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1 Introduction.

In a separable Hilbert space H, a subset {e,,n € N} is called a frame if there exist A, B,
B > 0, A < oo (called the frame bounds) such that B ||z||> < 3 [(z,en)> < A|lz|?,
neN

for every x € ‘H. For such a sequence, we can find the set {é,,n € N} (called the dual

frame) having the bounds A~!, B!, and allowing the reconstruction z = Y (z,e,) é, =
neN
> (x,e,)e,, for every x € H (see [2]). The advantage of the frames over the or-
neN
thonormal and complete bases (which allow the Fourier expansion = = > (x,e,)e,,
neN
Vz € H) is that the set {e,,n € N} need be neither orthonormal nor linearly indepen-
dent. Moreover, if A = B (tight frame), than that frame allows the unique expansion
=AY (z,e,) en, Vo € H, similarly to the Fourier one.
neN

We give conditions which ensure that the subset {z,,n € N*} of a separable real

Hilbert space ‘H is a frame, and we obtain formulas for the frame bounds in terms of the

eigenvalues of the Gram matrices of the finite subsets.

2 Preliminaries.

In this section we remind some known relations which we shall use in the following.

Let {z,,n € N*} be a subset of the separable real Hilbert space (H,(-,-)), © € H
and (-,-), the standard Euclidean product in R". The Gram matrices associated to
{z,,n € N*}, defined by

(1, 01) (@1,29) o (21, T)
Lo, T To, T ce {T9, Ty

G, =G (x1,....,x,) = < 2: 1 (T (2:n) , neN",
<$n,x1> <I‘n,l'2> <xn7~rn>

have the following properties:



P1: All the eigenvalues of the matrices G, are nonnegative numbers; if the set
{z1,...,x,} is linearly independent, then these eigenvalues are positive.
P2: The system

A (xy,x1) + (X, x2) + oo + (1, 1) = (21, 2)
(2.1) :
AT, 1) + (X, x2) + oo+ X, ) = (Tp, T)

with the unknowns ¢, cj, ..., ¢!, is solvable for every x € 'H, since if a row of the matrix

of coefficients is a linear combination of the other rows, then the same thing happens in
the augmented matrix.

If rank G,, = p = p(n), (for example z, (1), ..., ¥-,(p) are linearly independent, where
T, is a permutation of the set {1,2,...,n}, and 2, (p4+1), ..., T, (n) are linear combinations

of them), then we will consider the solution (¢, c%, ..., c"), with 1y oo cﬁn(p)> as the

solution of the linear system

0711 <£L'7—n(1), $>
(2.2) Grw | 1 | = : :
¢ (Tr (o) )
and ¢ 1) = o = cﬁn(n) = 0. (We have denoted G,y =G (513'7-(1), - a:T(p))).

Denoting by Agﬁn and A'** the smallest, respective the largest eigenvalue of the Gram
matrix G,,, then the following inequalities hold:

P3: A (y,y), < (Gny,y). < A (y,y),, ¥V y € R™,

Pz A (G )., < (Gogy, G, < W (G ) 7 y € R

Proof. (Gny, Gpy) .~ A (Gny, y), = (e ¥, Y) e~ (A Gy, y), = (G — A0Gn) v, y),.

It can be easily proved that if A is a Symmetric matrix having the diagonal form B,
diag B = ()\ﬁin, ce )\Tr{lax), and P is a polynomial, then the matrix P (A) has the diagonal
form C, with diag C' = (P (Am™) ..., P (A"™)) .

Hence the diagonal form of the matrix G2 — \"*G,, is

ding (G2 — AT™G,) = (AR (A ) | A (s )

All its eigenvalues are nonpositive numbers, so (G2 — A2*@,,) y,y), is a negative definite
quadratic form, whence the stated inequality.

In the same way, (Gry, Gny), — A" (Gry, y), = (G2 — A7"G,) y,y), - The diagonal
form of the matrix G2 — A\MnG,, is

ding (G2~ NG = (N7 (N7 — X} A (A X))

All its eigenvalues are nonnegative numbers, so <(Gf1 — /\g’i“Gn) v, y>e is a positive definite
quadratic form, whence the stated inequality. [
We will study the set {z,, : n € N*} | which may be linearly dependent.
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3 Properties of the sum (z1,2)° + ... + (z,,z)°, = € H,
x # 0.

Consider in the beginning a fixed n € N*.
<:E1’ l‘>
Let C,, = (¢}, ¢4, ...,c) and X, = : . The system (2.1) may be written as
(Tn, )
G,CT = X,,.
If we suppose that x, (1), ..., Zr,(p are linearly independent and z, ), k = p+ 1, n,
are linear combinations of them (p = p(n)), the solution of the system (2.1), considered
in P2, may be written as:

T . —1
(31) { Cp(n) - GP(”)Xp(n)
CTn(p+1) = ... = C’Tn(n) = 07
where
(Tro(1), )
(3.2) Gn) = G (Tr, (1), -oos Tro(y) a0 Xy = :
(Tru(p) )

Consider the expression
E(X,) = (z1,2) + ... 4 ¢ (20, 2) = Cr X,

In the case when (cf,...,cl') is the solution (3.1) of the system (2.1), it becomes the
quadratic form

E (Xpm) = CuX, = <G;(Z>Xp<n>vXp<n>> :

e

The eigenvalues of the matrix G;(L) are the inverses of the eigenvalues of G)), (which
are positive numbers), so, taking into account P3, we shall have that:

. |
(3.3) E (Xpm) = <Gp(2)Xp<n)7Xp<n>>e < e ) (Xptm)> Xpm)), »

Amin (p) being the smallest eigenvalue of the matrix G-

Remark 1: Instead of the linearly independent elements x., (), ..., Tr,(p), Wwe may take
other linearly independent elements x4, (1), ..., o, (p) With o, permutation of {1,2,...,n},
different from 7,,. Hence, the matrix G}, is not unique, so it is possible to find more
values for ™" (p). We will choose the largest of them.

Consequences:



1. Let (c},...,cl) be an arbitrary solution of the system (2.1). According to P4 we

obtain:

n n

(3.4) (wr,2)” = (¢ (w1, @) + ..+ ) (2, 7))
k=1 k=1
= (G,CF,G.CL) < A (G,CF.CF) .

= \max ZCZ (cf (zp, x1) + 5 (Tp, x2) + .. + 1 (X, T0))
k=1

n
= X Z cp (zy, ),
k=1

Remark 2: When p (n) = n, the above inequality can be immediately obtained: from

P3 it follows that

1

)\max (Xn, X)), < <G 1Xn,X> = F(X,), ie Z Th, T <)\7IfaXZcZ (Tg, x)

2. From (3.3) we obtain:

(X Xn) = (Xpmys Xpmy ) 2 A0 (p) B (Xpmy) s ive.

3
hS]

(3.5) (wp, >Z<xT (0:7)° = A (p) > o (i )

k=1 k=

—

where (¢, ..., ") is the solution of the system (2.1) defined by (3.1).

°) ’Vl

n
4 Properties of the sum ) ¢; (vy,z) , 2 € H,x # 0, (cq, ...

k=1
solution of the system (2.1).

Suppose a fixed n € N* and p defined at the beginning of section 2.

Theorem 1. Let F,, : R" — R, F, (t1,...,t,) = <x — > kg, — > thk>, and
k=1 k=1

(cf,...,cr) an arbitrary solution of the system (2.1). Then:
1°. If p = n, then min F,, = (x,z) — >_ } (zx, x).
k=1
p n
2°. If p <m, then min F, = (z,x) — > 7 (Tro), ) = (@, 2) — Y} (wp, ).
k=1 k=1

, Cn)



Proof.

1°. The necessary conditions for extremum, %% =0, k = 1,n, lead to the sys-
tem (2.1). The Hessian matrix of the function F, is, at any point, the Gram matrix
G (21, ...,x,), which is strictly positive defined cf. P1. So, F, will have a minimum

attained at (¢, ..., "), the solution of the system (2.1), namely:

o
n

min F,, = (x,z) — Z cr (Tp, x) .
k=1

2°. First we prove the following auxiliary results.
Lemma 1. Let (cfn(l), - c”n(p)> be the solution of the system (2.2) and (df,...,d})

T

an arbitrary solution of the system (2.1).

n p
Then »_ di (wk,z) = >° T 4y (Zr, (k) T ), L.e. the value of the function F, is the same
k=1 k=1

P
at every stationary point: (z,z) — 3 ¢ (Tr(h)s T)-
k=1

Proof. For the sake of simplicigy we omit the upper indices and we consider that
Z1,...,%p, are linearly independent and z,,1, ..., x, are linear combinations of them:

p
Tprj = Zajka:k, Jj=1,n—p, withaj, €R.
k=1
Then the solution of the system (2.2) can be written as (c1,...,¢p).
The system (2.1) becomes:

;

n—p p
(wr,a0) di+ .+ (21, mp) dy = (@, @1) = 30 dpyy D0 e (21, @)
j=1 =1

—-p p

4 <xp’$1> di+...+ <xp7xp> dp = <x7$p> - Zl dp+j kzlajk <xpa$k>
]: g

n

—Pp p
<xm x1> di+...+ <xm xp> dp = <$, xn) Z dp+j Z Qjik; <xn7$k>
=1 k=1

( j
Its general solution will be (dy,...,d,), with d; = g::é;, i = 1,p and dpy1,...,d,
arbitrary, the matrices A4;, i = 1, p, being given by
n—p p
(Tr,@1) (@ @) (@mn) = D0 dprg Y0 g (T @) (@1, Ti) - (@1, @)
j=1 k=1

n—p P
(@py 1) o ATp 1) (T,2p) — 2:1 dp, kzl Qjk (Tp; ) (T, Tigr) - - (Tp, Tp)
]: =
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de <$kax> Z xu + de+z Tp+ti, L) =
p
_ des(; ZE:(detfh)<aH,x>ﬁ—j{:a%+jjzjcgk<xk,w>
P = j=1 k=1

If we split det A; after the column ¢ we obtain:

(1, 21) (21, mim1) (@, 21) (T, Tiga) - (T, @) n—p
det Az = - Z dp—l—jaji det Gp =
<xpa T1) .. <xp> Tio1) (7, xp) <75p: Tip1) ... <xp> xp) =t
n—p
= (Ci — Z dp—l—jaji) det Gp.
j=1
n P n—p n—p P P
So, Qdi (xi ) = Zl ci — 21 dprjoji | (@i, )+ Zl dp+; kzlozjk (Tp,x) = 21 ci (x;, ).
= = ji= ji= = =

p
Finally, the value of F,, at any stationary point is (z,x) — > &y <x7n(k), $> O
k=1

Lemma 2. The stationary points of Fj, are points of minimum.

Proof. The function F), is in fact a second order polynomial with n variables. Writing
the Taylor formula at an arbitrary stationary point (dy, . . ., d,) we get (taking into account
the fact that the Hessian matrix of F, is the Gram matrix G,,):

Fo(ty, ... tn) = F,(dy,....d, +§: ody) (b — di) +

Otk
+YGM%”¢WK Y =t —dy, ... ty—dy)" .
Since YTG,Y > 0 (cf. P1, the matrix G,, is positive defined), we obtain:
Fo(t1,... tn) > F,(dy,...,dn), V(t1,...,t,) € R",

i.e. (dy,...,d,) is a point of minimum. [
P
The two lemmas show that the minimum value of F, is (z,z) — >_ ¢ (Tr(h)s ).
k=1

A consequence of lemma 1 is the following equality:

p n
(4.1) Z ) (Try(h), ) = Z e (Tg, )
k=1 k=1



whence the stated affirmation 2°. [J
Relations (4.1) and (3.5) imply:

n n

(4.2) Z (2, ©)° > X ()Y f (a, x), Vn € N*
k=1 k=1
On the other hand, by P4 we obtain, using the same equalities as in the consequence
1, section 2, that

n n

(4.3) Z (zp, x)? > \imin Z cp({xg,z), VneNF,

k=1 k=1

where \*™" is the smallest positive eigenvalue of the matrix G,,.

5 Main result.

Theorem 2. Let {z,,n € N*} be a subset of the separable real Hilbert space H and
G, the Gram matrices associated to the sets {zy, k= 1,...,n}, n € N*. We denote by
Amin — max {0 (p), Armin L and AR the largest eigenvalue of G,,.

Let A = limsupA\P’® and B = lim inf \;"".

n—oo

The following statements are true:

1. If A < oo, then Y (zx,2)° < A|jz|?, Vz € H.
k=1

2. If span{z,, n € N*} = H and B > 0, then B ||z]|* < 3 (z,,2)*, VzeH.
n=1

3. If A< oo, B> 0 and span{z,, n € N*} = H, then the set {z,,,n € N*} forms a
frame in H.

Proof.

1. Let © € H and € > 0. There exists ng (¢) such that A < A4¢,Vn > ng (¢) . From

(3.4) if follows that 3 (z,z)° < (A+¢) 3 & (xx, x), Vn > ng (€), where (¢}, ..., ¢") is
k=1 k=1
an arbitrary solution of (2.1). Take an arbitrary n > ng(¢). Since F, (t1,...,t,) > 0,

Y (t1,...,tn) € R™ we have

> n > .
<J],LE> = < C <l‘k,$> ~ A+e ; (l’k,l‘>

Keeping the extreme sides and passing to limit we get

(0,2) = —— 3w, 0)?,

A+e



inequality which holds for every € > 0.
So

(5.1) D (ww, o) < Al
k=1

2. Assume that the set {x,,n € N*} is closed in H (span {z,, n € N*} = H), and let
x € H, e > 0. Then there exist n(g) € N* and (¢}),_1,;z such that F, (c},....c;) < e,
Vn > n(e).

From (4.2) and (4.3) it follows that there exists ny (¢) such that

n n

(5.2) Y ak )’ = (B-e)) c k), Yn>mn(e),

k=1 k=1

where (cf, ..., "

rn

) is an arbitrary solution of (2.1). Consider now n = max{n (¢), ny (¢)}.

Taking into account Theorem 1, we have F,, (¢}, ...,c) < F,, (¢}, ...,cl) < e, i.e Z A (rg, ) >

—_

(x,z) —e.
Consequently, by (5.2),

3
3

> an,x (g, )2 > (B—2)Y &} (xp,2) > (B—e¢)((z,z) —¢).

e
e
Il

—

Keeping only the inequality > (z,,,z)* > (B + ¢) ((z,z) — ¢), which holds for every

n=1
e > 0, it follows
(5.3) > (wn,2)* > Bl
n=1

3. The statement is an immediately consequence of the previous two affirmations. [

6 A particular case.

In the separable real Hilbert space H we consider the orthonormal set {p,,n € N*}. We
construct the set {e,,n € N*} in the following way:



1
€1 = ay1P1

1 1
€y = Ag1P1 + AP

_ 1 1
e = Qg P1 + ... + apDx
_ 2
(6.1) €k+1 = A11Pk+1 ,
_ 2 2
Ckt2 = A1 Pk+1 T A2oPk+2

_ 2 2
€2k = A1 Pk+1 + ..o + AkP2k

1 _ 1 pkt+l k+1 _ (,m 1_ T okl
or B = A1 P, Ef™ = AP L., where A,, = (aij)i:ﬁ, T E, = (ey,...,ex) , BT =

(€k+1,...,€2k)T,..., E! = (el,...,el+k_1)T, the matrices Pkl,P,fH, ... being defined in an
analogous way.

The matrices A,, are triangular and we may assume they have different dimensions.
Relations (6.1) which define the set {e,,n € N*} may be written in matrix form: E =
M - P, where F = (E,iE’,jJrl...)T, P = (P,gP,f“...)T, and M is a block diagonal infinite
matrix: diag(M) = (A1 4s...).

Denoting by G,, the Gram matrix associated to the blocks Ay, A, ..., A,,, we get:

Ay — A,
A — A,
A, — M,

= |A; — |- |[Ay — Mg| - .- A — M|
In this way, the conditions A < oo and B > 0 are easily satisfied, taking for instance

matrices A,, having the same real positive eigenvalues.
The coefficients a}; must be taken such that span{e,, n € N*} = H.

7 Comparison with existing results.
In [3] is given an equivalent condition under which a frame is a Riesz basis of a separable
Hilbert space and there are obtained (using a different approach) formulas for the Riesz

bounds: lim sup Q) for the lower bound B and liminf A\]'** for the upper bound A.

n
max
n—o0 n n—oo

min 2 .
Using P4 it can be proved that Q). can be replaced by A" (which is a better value)

max
>\Tl



and, at the same time, an optimal lower bound for the frame {x; : ¢ = 1,n} considered in
[3]. The condition of closedness (condition 2° in Theorem 2) is imposed in [3] too.

The advantage of our results consists in the fact that the set {z; : i € N} need not
be linearly independent, as it was assumed in [3]. Though, we considered here only real
Hilbert spaces.
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