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1 Introduction.

In a separable Hilbert space H, a subset {en, n ∈ N} is called a frame if there exist A,B,
B > 0, A < ∞ (called the frame bounds) such that B ‖x‖2 6

∑
n∈N

|〈x, en〉|2 6 A ‖x‖2,

for every x ∈ H. For such a sequence, we can find the set {ẽn, n ∈ N} (called the dual
frame) having the bounds A−1, B−1, and allowing the reconstruction x =

∑
n∈N

〈x, en〉 ẽn =
∑
n∈N

〈x, ẽn〉 en, for every x ∈ H (see [2]). The advantage of the frames over the or-

thonormal and complete bases (which allow the Fourier expansion x =
∑
n∈N

〈x, en〉 en,

∀x ∈ H) is that the set {en, n ∈ N} need be neither orthonormal nor linearly indepen-
dent. Moreover, if A = B (tight frame), than that frame allows the unique expansion
x = A−1

∑
n∈N

〈x, en〉 en, ∀x ∈ H, similarly to the Fourier one.

We give conditions which ensure that the subset {xn, n ∈ N∗} of a separable real
Hilbert space H is a frame, and we obtain formulas for the frame bounds in terms of the
eigenvalues of the Gram matrices of the finite subsets.

2 Preliminaries.

In this section we remind some known relations which we shall use in the following.
Let {xn, n ∈ N∗} be a subset of the separable real Hilbert space (H, 〈·, ·〉) , x ∈ H

and 〈·, ·〉e the standard Euclidean product in Rn. The Gram matrices associated to
{xn, n ∈ N∗}, defined by

Gn = G (x1, ..., xn) =




〈x1, x1〉 〈x1, x2〉 ... 〈x1, xn〉
〈x2, x1〉 〈x2, x2〉 ... 〈x2, xn〉

...
〈xn, x1〉 〈xn, x2〉 ... 〈xn, xn〉


 , n ∈ N∗,

have the following properties:
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P1: All the eigenvalues of the matrices Gn are nonnegative numbers; if the set
{x1, ..., xn} is linearly independent, then these eigenvalues are positive.

P2: The system

(2.1)





cn
1 〈x1, x1〉+ cn

2 〈x1, x2〉+ ... + cn
n 〈x1, xn〉 = 〈x1, x〉

...
cn
1 〈xn, x1〉+ cn

2 〈xn, x2〉+ ... + cn
n 〈xn, xn〉 = 〈xn, x〉

with the unknowns cn
1 , c

n
2 , ..., c

n
n, is solvable for every x ∈ H, since if a row of the matrix

of coefficients is a linear combination of the other rows, then the same thing happens in
the augmented matrix.

If rank Gn = p = p (n), (for example xτn(1), ..., xτn(p) are linearly independent, where
τn is a permutation of the set {1, 2, ..., n}, and xτn(p+1), ..., xτn(n) are linear combinations

of them), then we will consider the solution (cn
1 , c

n
2 , ..., c

n
n), with

(
cn
τn(1), ..., c

n
τn(p)

)
as the

solution of the linear system

(2.2) Gτn(p)




cn
1
...
cn
p


 =




〈
xτn(1), x

〉
...〈

xτn(p), x
〉


 ,

and cn
τn(p+1) = ... = cn

τn(n) = 0. (We have denoted Gτ(p) = G
(
xτ(1), ..., xτ(p)

)
).

Denoting by λmin
n and λmax

n the smallest, respective the largest eigenvalue of the Gram
matrix Gn, then the following inequalities hold:

P3: λmin
n 〈y, y〉e ≤ 〈Gny, y〉e ≤ λmax

n 〈y, y〉e , ∀ y ∈ Rn.
P4: λmin

n 〈Gny, y〉e ≤ 〈Gny, Gny〉e ≤ λmax
n 〈Gny, y〉e , ∀ y ∈ Rn.

Proof. 〈Gny,Gny〉e−λmax
n 〈Gny, y〉e = 〈G2

ny, y〉e−〈λmax
n Gny, y〉e = 〈(G2

n − λmax
n Gn) y, y〉e.

It can be easily proved that if A is a symmetric matrix having the diagonal form B,
diag B =

(
λmin

n , . . . , λmax
n

)
, and P is a polynomial, then the matrix P (A) has the diagonal

form C, with diag C =
(
P

(
λmin

n

)
, . . . , P (λmax

n )
)

.
Hence the diagonal form of the matrix G2

n − λmax
n Gn is

diag
(
G2

n − λmax
n Gn

)
=

(
λmin

n

(
λmin

n − λmax
n

)
, ..., λmax

n (λmax
n − λmax

n )
)
.

All its eigenvalues are nonpositive numbers, so 〈(G2
n − λmax

n Gn) y, y〉e is a negative definite
quadratic form, whence the stated inequality.

In the same way, 〈Gny, Gny〉e−λmin
n 〈Gny, y〉e =

〈(
G2

n − λmin
n Gn

)
y, y

〉
e
. The diagonal

form of the matrix G2
n − λmin

n Gn is

diag
(
G2

n − λmin
n Gn

)
=

(
λmin

n

(
λmin

n − λmin
n

)
, ..., λmax

n

(
λmax

n − λmin
n

))
.

All its eigenvalues are nonnegative numbers, so
〈(

G2
n − λmin

n Gn

)
y, y

〉
e
is a positive definite

quadratic form, whence the stated inequality. ¤
We will study the set {xn : n ∈ N∗} , which may be linearly dependent.
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3 Properties of the sum 〈x1, x〉2 + ... + 〈xn, x〉2 , x ∈ H,

x 6= 0.

Consider in the beginning a fixed n ∈ N∗.

Let Cn = (cn
1 , c

n
2 , ..., c

n
n) and Xn =



〈x1, x〉

...
〈xn, x〉


. The system (2.1) may be written as

GnCT
n = Xn.

If we suppose that xτn(1), ..., xτn(p) are linearly independent and xτn(k), k = p + 1, n,
are linear combinations of them (p = p (n)), the solution of the system (2.1), considered
in P2, may be written as:

(3.1)

{
CT

p(n) = G−1
p(n)Xp(n)

cn
τn(p+1) = ... = cn

τn(n) = 0,

where

(3.2) Gp(n) = G
(
xτn(1), ..., xτn(p)

)
and Xp(n) =




〈
xτn(1), x

〉
...〈

xτn(p), x
〉


 .

Consider the expression

E (Xn) = cn
1 〈x1, x〉+ ... + cn

n 〈xn, x〉 = CnXn.

In the case when (cn
1 , . . . , c

n
n) is the solution (3.1) of the system (2.1), it becomes the

quadratic form

E
(
Xp(n)

)
= CnXn =

〈
G−1

p(n)Xp(n), Xp(n)

〉
e
.

The eigenvalues of the matrix G−1
p(n) are the inverses of the eigenvalues of Gp(n), (which

are positive numbers), so, taking into account P3, we shall have that:

(3.3) E
(
Xp(n)

)
=

〈
G−1

p(n)Xp(n), Xp(n)

〉
e
≤ 1

λmin
n (p)

〈
Xp(n), Xp(n)

〉
e
,

λmin
n (p) being the smallest eigenvalue of the matrix Gp(n).

Remark 1: Instead of the linearly independent elements xτn(1), ..., xτn(p), we may take
other linearly independent elements xσn(1), ..., xσn(p) with σn permutation of {1, 2, ..., n},
different from τn. Hence, the matrix Gp(n) is not unique, so it is possible to find more
values for λmin

n (p) . We will choose the largest of them.
Consequences:
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1. Let (cn
1 , . . . , c

n
n) be an arbitrary solution of the system (2.1). According to P4 we

obtain:

n∑

k=1

〈xk, x〉2 =
n∑

k=1

(cn
1 〈x1, x〉+ ... + cn

n 〈xn, x〉)2(3.4)

=
〈
GnC

T
n , GnCT

n

〉
e
≤ λmax

n

〈
GnCT

n , CT
n

〉
e

= λmax
n

n∑

k=1

cn
k (cn

1 〈xk, x1〉+ cn
2 〈xk, x2〉+ ... + cn

n 〈xk, xn〉)

= λmax
n

n∑

k=1

cn
k 〈xk, x〉 ,

Remark 2: When p (n) = n, the above inequality can be immediately obtained: from
P3 it follows that

1

λmax
n

〈Xn, Xn〉e ≤
〈
G−1

n Xn, Xn

〉
e
= E (Xn) , i.e.

n∑

k=1

〈xk, x〉2 ≤ λmax
n

n∑

k=1

cn
k 〈xk, x〉 .

2. From (3.3) we obtain:

〈Xn, Xn〉 ≥
〈
Xp(n), Xp(n)

〉 ≥ λmin
n (p) E

(
Xp(n)

)
, i.e.

(3.5)
n∑

k=1

〈xk, x〉2 ≥
p∑

k=1

〈
xτn(k), x

〉2 ≥ λmin
n (p)

p∑

k=1

cn
τn(k)

〈
xτn(k), x

〉

where (cn
1 , ..., c

n
n) is the solution of the system (2.1) defined by (3.1).

4 Properties of the sum
n∑

k=1

ck 〈xk, x〉 , x ∈ H, x 6= 0, (c1, ..., cn)

solution of the system (2.1).

Suppose a fixed n ∈ N∗ and p defined at the beginning of section 2.

Theorem 1. Let Fn : Rn → R, Fn (t1, . . . , tn) =

〈
x−

n∑
k=1

tkxk, x−
n∑

k=1

tkxk

〉
, and

(cn
1 , . . . , c

n
n) an arbitrary solution of the system (2.1). Then:

1◦. If p = n, then min Fn = 〈x, x〉 −
n∑

k=1

cn
k 〈xk, x〉.

2◦. If p < n, then min Fn = 〈x, x〉 −
p∑

k=1

cn
τn(k)

〈
xτn(k), x

〉
= 〈x, x〉 −

n∑
k=1

cn
k 〈xk, x〉.
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Proof.
1◦. The necessary conditions for extremum, ∂Fn

∂tk
= 0, k = 1, n, lead to the sys-

tem (2.1). The Hessian matrix of the function Fn is, at any point, the Gram matrix
G (x1, ..., xn), which is strictly positive defined cf. P1. So, Fn will have a minimum
attained at (cn

1 , ..., c
n
n), the solution of the system (2.1), namely:

min Fn = 〈x, x〉 −
n∑

k=1

cn
k 〈xk, x〉 .

2◦. First we prove the following auxiliary results.

Lemma 1. Let
(
cn
τn(1), . . . , c

n
τn(p)

)
be the solution of the system (2.2) and (dn

1 , . . . , d
n
n)

an arbitrary solution of the system (2.1).

Then
n∑

k=1

dn
k 〈xk, x〉 =

p∑
k=1

cn
τn(k)

〈
xτn(k), x

〉
, i.e. the value of the function Fn is the same

at every stationary point: 〈x, x〉 −
p∑

k=1

cn
τn(k)

〈
xτn(k), x

〉
.

Proof. For the sake of simplicity we omit the upper indices and we consider that
x1, . . . , xp are linearly independent and xp+1, . . . , xn are linear combinations of them:

xp+j =

p∑

k=1

αjkxk, j = 1, n− p, with αjk ∈ R.

Then the solution of the system (2.2) can be written as (c1, . . . , cp).
The system (2.1) becomes:





〈x1, x1〉 d1 + . . . + 〈x1, xp〉 dp = 〈x, x1〉 −
n−p∑
j=1

dp+j

p∑
k=1

αjk 〈x1, xk〉
...

〈xp, x1〉 d1 + . . . + 〈xp, xp〉 dp = 〈x, xp〉 −
n−p∑
j=1

dp+j

p∑
k=1

αjk 〈xp, xk〉
...

〈xn, x1〉 d1 + . . . + 〈xn, xp〉 dp = 〈x, xn〉 −
n−p∑
j=1

dp+j

p∑
k=1

αjk 〈xn, xk〉

Its general solution will be (d1, . . . , dn), with di = det Ai

det Gp
, i = 1, p and dp+1, . . . , dn

arbitrary, the matrices Ai, i = 1, p, being given by

Ai =




〈x1, x1〉 . . . 〈x1, xi−1〉 〈x, x1〉 −
n−p∑
j=1

dp+j

p∑
k=1

αjk 〈x1, xk〉 〈x1, xi+1〉 . . . 〈x1, xp〉
...

〈xp, x1〉 . . . 〈xp, xi−1〉 〈x, xp〉 −
n−p∑
j=1

dp+j

p∑
k=1

αjk 〈xp, xk〉 〈xp, xi+1〉 . . . 〈xp, xp〉



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We get

n∑

k=1

dk 〈xk, x〉 =

p∑
i=1

di 〈xi, x〉+

n−p∑
i=1

dp+i 〈xp+i, x〉 =

=
1

det Gp

p∑
i=1

(det Ai) 〈xi, x〉+

n−p∑
j=1

dp+j

p∑

k=1

αjk 〈xk, x〉 .

If we split det Ai after the column i we obtain:

det Ai =

∣∣∣∣∣∣∣

〈x1, x1〉 . . . 〈x1, xi−1〉 〈x, x1〉 〈x1, xi+1〉 . . . 〈x1, xp〉
...

〈xp, x1〉 . . . 〈xp, xi−1〉 〈x, xp〉 〈xp, xi+1〉 . . . 〈xp, xp〉

∣∣∣∣∣∣∣
−

n−p∑
j=1

dp+jαji det Gp =

=

(
ci −

n−p∑
j=1

dp+jαji

)
det Gp.

So,
n∑

i=1

di 〈xi, x〉 =
p∑

i=1

(
ci −

n−p∑
j=1

dp+jαji

)
〈xi, x〉+

n−p∑
j=1

dp+j

p∑
k=1

αjk 〈xk, x〉 =
p∑

i=1

ci 〈xi, x〉.

Finally, the value of Fn at any stationary point is 〈x, x〉 −
p∑

k=1

cn
τn(k)

〈
xτn(k), x

〉
. ¤

Lemma 2. The stationary points of Fn are points of minimum.
Proof. The function Fn is in fact a second order polynomial with n variables. Writing

the Taylor formula at an arbitrary stationary point (d1, . . . , dn) we get (taking into account
the fact that the Hessian matrix of Fn is the Gram matrix Gn):

Fn (t1, . . . , tn) = Fn (d1, . . . , dn) +
n∑

k=1

∂Fn

∂tk
(d1, . . . , dn) (tk − dk) +

+ Y T Gn (x1, . . . , xn) Y, Y = (t1 − d1, . . . , tn − dn)T .

Since Y T GnY ≥ 0 (cf. P1, the matrix Gn is positive defined), we obtain:

Fn (t1, . . . , tn) ≥ Fn (d1, . . . , dn) , ∀ (t1, . . . , tn) ∈ Rn,

i.e. (d1, . . . , dn) is a point of minimum. ¤
The two lemmas show that the minimum value of Fn is 〈x, x〉 −

p∑
k=1

cn
τn(k)

〈
xτn(k), x

〉
.

A consequence of lemma 1 is the following equality:

(4.1)

p∑

k=1

cn
τn(k)

〈
xτn(k), x

〉
=

n∑

k=1

cn
k 〈xk, x〉 ,
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whence the stated affirmation 2◦. ¤
Relations (4.1) and (3.5) imply:

(4.2)
n∑

k=1

〈xk, x〉2 ≥ λmin
n (p)

n∑

k=1

cn
k 〈xk, x〉 , ∀n ∈ N∗.

On the other hand, by P4 we obtain, using the same equalities as in the consequence
1, section 2, that

(4.3)
n∑

k=1

〈xk, x〉2 ≥ λ∗min
n

n∑

k=1

cn
k 〈xk, x〉 , ∀n ∈ N∗,

where λ∗min
n is the smallest positive eigenvalue of the matrix Gn.

5 Main result.

Theorem 2. Let {xn, n ∈ N∗} be a subset of the separable real Hilbert space H and
Gn the Gram matrices associated to the sets {xk, k = 1, ..., n}, n ∈ N∗. We denote by
λmin

n = max
{
λmin

n (p) , λ∗min
n

}
and λmax

n the largest eigenvalue of Gn.
Let A = lim sup

n→∞
λmax

n and B = lim inf
n→∞

λmin
n .

The following statements are true:

1. If A < ∞, then
∞∑

k=1

〈xk, x〉2 ≤ A ‖x‖2, ∀x ∈ H.

2. If span {xn, n ∈ N∗} = H and B > 0, then B ‖x‖2 ≤
∞∑

n=1

〈xn, x〉2 , ∀x ∈ H.

3. If A < ∞, B > 0 and span {xn, n ∈ N∗} = H, then the set {xn, n ∈ N∗} forms a
frame in H.

Proof.
1. Let x ∈ H and ε > 0. There exists n0 (ε) such that λmax

n < A+ε, ∀n ≥ n0 (ε) . From

(3.4) if follows that
n∑

k=1

〈xk, x〉2 ≤ (A + ε)
n∑

k=1

cn
k 〈xk, x〉, ∀n ≥ n0 (ε) , where (cn

1 , ..., c
n
n) is

an arbitrary solution of (2.1). Take an arbitrary n ≥ n0 (ε) . Since Fn (t1, ..., tn) ≥ 0,
∀ (t1, ..., tn) ∈ Rn, we have

〈x, x〉 ≥
n∑

k=1

cn
k 〈xk, x〉 ≥ 1

A + ε

n∑

k=1

〈xk, x〉2 .

Keeping the extreme sides and passing to limit we get

〈x, x〉 ≥ 1

A + ε

∞∑

k=1

〈xk, x〉2 ,
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inequality which holds for every ε > 0.
So

(5.1)
∞∑

k=1

〈xk, x〉2 ≤ A ‖x‖2 .

2. Assume that the set {xn, n ∈ N∗} is closed in H (span {xn, n ∈ N∗} = H), and let
x ∈ H, ε > 0. Then there exist n (ε) ∈ N∗ and (c∗k)k=1,n(ε) such that Fn (c∗1, ..., c

∗
n) < ε,

∀n ≥ n (ε).
From (4.2) and (4.3) it follows that there exists n1 (ε) such that

(5.2)
n∑

k=1

〈xk, x〉2 ≥ (B − ε)
n∑

k=1

cn
k 〈xk, x〉 , ∀n ≥ n1 (ε) ,

where (cn
1 , ..., c

n
n) is an arbitrary solution of (2.1). Consider now n = max{n (ε), n1 (ε)}.

Taking into account Theorem 1, we have Fn (cn
1 , ..., c

n
n) ≤ Fn (c∗1, ..., c

∗
n) < ε, i.e.

n∑
k=1

cn
k 〈xk, x〉 >

〈x, x〉 − ε.
Consequently, by (5.2),

∞∑
n=1

〈xn, x〉2 ≥
n∑

k=1

〈xk, x〉2 ≥ (B − ε)
n∑

k=1

cn
k 〈xk, x〉 ≥ (B − ε) (〈x, x〉 − ε) .

Keeping only the inequality
∞∑

n=1

〈xn, x〉2 ≥ (B + ε) (〈x, x〉 − ε), which holds for every

ε > 0, it follows

(5.3)
∞∑

n=1

〈xn, x〉2 ≥ B ‖x‖2 .

3. The statement is an immediately consequence of the previous two affirmations. ¤

6 A particular case.

In the separable real Hilbert space H we consider the orthonormal set {pn, n ∈ N∗}. We
construct the set {en, n ∈ N∗} in the following way:
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(6.1)

e1 = a1
11p1

e2 = a1
21p1 + a1

22p2
...
ek = a1

k1p1 + ... + a1
kkpk

ek+1 = a2
11pk+1

ek+2 = a2
21pk+1 + a2

22pk+2
...
e2k = a2

k1pk+1 + ... + a2
kkp2k

...

,

or E1
k = A1P

1
k , Ek+1

k = A2P
k+1
k , ..., where Am =

(
am

ij

)
i=1,k, j=1,i

, E1
k = (e1, ..., ek)

T , Ek+1
k =

(ek+1, ..., e2k)
T ,..., El

k = (el, ..., el+k−1)
T , the matrices P 1

k , P k+1
k , ... being defined in an

analogous way.
The matrices Am are triangular and we may assume they have different dimensions.

Relations (6.1) which define the set {en, n ∈ N∗} may be written in matrix form: E =

M · P , where E =
(
E1

kE
k+1
k ...

)T
, P =

(
P 1

k P k+1
k ...

)T
, and M is a block diagonal infinite

matrix: diag(M) = (A1A2...).
Denoting by Gn the Gram matrix associated to the blocks A1, A2, ..., An, we get:

det (Gn − λIn·k) =

∣∣∣∣∣∣∣∣∣

A1 − λIk

A2 − λIk

. . .

An − λIk

∣∣∣∣∣∣∣∣∣
= |A1 − λIk| · |A2 − λIk| · ... · |An − λIk| .

In this way, the conditions A < ∞ and B > 0 are easily satisfied, taking for instance
matrices Am having the same real positive eigenvalues.

The coefficients ak
ij must be taken such that span {en, n ∈ N∗} = H.

7 Comparison with existing results.

In [3] is given an equivalent condition under which a frame is a Riesz basis of a separable
Hilbert space and there are obtained (using a different approach) formulas for the Riesz

bounds: lim sup
n→∞

(λmin
n )

2

λmax
n

for the lower bound B and lim inf
n→∞

λmax
n for the upper bound A.

Using P4 it can be proved that
(λmin

n )
2

λmax
n

can be replaced by λmin
n (which is a better value)

9



and, at the same time, an optimal lower bound for the frame {xi : i = 1, n} considered in
[3]. The condition of closedness (condition 2◦ in Theorem 2) is imposed in [3] too.

The advantage of our results consists in the fact that the set {xi : i ∈ N} need not
be linearly independent, as it was assumed in [3]. Though, we considered here only real
Hilbert spaces.
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