Now we have to find conditions on the parameters α1, α2, β, γ such that
the functions

{
ΨF k

j+1,Uj , k = 1, 2, 3, U j ∈ U j
}

are linearly independent. Let

λF 1,Uj , λF 2,Uj , λF 3,Uj ∈ R for U j ∈ Uj . Taking the linear combination

3∑

k=1

∑

Uj∈Uj

λF k,Uj ΨF k
j+1,Uj = 0,

it follows that for each U j ∈ U j we must have

3∑

k=1

λF k,Uj ΨF k
j+1,Uj = 0. (7)

In order to simplify the writing we denote λF k,Uj = λk. The linear inde-
pendency occurs if each relation (7) implies λ1 = λ2 = λ3 = 0. Using the
definitions (4) we obtain
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λ1α1 + λ2α2 + λ3γ = 0,

λ1β + λ2β + λ3β = 0,

λ1α2 + λ2γ + λ3α1 = 0,

λ1γ + λ2α1 + λ3α2 = 0.

Taking into account the condition (6) , we can deduce that this system of 4
equations with 3 unknowns has only the zero solution if and only if

α3
1 + α3

2 + γ3 − 3α1α2γ 6= 0. (8)

So, if this condition is satisfied, then a basis in W j is constructed.
Now we want to look for an orthogonal basis. Each of the orthogonality

conditions 〈
ΨF k

j+1,Uj , ΨF l
j+1,Uj

〉
∗

= 0

for l, k ∈ {1, 2, 3} , l 6= k and U j ∈ U j is equivalent to

α1α2 + (α1 + α2) γ + β2 = 0. (9)

Solving the system consisting of the equations (6) and (9) we get

β2 − (α1 + α2)β − (
α2

1 + α1α2 + α2
2

)
= 0. (10)

We wish to have orthonormal bases, so we impose the condition
∥∥∥2j · ΨF l

j+1,Uj

∥∥∥
∗

= 1 for l = 1, 2, 3.

Using the relations (6) and (10) we obtain, for l = 1, 2, 3,
∥∥∥2j · ΨF l

j+1, Uj

∥∥∥
∗

= α2
1 + α2

2 + β2 + γ2 = 4β2.

Hence, β = ± 1
2 .

For β = 1
2 condition (10) reduces to

4
(
α2

1 + α1α2 + α2
2

)
+ 2 (α1 + α2)− 1 = 0

and condition (8) reduces to

2
(
α2

1 + α1α2 + α2
2

)
+ (α1 + α2) 6= 0.

The small ellipse, having the equation 2
(
α2

1 + α1α2 + α2
2

)
+ (α1 + α2) = 0,

contains the points (α1, α2) for which the wavelets become linearly dependent.
In conclusion, there exist orthogonal wavelets for all (α1, α2) situated on the
big ellipse plotted in Figure 2. These wavelets have the expression
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−1 −0.5 0 0.5
−1

−0.5

0

0.5

α
1

α 2

Fig. 2. The graph of the curve 4
�
α2

1 + α1α2 + α2
2

�
+ 2 (α1 + α2) − 1 = 0 (the big

ellipse), resp. 2
�
α2

1 + α1α2 + α2
2

�
+ (α1 + α2) = 0 (the small ellipse).

1ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
+

1
2
ϕUj+1

2
−

(
1
2

+ α1 + α2

)
ϕUj+1

4
,

1ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
+

1
2
ϕUj+1

2
−

(
1
2

+ α1 + α2

)
ϕUj+1

3
,

1ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
+

1
2
ϕUj+1

2
−

(
1
2

+ α1 + α2

)
ϕUj+1

1
.

For β = − 1
2 condition (10) reduces to

4
(
α2

1 + α1α2 + α2
2

)− 2 (α1 + α2)− 1 = 0,

while condition (8) reduces to

2
(
α2

1 + α1α2 + α2
2

)− (α1 + α2) 6= 0.

−0.5 0 0.5 1
−0.5

0

0.5

1

α
1

α 2

Fig. 3. The graphic of the curve 4
�
α2

1 + α1α2 + α2
2

�− 2 (α1 + α2)− 1 = 0 (the big
ellipse), resp. 2

�
α2

1 + α1α2 + α2
2

�− (α1 + α2) = 0 (the small ellipse)

Again, there exist orthogonal wavelets for all (α1, α2) situated on the big
ellipse plotted in Figure 3. These wavelets have the expression
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2ΨF 1
j+1,Uj = α1ϕUj+1

1
+ α2ϕUj+1

3
− 1

2
ϕUj+1

2
+

(
1
2
− α1 − α2

)
ϕUj+1

4
,

2ΨF 2
j+1,Uj = α1ϕUj+1

4
+ α2ϕUj+1

1
− 1

2
ϕUj+1

2
+

(
1
2
− α1 − α2

)
ϕUj+1

3
,

2ΨF 3
j+1,Uj = α1ϕUj+1

3
+ α2ϕUj+1

4
− 1

2
ϕUj+1

2
+

(
1
2
− α1 − α2

)
ϕUj+1

1
.

Let us remark that if we choose α1 = α2 = α, then we obtain the families
of wavelets

{
1Ψ1

F l
j+1,Uj

}
,
{

1Ψ2
F l

j+1,Uj

}
,
{

2Ψ1
F l

j+1,Uj

}
and

{
2Ψ2

F l
j+1,Uj

}
, given

by

1Ψ1
F l

j+1, Uj = −1
2

(
ϕUj+1

1
+ ϕUj+1

3
− ϕUj+1

2
− ϕUj+1

4

)
,

1Ψ2
F l

j+1, Uj =
1
6

(
ϕUj+1

1
+ ϕUj+1

3
+ 3ϕUj+1

2
− 5ϕUj+1

4

)
,

2Ψ1
F l

j+1, Uj =
1
2

(
ϕUj+1

1
+ ϕUj+1

3
− ϕUj+1

2
− ϕUj+1

4

)
,

2Ψ2
F l

j+1, Uj = −1
6

(
ϕUj+1

1
+ ϕUj+1

3
+ 3ϕUj+1

2
− 5ϕUj+1

4

)
,

for l = 1 and similarly for l = 2, 3. These wavelets are exactly the wavelets
obtained in [2], in the case when the spherical areas are approximated with
the plane areas.

4 The stability of the bases

To be useful in practice, the wavelets must satisfy the Riesz stability condi-
tions. Next we prove the Riesz stability of the bases that we have constructed
in V j and W j , for arbitrary j ∈ N.

First we check the condition 3 of the definition of multiresolution. The
basis

{
2jϕUj

k
, k = 1, 2, . . . , n · 4j

}
of V j is orthonormal since

∥∥∥2jϕUj
k

∥∥∥
2

∗
= 4j

〈
ϕUj

k
, ϕUj

k

〉
∗

= 4j ·
a

(
p−1

(
U j

k

))

a (p−1 (U))
= 1

and
〈
2jϕUj

k
, 2jϕUj

l

〉
∗

= 0 for k 6= l because the intersection of their supports
is either empty or an edge, which has the measure zero.

Being an orthonormal basis with respect to the inner product 〈·, ·〉∗ , the
following equality holds

∥∥∥∥∥
∑

Uj∈Uj

cj
U2jϕUj

∥∥∥∥∥
∗

=
∥∥∥∥
{

cj
U

}
U∈Uj

∥∥∥∥
l2

.
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Using now the equality (3) , which expresses the equivalence of the norms ‖·‖∗
and ‖·‖L2(S2) , we get

1
M

∥∥∥∥
{

cj
U

}
U∈Uj

∥∥∥∥
2

l2
≤

∥∥∥∥∥
∑

Uj∈Uj

cj
U2jϕUj

∥∥∥∥∥

2

L2(S2)

≤ 1
m

∥∥∥∥
{

cj
U

}
U∈Uj

∥∥∥∥
2

l2
,

which is exactly the condition 3 of the definition of a multiresolution.
Using the same arguments for the wavelets bases{

2j iΨk
F l

j+1,Uj

}
l=1,2,3, Uj∈Uj

, i = 1, 2, k = 1, 2, we can prove that

1
M

(
3∑

l=1

∑

U∈Uj

dl,Uj

)2

≤
∥∥∥∥∥

∑

Uj∈Uj

dl,Uj 2j iΨk
F l

j+1,Uj

∥∥∥∥∥

2

L2(S2)

≤ 1
m

(
3∑

l=1

∑

U∈Uj

dl,Uj

)2

.

Some evaluations of the number κ =
√

M/m for some particular polyhe-
drons shows that κ is 33/2 = 5.19615 . . . for the regular tetrahedron, 33/4 =
2.27951 . . . for the cube and regular octahedron and

(
15/(5 + 2

√
5)

)3/4
=

1.41167 . . . for the regular dodecahedron and regular icosahedron. However,
the number κ is not significant for the performance of the wavelets, since
the matrices involved in the decomposition and reconstruction algorithms are
orthogonal.

5 Numerical tests

In order to illustrate our wavelets, we took as the initial polyhedron Π an
octahedron with six vertices and we performed five levels of decomposition.
At the level five, the total number of triangles is 8196. Then we considered
a particular data set pol5 from texture analysis of crystals (cf. [4]) and we
represented it in Figure 4. It consists of 36× 72 measurements on the sphere
at the points

{Pij (cos θj sin ρi, sin θj sin ρi, cos ρi)} ,

with θj = πj
36 − π

72 , j = 1, . . . , 72, ρi = πi
36 − π

72 , i = 1, . . . 36. Its main
characteristic is that the values over the whole sphere are constant, except
for some peaks. First we have approximated this data with the function
f5 ∈ V 5(see figure 5), considering pol5 as a piecewise constant function on
the set

{p(Qij), i = 1, . . . 36, j = 1, . . . 72, } ,

where p is the projection defined in (1) and Qij are quadrates with centers at
Pij and edge π/72 . The approximation error

e =
1

36 · 72

36∑

i=1

72∑

j=1

∣∣f5(i, j)− pol5(i, j)
∣∣
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Fig. 4. The initial data set pol5
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Fig. 5. The function f5 ∈ V5, approximation of pol5 at the level 5.

was 1.0984. Since the set
{

ϕj
t

}
t∈Uj

is a basis for V j , for j = 0, 1, 2, . . . , we
can write

f5 (η) =
∑

t∈U5

f5
t ϕ5

t (η) , η ∈ S2. (11)

The vector f5 =
(
f5

t

)
t∈U5 associated to the function f5 was then decom-

posed into f0 and g0, g1, g2, g3, g4, using the wavelet with coefficients
(α1, α2, β, γ) =

(
1
6 , 1

6 , 3
6 ,− 5

6

)
. The details coefficients gj , j = 0, . . . , 4 were

thresholded to obtain a specific compression rate. More precise, their compo-
nents

(
gj

k

)
k=1,...,3n·4j

were replaced with the values
(
ĝj

k

)
k=1,...,3n·4j

according

to a strategy known as hard thresholding. This consist in choosing a threshold
ε > 0 and then setting

ĝj
k =

{
gj

k, if
∣∣∣gj

k

∣∣∣ ≥ ε,

0, otherwise.

The ratio of the number of subsequent non-zero coefficients to the total num-
ber,

4∑
j=0

∣∣∣
{

k : ĝj
k 6= 0

}∣∣∣

3n · 4j
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will be referred to as the compression rate.
After the compression we performed the reconstruction, yielding an ap-

proximation with error e5, e5 = f5 − f̂5, where f̂5 =
(
f̂5

t

)
t∈U5

is the vector

associated to the reconstructed function f̂5. We have measured this error in
several ways:

- The maximum error given by
∥∥e5

∥∥
∞ = max

η∈S2
∣∣e5 (η)

∣∣ = max
t∈U5

∣∣e5
t

∣∣ ;

- The 2−norm
∥∥e5

∥∥
2

=

( ∑

t∈U5

∣∣∣f5
t − f̂5

t

∣∣∣
2
)1/2

;

- The mean absolute error over the triangles

mean
(
e5

)
=

1
n · 4j

∑

t∈U5

∣∣e5
t

∣∣ .

Figures 6, 7 and 8 show the reconstructed functions f̂5 for different compres-
sion rates, and the errors are tabulated in Table 1.
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Fig. 6. The reconstructed function bf5 for the compression rate 0.05.
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−4

−2

0

2

4

−2

−1

0

1

2
0

1000

2000

3000

4000

5000

6000

7000

Fig. 7. The reconstructed function bf5 for the compression rate 0.5.
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Fig. 8. The reconstructed function bf5 for the compression rate 0.75.

Table 1. Reconstruction errors for some compression rates, with the wavelet
1
6
[1, 1, 3,−5]

comp. no. of
rate zero coeff.



e5



∞



e5




2
mean

�
e5
�

0.05 7775 165.75 3122.10 29.40
0.1 7366 114.48 2715.90 25.13
0.25 6139 78.41 1855.40 15.48
0.5 4099 35.17 764.91 6.40
0.75 2047 19.24 242.26 1.53
0.8 1637 4.11 88.99 0.55
0.84 1228 0 0 0


