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Technical University of Cluj-Napoca

str. Daicoviciu nr. 15
3400 Cluj-Napoca

Romania
e-mail: Daniela.Catinas@math.utcluj.ro

March 20, 2003

Abstract

In [5], some locally supported rational spline prewavelets on the
sphere were constructed. We present here another two properties of
them and some algorithms for decomposition, reconstruction and ap-
proximation, together with some numerical tests. A comparison with
the spherical harmonics approach shows the advantage of the small
support of our prewavelets.

1 Introduction

Consider the unit sphere S2 of R3, S2 =
{
x ∈ R3 : ‖x‖ = 1

}
. In [5] the

following construction were made.
We considered the polyhedron Π having the bound Ω, the vertices sit-

uated on S2 and triangular faces such that no face contains the origin O
and O is situated inside the polyhedron. The set of its faces was denoted
T 0 =

{
T 0

1 , T 0
2 , . . . , T 0

n

}
. Then we projected each triangle of T 0 onto S2, get-

ting a triangulation of the sphere, denoted U0 =
{
U0

1 , U0
2 , . . . , U0

n

}
, where

U0
i = p

(
T 0

i

)
and p : Ω −→ S2, is the radial projection

p (x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)
, for all (x, y, z) ∈ Ω.

We divided each triangle T 0
k into four triangles, taking the mid-points of

the edges. Thus, we obtained a refined triangulation of Ω, denoted T 1 ={
T 1

1 , T 1
2 , . . . , T 1

4n

}
. Continuing the refinement process we built the triangu-

lations T j for arbitrary level j ∈ N. The projection U j = p
(T j

)
is a trian-

gulation of S2. We denoted by V j the set of all vertices of plane triangles in
T j .

Let M1MiMk be a triangle of T j , with the vertices of coordinates (x1, y1, z1) ,
(xi, yi, zi) , (xk, yk, zk) respectively. Let M ′

1M
′
iM

′
k be its radial projection

onto S2. Then we defined the functions ϕj
M1

, associated to the vertex M1,
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as

ϕj
M1

(η1, η2, η3) =





∣∣∣∣∣∣

η1 η2 η3

xi yi zi

xk yk zk

∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣

η1 η2 η3 0
x1 y1 z1 1
xi yi zi 1
xk yk zk 1

∣∣∣∣∣∣∣∣

−1

, on each triangle M ′
1M

′
iM

′
k of U j ,

0, on the triangles of U j that do not contain M ′
1.

It is immediately that the function ϕj
M1

is continuous on S2 and the set{
ϕj

v, v ∈ V j
}

is a basis of the space Vj = span
{

ϕj
v, v ∈ V j

}
. We denoted

by V j
v the set of the j-level neighbors of the vertex v.

Due to the refinement relation

ϕj
v = ϕj+1

v +
1
2

∑

w∈V j+1
v

ϕj+1
w , v ∈ V j , j ∈ N,

we deduce that Vj ⊆ Vj+1. Then we defined an inner product on S2 based
on the coarsest triangulation T 0 :

〈F, G〉∗ = 〈F ◦ p,G ◦ p〉Ω
=

∑

T∈T 0

∫

p(T )
F (η) G (η)

2d2
T

|aT η1 + bT η2 + cT η3|3
dω (η) ,

where η = (η1, η2, η3), the numbers aT , bT , cT ,dT are the coefficients of x, y, z
and 1 of the polynomial function

∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣

and the triangle T has the vertices Mi (xi, yi, zi) , i = 1, 2, 3. The inner
product 〈·, ·〉∗ may be interpreted as a “multi-weighted” inner product, with
the weights

wT (η1, η2, η3) =
2d2

T

|aT η1 + bT η2 + cT η3|3
. (1)

Afterwards and we considered the space Wj as the orthogonal comple-
ment of Vj into Vj+1 :

Vj+1 = Vj
⊕

Wj . (2)

The spaces Wj were called the wavelet spaces. We determined a basis in
each Wj , consisting of prewavelets of small supports. This basis consists in
the following functions:

ψj
u (η) = σj

a1,u (η) + σj
a2,u (η) , (3)
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with

σj
a1,u (η) = sa1ϕ

j+1
a1

(η) +
∑

u∈V j+1
a1

swϕj+1
w (η) ,

σj
a2,u (η) = sa2ϕ

j+1
a2

(η) +
∑

u∈V j+1
a2

twϕj+1
w (η) ,

where u is a “new” vertex, mid-point of the edge [a1a2] , sa1 = − 3
2s1

, sa2 =
− 3

2s2
, sbi = 3

28s1
+ θ (i, s1) , tci = 3

28s2
+ θ (i, s2) . Here s1 and s2 are the

number of neighbors of the vertices a1 resp. a2, θ (i, s) = λi+λs−i√
21(1−λs)

, λ =
−5+

√
21

2 . By b0, b1, . . . , bs1−1 we denoted the ordered neighbors of a1, starting
with b0 = u and by c0, c1, . . . , cs2−1 we denoted the ordered neighbors of a2,
starting with c0 = u.

The set
{

ψj
u, u ∈ V j+1\V j

}
was proved to be a stable basis of L2

(
S2

)

(see [5], Section 3).
In the next section we present the algorithms of decomposition and re-

construction.

2 Decomposition and reconstruction

Consider
{

ϕj
v

}
v∈V j

basis of Vj and
{

ψj
u

}
u∈V j+1\V j

basis of Wj . With a

fixed ordering of the vertices in V j and in V j+1\V j , we can regard these
bases as row vectors:

Φj =
(
ϕj

v

)
v∈V j

and Ψj =
(
ψj

u

)
u∈V j+1\V j .

Then any elements f j =
∑

v∈V j

f j
vϕj

v and gj =
∑

u∈V j+1\V j

gj
uψj

u in Vj resp. Wj

can be written as
f j = Φjf j resp. gj = Ψjgj , (4)

where f j is the column vector
(
f j

v

)
v∈V j

and gj is the column vector
(
gj
u

)
u∈V j+1\V j

.

Since Vj−1and Wj−1are subspaces of Vj , there exist two unique matrices
P j and Qj such that

Φj−1 = ΦjP j and Ψj−1 = ΦjQj . (5)

Take now f j ∈ Vj . Equation (2) implies that there exist unique f j−1 ∈ Vj−1

and gj−1 ∈ Wj−1 such that

f j = f j−1 + gj−1. (6)
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Substituting (4) into (6) yields the following equation:

Φjf j = Φj−1f j−1 + Ψj−1gj−1

and then, using (5) and the fact that Φj is a basis for Vj , we find

(
P j Qj

)(
f j−1

gj−1

)
= f j . (7)

The block matrix
(
P j Qj

)
is called the two-scaled matrix. It is nonsingular

and it must be inverted in order to compute the coefficient vectors f j−1 and
gj−1 from a given coefficient vector f j . Repeating the above calculations for
the levels j = m,m− 1, . . . , 1, we obtain the decomposition algorithm.

Algorithm D
Input : m ∈ N highest level

fm = (fm
v )v∈V m the values of a given functionfm ∈ Vmat the nodes v ∈ V m.

(i) For each level j = m,m− 1, . . . , 1, solve the linear system (7)
and get f j−1 and gj−1.

Output : gj (j = 0, 1, . . . , m− 1) wavelet coefficients,
f0 coefficient of approximation.

Thus, the function fm ∈ Vm was decomposed into

fm = f0 + g0 + g1 + . . . + gm−1,

meaning an approximation f0 ∈ V0 and a sum of details (wavelets) gi ∈ W i,
i = 0, 1, . . . , m− 1.

Let us come back to the system (7) .The entries of P j and Qj are evalu-
ations of the bases Φj resp. Ψj . Their expressions are

pj
wv = ϕj−1

v (w) =





1 if w = v,
1
2 if w ∈ V j

v ,
0 otherwise

, resp. qj
wu = ψj−1

u (w) .

The system (7) can be written
(

I Qj
1

P j
2 Qj

2

) (
f j−1

gj−1

)
=

(
f j
1

f j
2

)
(8)

Using the Schur complement matrix Q̃j
2 = Qj

2−P j
2 Qj

1, we reduce the system
(8) to (

I Qj
1

0 Q̃j
2

)(
f j−1

gj−1

)
=

(
f j
1

f j
2 − P j

2 f
j
1

)
.
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This means that we have to solve the system

Q̃j
2g

j−1 = f j
2 − P j

2 f
j
1

for computing gj−1 and then calculate f j−1 from the substitution

f j−1 = f j
1 −Qj

1g
j−1.

Besides the lower dimension, the system (8) has also the advantage that is
better conditioned than the system (7).

The next step is to write the reconstruction algorithm.
Algorithm R

Input : m ∈ N highest level
gj , j = 0, 1, . . . ,m− 1 coefficient vectors of a given function gj ∈ Wj

f0 coefficient vector of a given function f0 ∈ V0

(i)
For each level j = 1, 2, . . . , m

(a) compute f j
1 from f j

1 = f j−1 + Qj
1g

j−1,

(b) compute f j
2 from f j

2 = P j
2 f

j
1 + Q̃j

2g
j−1

Output : fm

The locality of the supports of our bases has the advantage that the
matrices P j

2 and Q̃j
2 are sparse. In P j

2 , on each column we have two nonzero
entries and in Q̃j

2, on each column and row we have n = max{11, {2t (v) −
1, v ∈ V 0}} nonzero entries. Here t (v) denotes the number of neighbors of
the vertex v.

3 Thresholding

A typically application of wavelets is data compression using thresholding.
Numerical examples will be given in Section 5.

A given function fm ∈ Vm is first decomposed into its components
f0, g0, g1, . . . , gm−1, using the algorithm D, with Schur complement. The
wavelet components gj ∈ Wj are replaced by the functions ĝj ∈ Wj , by
modifying their coefficients according to a particular strategy (for more de-
tails see [7]). Here we use the strategy called hard thresholding, which means
that for a threshold thr > 0, we set, for u ∈ V j+1\V j ,

ĝj
u =

{
gj
u, if

∣∣∣gj
u

∣∣∣ ≥ thr,

0, otherwise.

The ratio of number of subsequent nonzero coefficients to the total number

m−1∑
j=0

∣∣∣
{

u ∈ V j+1\V j : ĝj
u 6= 0

}∣∣∣
m−1∑
j=0

|V j+1\V j |
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is called the compression rate.
Reconstruction with the algorithm R, applied to the modified functions

ĝj , yields an approximant f̂m ∈ Vm of the original function fm, given by

f̂m = f0 + ĝ0 + ĝ1 + . . . + ĝm−1.

The resulting approximation error is

em = fm − f̂m =
m−1∑

j=0

(
gj − ĝj

)
.

4 Other properties of our prewavelets

We prove here two properties which were not mentioned in [5].

Proposition 1 The function 1S2 : S2 −→ R, 1S2 (η) = 1 for all η ∈ S2,
belongs to the space V0 and therefore to all the spaces Vj . As a consequence,
the prewavelets have a vanishing moment of order zero.

Proof. First we show that on each triangle U = A1A2A3 of U0, Ai (xi, yi, zi) ,
i = 1, 2, 3 we have

ϕ0
A1

+ ϕ0
A2

+ ϕ0
A3

= 1, (9)

which is equivalent to
∣∣∣∣∣∣

η1 η2 η3

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

η1 η2 η3 0
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣

η1 η2 η3

x3 y3 z3

x1 y1 z1

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

η1 η2 η3 0
x2 y2 z2 1
x3 y3 z3 1
x1 y1 z1 1

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣

η1 η2 η3

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

η1 η2 η3 0
x3 y3 z3 1
x1 y1 z1 1
x2 y2 z2 1

∣∣∣∣∣∣∣∣

= 1

for all (η1, η2, η3) ∈ U. This is immediately if we split the determinant from
the denominator after the last column.

Now let us take an arbitrary point (η1, η2, η3) of the sphere. It will be sit-
uated on a spherical triangle Ũ ∈ U0 having the vertices M ′

1, M
′
2,M

′
3, which

are the projections of the points M1,M2,M3, situated on the polyhedron.
Then we can write

1 = 1S2 (η1, η2, η3) = ϕ0
M1

(η1, η2, η3) + ϕ0
M2

(η1, η2, η3) + ϕ0
M3

(η1, η2, η3) .

Since at (η1, η2, η3) all other pyramidal functions ϕ0
v, v ∈ V 0, take the value

zero, we may write
1S2 =

∑

v∈V 0

ϕ0
v.
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As a consequence, we can state that for every element gj−1 of the wavelet
space Wj−1, 〈

1S2 , gj−1
〉
∗ = 0 for all j ∈ N∗.

This means that our wavelets have a vanishing moment of order zero with
respect to the scalar product 〈·, ·〉∗ :

0 =
∑

T∈T 0

∫

p(T )

gj−1 (η)wT (η1, η2, η3) dω (η) ,

with wT the weight-functions given by (1) .
Since

〈
1S2 , gj−1

〉
∗ =

〈
1S2 ◦ p, gj−1 ◦ p

〉
Ω

=
〈
1Ω, gj−1 ◦ p

〉
Ω

=
∑

T∈T 0

1
a (T )

∫

T

(
gj−1 ◦ p

)
(x) dΩ(x)

=
1
3

∑

[w1w2w3]∈T j

(
gj−1 ◦ p

)
(w1) +

(
gj−1 ◦ p

)
(w2) +

(
gj−1 ◦ p

)
(w3)

=
1
3

∑

w∈V j

t (w) gj−1 (p (w)) ,

we finally obtain ∑

w∈V j

t (w) gj−1 (p (w)) = 0.

Next we apply this result to obtain another identity which show the fact
that a sum of prewavelets ψj−1

u is constant over coarse and fine vertices.

Proposition 2 Let

Σj−1 (η) =
∑

u∈V j\V j−1

t (u) ψj−1
u (η) , η ∈ S2.

Then we have

Σj−1 (p (w)) =
{

3 if w ∈ V j\V j−1,
−9 if w ∈ V j−1.

Proof. For u ∈ V j\V j−1, the number of its neighbors is t (u) = 6. Therefore
we can write the weighted sum as

Σj−1 (η) = 6
∑

u∈V j\V j−1

ψj−1
u (η) .
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First let w be a fine vertex, i.e. w ∈ V j\V j−1. From the previous proposition
we have

0 =
∑

u∈V j

t (u) ψj−1
w (p (u)) =

∑

u∈V j\V j−1

t (u) ψj−1
w (p (u))+

∑

v∈V j−1

t (v) ψj−1
w (p (v)) .

(10)
With w being the mid-point of an edge [a1a2], a1, a2 ∈ V j−1, we obtain from
(3) that

∑

v∈V j−1

t (v) ψj−1
w (p (v)) =

∑

v∈V j−1

t (v) σj−1
a1,w (p(v)) + t (v) σj−1

a2,w (p(v))

= t (a1) σj−1
a1,w (p(a1)) + t (a2) σj−1

a2,w (p(a2))

= −3
2
− 3

2
= −3. (11)

The symmetry property ψj−1
w (p (u)) = ψj−1

u (p (w)) yields

Σj−1 (p (w)) =
∑

u∈V j\V j−1

t (u) ψj−1
u (p (w)) =

∑

u∈V j\V j−1

t (u) ψj−1
w (p (u)) = 3,

taking into account (10) and (11) .
Finally, let v ∈ V j−1 be a coarse vertex.Then

Σj−1 (p (v)) =
∑

u∈V j
v

t (u) σj−1
v,u (p(v)) = − 3

2t (v)

∑

u∈V j
v

t (u)

= − 3
2t (v)

6t (v) = −9.

5 Some numerical tests

To illustrate the efficiency of our prewavelets, we took as the initial polyhe-
dron the regular octahedron and we performed five levels of decomposition.
The total number of vertices at the level five is 4098. We considered a data
set jump consisting of 36 × 72 measurements on the sphere at the points
Pij (θi, ϕj) , given by their spherical coordinates (θ, ϕ) , where (θi)1≤i≤36 are
equidistant nodes of the interval [−π, π] and (ϕj)1≤j≤36 are equidistant nodes
of the interval [−π/2, π/2]. This dataset is constant over the sphere, except
to a small portion, where it has a very big jump (see Figure 1). Such func-
tions appear in crystallography (see [6]).

First we approximated this data with the function f5 ∈ V5 (figure 2).
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Table 1: Reconstruction errors for some compression rates

comp. rate nr. of zero coeff.
∥∥e5

∥∥
∞

∥∥e5
∥∥

2
mean

(
e5

)
0.05 3888 59.2191 992.7856 12.5437
0.1 3683 17.6250 220.3438 2.5425
0.25 3070 1.4023 12.9496 0.1287
0.5 2046 0.0527 0.4462 0.0039
0.75 1024 0.0005 0.0034 1.97 · 10−5

The measured approximation errors were

e1 =
1

36 · 72

36∑

i=1

72∑

j=1

∣∣f5 (i, j)− jump (i, j)
∣∣ = 1.0984,

e2 =


 1

36 · 72

36∑

i=1

72∑

j=1

∣∣f5 (i, j)− jump (i, j)
∣∣2




1/2

= 0.4424.

Then we performed the decomposition, thresholding and reconstruction us-
ing the algorithms described in Section 2 and Section 3. We denoted by e5

the vector f5 − f̂5 =
(
f5

v − f̂5
v

)
v∈V 5

and we measured the errors

∥∥e5
∥∥
∞ = max

η∈S2
∣∣e5 (η)

∣∣ = max
v∈V 5

∣∣e5 (v)
∣∣ ,

∥∥e5
∥∥

2
=


 ∑

v∈V5

∣∣∣f5
v − f̂5

v

∣∣∣
2




1/2

,

mean
(
e5

)
=

1
|V 5|

∑

v∈V 5

∣∣e5 (v)
∣∣ .

The errors are tabulated in Table 1.
To compare our approach, whose strength is the locality of the pre-

wavelets support, we took the case of spherical harmonic polynomials. For
more details about spherical harmonics, see [4]. The basis functions are the
polynomial kernels. Their supports are localized, but not local. An example
of a polynomial kernel is given in Figure 5. Here we can see that its support
covers the whole sphere. The wavelet decomposition was described in [1],
Chapter 3. We performed 6 levels of decomposition. At the level j = 6, the
total number of vertices was 22j+1 = 8192. Figure 6 show the approximation
at the level 6. The oscillations around the jump, which occur because of the
global support, are avoided in our approach.

Finally, let us mention that, to our knowledge, no construction of locally
supported continuous prewavelets was made so far.
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Figure 1: The initial dataset jump, represented in spherical coordinates.
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Figure 2: The approximation f5 at the level 5.
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Figure 3: Approximation with the compression rate 0.05.
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Figure 4: Approximation with the compression rate 0.1.
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Figure 5: An example of kernel of spherical harmonics: localized but sup-
ported on the whole sphere.
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Figure 6: Approximation at the level 6, using the kernels of spherical har-
monics.
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