On a possible determination of the frame bounds

Daniela Cǎtinas
Cluj-Napoca

1 Introduction.

In a separable Hilbert space \mathcal{H}, a subset $\left\{e_{n}, n \in \mathbb{N}\right\}$ is called a frame if there exist A, B, $B>0, A<\infty$ (called the frame bounds) such that $B\|x\|^{2} \leqslant \sum_{n \in \mathbb{N}}\left|\left\langle x, e_{n}\right\rangle\right|^{2} \leqslant A\|x\|^{2}$, for every $x \in \mathcal{H}$. For such a sequence, we can find the set $\left\{\tilde{e}_{n}, n \in \mathbb{N}\right\}$ (called the dual frame) having the bounds A^{-1}, B^{-1}, and allowing the reconstruction $x=\sum_{n \in \mathbb{N}}\left\langle x, e_{n}\right\rangle \tilde{e}_{n}=$ $\sum_{n \in \mathbb{N}}\left\langle x, \tilde{e}_{n}\right\rangle e_{n}$, for every $x \in \mathcal{H}$ (see [2]). The advantage of the frames over the orthonormal and complete bases (which allow the Fourier expansion $x=\sum_{n \in \mathbb{N}}\left\langle x, e_{n}\right\rangle e_{n}$, $\forall x \in \mathcal{H})$ is that the set $\left\{e_{n}, n \in \mathbb{N}\right\}$ need be neither orthonormal nor linearly independent. Moreover, if $A=B$ (tight frame), than that frame allows the unique expansion $x=A^{-1} \sum_{n \in \mathbb{N}}\left\langle x, e_{n}\right\rangle e_{n}, \forall x \in \mathcal{H}$, similarly to the Fourier one.

We give conditions which ensure that the subset $\left\{x_{n}, n \in \mathbb{N}^{*}\right\}$ of a separable real Hilbert space \mathcal{H} is a frame, and we obtain formulas for the frame bounds in terms of the eigenvalues of the Gram matrices of the finite subsets.

2 Preliminaries.

In this section we remind some known relations which we shall use in the following.
Let $\left\{x_{n}, n \in \mathbb{N}^{*}\right\}$ be a subset of the separable real Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle), x \in \mathcal{H}$ and $\langle\cdot, \cdot\rangle_{e}$ the standard Euclidean product in \mathbb{R}^{n}. The Gram matrices associated to $\left\{x_{n}, n \in \mathbb{N}^{*}\right\}$, defined by

$$
G_{n}=G\left(x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{cccc}
\left\langle x_{1}, x_{1}\right\rangle & \left\langle x_{1}, x_{2}\right\rangle & \ldots & \left\langle x_{1}, x_{n}\right\rangle \\
\left\langle x_{2}, x_{1}\right\rangle & \left\langle x_{2}, x_{2}\right\rangle & \ldots & \left\langle x_{2}, x_{n}\right\rangle \\
\vdots & & & \\
\left\langle x_{n}, x_{1}\right\rangle & \left\langle x_{n}, x_{2}\right\rangle & \ldots & \left\langle x_{n}, x_{n}\right\rangle
\end{array}\right), \quad n \in \mathbb{N}^{*},
$$

have the following properties:

P1: All the eigenvalues of the matrices G_{n} are nonnegative numbers; if the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent, then these eigenvalues are positive.

P2: The system

$$
\left\{\begin{array}{l}
c_{1}^{n}\left\langle x_{1}, x_{1}\right\rangle+c_{2}^{n}\left\langle x_{1}, x_{2}\right\rangle+\ldots+c_{n}^{n}\left\langle x_{1}, x_{n}\right\rangle=\left\langle x_{1}, x\right\rangle \tag{2.1}\\
\vdots \\
c_{1}^{n}\left\langle x_{n}, x_{1}\right\rangle+c_{2}^{n}\left\langle x_{n}, x_{2}\right\rangle+\ldots+c_{n}^{n}\left\langle x_{n}, x_{n}\right\rangle=\left\langle x_{n}, x\right\rangle
\end{array}\right.
$$

with the unknowns $c_{1}^{n}, c_{2}^{n}, \ldots, c_{n}^{n}$, is solvable for every $x \in \mathcal{H}$, since if a row of the matrix of coefficients is a linear combination of the other rows, then the same thing happens in the augmented matrix.

If $\operatorname{rank} G_{n}=p=p(n)$, (for example $x_{\tau_{n}(1)}, \ldots, x_{\tau_{n}(p)}$ are linearly independent, where τ_{n} is a permutation of the set $\{1,2, \ldots, n\}$, and $x_{\tau_{n}(p+1)}, \ldots, x_{\tau_{n}(n)}$ are linear combinations of them), then we will consider the solution $\left(c_{1}^{n}, c_{2}^{n}, \ldots, c_{n}^{n}\right)$, with $\left(c_{\tau_{n}(1)}^{n}, \ldots, c_{\tau_{n}(p)}^{n}\right)$ as the solution of the linear system

$$
G_{\tau_{n}(p)}\left(\begin{array}{c}
c_{1}^{n} \tag{2.2}\\
\vdots \\
c_{p}^{n}
\end{array}\right)=\left(\begin{array}{c}
\left\langle x_{\tau_{n}(1)}, x\right\rangle \\
\vdots \\
\left\langle x_{\tau_{n}(p)}, x\right\rangle
\end{array}\right),
$$

and $c_{\tau_{n}(p+1)}^{n}=\ldots=c_{\tau_{n}(n)}^{n}=0$. (We have denoted $G_{\tau(p)}=G\left(x_{\tau(1)}, \ldots, x_{\tau(p)}\right)$).
Denoting by $\lambda_{n}^{\min }$ and $\lambda_{n}^{\max }$ the smallest, respective the largest eigenvalue of the Gram matrix G_{n}, then the following inequalities hold:

P3: $\lambda_{n}^{\min }\langle y, y\rangle_{e} \leq\left\langle G_{n} y, y\right\rangle_{e} \leq \lambda_{n}^{\max }\langle y, y\rangle_{e}, \forall y \in \mathbb{R}^{n}$.
P4: $\lambda_{n}^{\min }\left\langle G_{n} y, y\right\rangle_{e} \leq\left\langle G_{n} y, G_{n} y\right\rangle_{e} \leq \lambda_{n}^{\max }\left\langle G_{n} y, y\right\rangle_{e}, \forall y \in \mathbb{R}^{n}$.
Proof. $\left\langle G_{n} y, G_{n} y\right\rangle_{e}-\lambda_{n}^{\max }\left\langle G_{n} y, y\right\rangle_{e}=\left\langle G_{n}^{2} y, y\right\rangle_{e}-\left\langle\lambda_{n}^{\max } G_{n} y, y\right\rangle_{e}=\left\langle\left(G_{n}^{2}-\lambda_{n}^{\max } G_{n}\right) y, y\right\rangle_{e}$.
It can be easily proved that if A is a symmetric matrix having the diagonal form B, $\operatorname{diag} B=\left(\lambda_{n}^{\min }, \ldots, \lambda_{n}^{\max }\right)$, and P is a polynomial, then the matrix $P(A)$ has the diagonal form C, with $\operatorname{diag} C=\left(P\left(\lambda_{n}^{\min }\right), \ldots, P\left(\lambda_{n}^{\max }\right)\right)$.

Hence the diagonal form of the matrix $G_{n}^{2}-\lambda_{n}^{\max } G_{n}$ is

$$
\operatorname{diag}\left(G_{n}^{2}-\lambda_{n}^{\max } G_{n}\right)=\left(\lambda_{n}^{\min }\left(\lambda_{n}^{\min }-\lambda_{n}^{\max }\right), \ldots, \lambda_{n}^{\max }\left(\lambda_{n}^{\max }-\lambda_{n}^{\max }\right)\right)
$$

All its eigenvalues are nonpositive numbers, so $\left\langle\left(G_{n}^{2}-\lambda_{n}^{\max } G_{n}\right) y, y\right\rangle_{e}$ is a negative definite quadratic form, whence the stated inequality.

In the same way, $\left\langle G_{n} y, G_{n} y\right\rangle_{e}-\lambda_{n}^{\min }\left\langle G_{n} y, y\right\rangle_{e}=\left\langle\left(G_{n}^{2}-\lambda_{n}^{\min } G_{n}\right) y, y\right\rangle_{e}$. The diagonal form of the matrix $G_{n}^{2}-\lambda_{n}^{\min } G_{n}$ is

$$
\operatorname{diag}\left(G_{n}^{2}-\lambda_{n}^{\min } G_{n}\right)=\left(\lambda_{n}^{\min }\left(\lambda_{n}^{\min }-\lambda_{n}^{\min }\right), \ldots, \lambda_{n}^{\max }\left(\lambda_{n}^{\max }-\lambda_{n}^{\min }\right)\right) .
$$

All its eigenvalues are nonnegative numbers, so $\left\langle\left(G_{n}^{2}-\lambda_{n}^{\min } G_{n}\right) y, y\right\rangle_{e}$ is a positive definite quadratic form, whence the stated inequality.

We will study the set $\left\{x_{n}: n \in \mathbb{N}^{*}\right\}$, which may be linearly dependent.

3 Properties of the sum $\left\langle x_{1}, x\right\rangle^{2}+\ldots+\left\langle x_{n}, x\right\rangle^{2}, x \in \mathcal{H}$,

 $x \neq 0$.Consider in the beginning a fixed $n \in \mathbb{N}^{*}$.
Let $C_{n}=\left(c_{1}^{n}, c_{2}^{n}, \ldots, c_{n}^{n}\right)$ and $X_{n}=\left(\begin{array}{c}\left\langle x_{1}, x\right\rangle \\ \vdots \\ \left\langle x_{n}, x\right\rangle\end{array}\right)$. The system (2.1) may be written as $G_{n} C_{n}^{T}=X_{n}$.

If we suppose that $x_{\tau_{n}(1)}, \ldots, x_{\tau_{n}(p)}$ are linearly independent and $x_{\tau_{n}(k)}, k=\overline{p+1, n}$, are linear combinations of them $(p=p(n))$, the solution of the system (2.1), considered in $\mathbf{P 2}$, may be written as:

$$
\left\{\begin{array}{l}
C_{p(n)}^{T}=G_{p(n)}^{-1} X_{p(n)} \tag{3.1}\\
c_{\tau_{n}(p+1)}^{n}=\ldots=c_{\tau_{n}(n)}^{n}=0
\end{array}\right.
$$

where

$$
G_{p(n)}=G\left(x_{\tau_{n}(1)}, \ldots, x_{\tau_{n}(p)}\right) \text { and } X_{p(n)}=\left(\begin{array}{c}
\left\langle x_{\tau_{n}(1)}, x\right\rangle \tag{3.2}\\
\vdots \\
\left\langle x_{\tau_{n}(p)}, x\right\rangle
\end{array}\right) .
$$

Consider the expression

$$
E\left(X_{n}\right)=c_{1}^{n}\left\langle x_{1}, x\right\rangle+\ldots+c_{n}^{n}\left\langle x_{n}, x\right\rangle=C_{n} X_{n} .
$$

In the case when $\left(c_{1}^{n}, \ldots, c_{n}^{n}\right)$ is the solution (3.1) of the system (2.1), it becomes the quadratic form

$$
E\left(X_{p(n)}\right)=C_{n} X_{n}=\left\langle G_{p(n)}^{-1} X_{p(n)}, X_{p(n)}\right\rangle_{e}
$$

The eigenvalues of the matrix $G_{p(n)}^{-1}$ are the inverses of the eigenvalues of $G_{p(n)}$, (which are positive numbers), so, taking into account $\mathbf{P 3}$, we shall have that:

$$
\begin{equation*}
E\left(X_{p(n)}\right)=\left\langle G_{p(n)}^{-1} X_{p(n)}, X_{p(n)}\right\rangle_{e} \leq \frac{1}{\lambda_{n}^{\min }(p)}\left\langle X_{p(n)}, X_{p(n)}\right\rangle_{e} \tag{3.3}
\end{equation*}
$$

$\lambda_{n}^{\min }(p)$ being the smallest eigenvalue of the matrix $G_{p(n)}$.
Remark 1: Instead of the linearly independent elements $x_{\tau_{n}(1)}, \ldots, x_{\tau_{n}(p)}$, we may take other linearly independent elements $x_{\sigma_{n}(1)}, \ldots, x_{\sigma_{n}(p)}$ with σ_{n} permutation of $\{1,2, \ldots, n\}$, different from τ_{n}. Hence, the matrix $G_{p(n)}$ is not unique, so it is possible to find more values for $\lambda_{n}^{\min }(p)$. We will choose the largest of them.

Consequences:

1. Let $\left(c_{1}^{n}, \ldots, c_{n}^{n}\right)$ be an arbitrary solution of the system (2.1). According to $\mathbf{P} 4$ we obtain:

$$
\begin{align*}
\sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} & =\sum_{k=1}^{n}\left(c_{1}^{n}\left\langle x_{1}, x\right\rangle+\ldots+c_{n}^{n}\left\langle x_{n}, x\right\rangle\right)^{2} \tag{3.4}\\
& =\left\langle G_{n} C_{n}^{T}, G_{n} C_{n}^{T}\right\rangle_{e} \leq \lambda_{n}^{\max }\left\langle G_{n} C_{n}^{T}, C_{n}^{T}\right\rangle_{e} \\
& =\lambda_{n}^{\max } \sum_{k=1}^{n} c_{k}^{n}\left(c_{1}^{n}\left\langle x_{k}, x_{1}\right\rangle+c_{2}^{n}\left\langle x_{k}, x_{2}\right\rangle+\ldots+c_{n}^{n}\left\langle x_{k}, x_{n}\right\rangle\right) \\
& =\lambda_{n}^{\max } \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle
\end{align*}
$$

Remark 2: When $p(n)=n$, the above inequality can be immediately obtained: from P3 it follows that

$$
\frac{1}{\lambda_{n}^{\max }}\left\langle X_{n}, X_{n}\right\rangle_{e} \leq\left\langle G_{n}^{-1} X_{n}, X_{n}\right\rangle_{e}=E\left(X_{n}\right), \quad \text { i.e. } \sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} \leq \lambda_{n}^{\max } \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle .
$$

2. From (3.3) we obtain:

$$
\begin{gather*}
\left\langle X_{n}, X_{n}\right\rangle \geq\left\langle X_{p(n)}, X_{p(n)}\right\rangle \geq \lambda_{n}^{\min }(p) E\left(X_{p(n)}\right) \text {, i.e. } \\
\sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} \geq \sum_{k=1}^{p}\left\langle x_{\tau_{n}(k)}, x\right\rangle^{2} \geq \lambda_{n}^{\min }(p) \sum_{k=1}^{p} c_{\tau_{n}(k)}^{n}\left\langle x_{\tau_{n}(k)}, x\right\rangle \tag{3.5}
\end{gather*}
$$

where $\left(c_{1}^{n}, \ldots, c_{n}^{n}\right)$ is the solution of the system (2.1) defined by (3.1).

4 Properties of the sum $\sum_{k=1}^{n} c_{k}\left\langle x_{k}, x\right\rangle, x \in \mathcal{H}, x \neq 0,\left(c_{1}, \ldots, c_{n}\right)$ solution of the system (2.1).

Suppose a fixed $n \in \mathbb{N}^{*}$ and p defined at the beginning of section 2 .
Theorem 1. Let $F_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}, F_{n}\left(t_{1}, \ldots, t_{n}\right)=\left\langle x-\sum_{k=1}^{n} t_{k} x_{k}, x-\sum_{k=1}^{n} t_{k} x_{k}\right\rangle$, and $\left(c_{1}^{n}, \ldots, c_{n}^{n}\right)$ an arbitrary solution of the system (2.1). Then:
1°. If $p=n$, then $\min F_{n}=\langle x, x\rangle-\sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle$.
2°. If $p<n$, then $\min F_{n}=\langle x, x\rangle-\sum_{k=1}^{p} c_{\tau_{n}(k)}^{n}\left\langle x_{\tau_{n}(k)}, x\right\rangle=\langle x, x\rangle-\sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle$.

Proof.
1°. The necessary conditions for extremum, $\frac{\partial F_{n}}{\partial t_{k}}=0, k=\overline{1, n}$, lead to the system (2.1). The Hessian matrix of the function F_{n} is, at any point, the Gram matrix $G\left(x_{1}, \ldots, x_{n}\right)$, which is strictly positive defined cf. $\mathbf{P} 1$. So, F_{n} will have a minimum attained at $\left(c_{1}^{n}, \ldots, c_{n}^{n}\right)$, the solution of the system (2.1), namely:

$$
\min F_{n}=\langle x, x\rangle-\sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle
$$

2°. First we prove the following auxiliary results.
Lemma 1. Let $\left(c_{\tau_{n}(1)}^{n}, \ldots, c_{\tau_{n}(p)}^{n}\right)$ be the solution of the system (2.2) and ($\left.d_{1}^{n}, \ldots, d_{n}^{n}\right)$ an arbitrary solution of the system (2.1).

Then $\sum_{k=1}^{n} d_{k}^{n}\left\langle x_{k}, x\right\rangle=\sum_{k=1}^{p} c_{\tau_{n}(k)}^{n}\left\langle x_{\tau_{n}(k)}, x\right\rangle$, i.e. the value of the function F_{n} is the same at every stationary point: $\langle x, x\rangle-\sum_{k=1}^{p} c_{\tau_{n}(k)}^{n}\left\langle x_{\tau_{n}(k)}, x\right\rangle$.

Proof. For the sake of simplicity we omit the upper indices and we consider that x_{1}, \ldots, x_{p} are linearly independent and x_{p+1}, \ldots, x_{n} are linear combinations of them:

$$
x_{p+j}=\sum_{k=1}^{p} \alpha_{j k} x_{k}, \quad j=\overline{1, n-p}, \quad \text { with } \alpha_{j k} \in \mathbb{R}
$$

Then the solution of the system (2.2) can be written as $\left(c_{1}, \ldots, c_{p}\right)$.
The system (2.1) becomes:

$$
\left\{\begin{array}{l}
\left\langle x_{1}, x_{1}\right\rangle d_{1}+\ldots+\left\langle x_{1}, x_{p}\right\rangle d_{p}=\left\langle x, x_{1}\right\rangle-\sum_{j=1}^{n-p} d_{p+j} \sum_{k=1}^{p} \alpha_{j k}\left\langle x_{1}, x_{k}\right\rangle \\
\vdots \\
\left\langle x_{p}, x_{1}\right\rangle d_{1}+\ldots+\left\langle x_{p}, x_{p}\right\rangle d_{p}=\left\langle x, x_{p}\right\rangle-\sum_{j=1}^{n-p} d_{p+j} \sum_{k=1}^{p} \alpha_{j k}\left\langle x_{p}, x_{k}\right\rangle \\
\vdots \\
\left\langle x_{n}, x_{1}\right\rangle d_{1}+\ldots+\left\langle x_{n}, x_{p}\right\rangle d_{p}=\left\langle x, x_{n}\right\rangle-\sum_{j=1}^{n-p} d_{p+j} \sum_{k=1}^{p} \alpha_{j k}\left\langle x_{n}, x_{k}\right\rangle
\end{array}\right.
$$

Its general solution will be $\left(d_{1}, \ldots, d_{n}\right)$, with $d_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} G_{p}}, i=\overline{1, p}$ and d_{p+1}, \ldots, d_{n} arbitrary, the matrices $A_{i}, i=\overline{1, p}$, being given by

$$
A_{i}=\left(\begin{array}{lll}
\left\langle x_{1}, x_{1}\right\rangle \ldots\left\langle x_{1}, x_{i-1}\right\rangle & \left\langle x, x_{1}\right\rangle-\sum_{j=1}^{n-p} d_{p+j} \sum_{k=1}^{p} \alpha_{j k}\left\langle x_{1}, x_{k}\right\rangle & \left\langle x_{1}, x_{i+1}\right\rangle \ldots\left\langle x_{1}, x_{p}\right\rangle \\
\vdots & & \\
\left\langle x_{p}, x_{1}\right\rangle \ldots\left\langle x_{p}, x_{i-1}\right\rangle & \left\langle x, x_{p}\right\rangle-\sum_{j=1}^{n-p} d_{p+j} \sum_{k=1}^{p} \alpha_{j k}\left\langle x_{p}, x_{k}\right\rangle & \left\langle x_{p}, x_{i+1}\right\rangle \ldots\left\langle x_{p}, x_{p}\right\rangle
\end{array}\right)
$$

We get

$$
\begin{aligned}
\sum_{k=1}^{n} d_{k}\left\langle x_{k}, x\right\rangle & =\sum_{i=1}^{p} d_{i}\left\langle x_{i}, x\right\rangle+\sum_{i=1}^{n-p} d_{p+i}\left\langle x_{p+i}, x\right\rangle= \\
& =\frac{1}{\operatorname{det} G_{p}} \sum_{i=1}^{p}\left(\operatorname{det} A_{i}\right)\left\langle x_{i}, x\right\rangle+\sum_{j=1}^{n-p} d_{p+j} \sum_{k=1}^{p} \alpha_{j k}\left\langle x_{k}, x\right\rangle .
\end{aligned}
$$

If we split $\operatorname{det} A_{i}$ after the column i we obtain:

$$
\begin{aligned}
\operatorname{det} A_{i} & =\left|\begin{array}{ccc}
\left\langle x_{1}, x_{1}\right\rangle \ldots\left\langle x_{1}, x_{i-1}\right\rangle & \left\langle x, x_{1}\right\rangle & \left\langle x_{1}, x_{i+1}\right\rangle \ldots\left\langle x_{1}, x_{p}\right\rangle \\
\vdots & \\
\left\langle x_{p}, x_{1}\right\rangle \ldots\left\langle x_{p}, x_{i-1}\right\rangle & \left\langle x, x_{p}\right\rangle\left\langle x_{p}, x_{i+1}\right\rangle \ldots\left\langle x_{p}, x_{p}\right\rangle
\end{array}\right|-\sum_{j=1}^{n-p} d_{p+j} \alpha_{j i} \operatorname{det} G_{p}= \\
& =\left(c_{i}-\sum_{j=1}^{n-p} d_{p+j} \alpha_{j i}\right) \operatorname{det} G_{p} .
\end{aligned}
$$

So, $\sum_{i=1}^{n} d_{i}\left\langle x_{i}, x\right\rangle=\sum_{i=1}^{p}\left(c_{i}-\sum_{j=1}^{n-p} d_{p+j} \alpha_{j i}\right)\left\langle x_{i}, x\right\rangle+\sum_{j=1}^{n-p} d_{p+j} \sum_{k=1}^{p} \alpha_{j k}\left\langle x_{k}, x\right\rangle=\sum_{i=1}^{p} c_{i}\left\langle x_{i}, x\right\rangle$.
Finally, the value of F_{n} at any stationary point is $\langle x, x\rangle-\sum_{k=1}^{p} c_{\tau_{n}(k)}^{n}\left\langle x_{\tau_{n}(k)}, x\right\rangle$.
Lemma 2. The stationary points of F_{n} are points of minimum.
Proof. The function F_{n} is in fact a second order polynomial with n variables. Writing the Taylor formula at an arbitrary stationary point $\left(d_{1}, \ldots, d_{n}\right)$ we get (taking into account the fact that the Hessian matrix of F_{n} is the Gram matrix G_{n}):

$$
\begin{aligned}
F_{n}\left(t_{1}, \ldots, t_{n}\right) & =F_{n}\left(d_{1}, \ldots, d_{n}\right)+\sum_{k=1}^{n} \frac{\partial F_{n}}{\partial t_{k}}\left(d_{1}, \ldots, d_{n}\right)\left(t_{k}-d_{k}\right)+ \\
& +Y^{T} G_{n}\left(x_{1}, \ldots, x_{n}\right) Y, \quad Y=\left(t_{1}-d_{1}, \ldots, t_{n}-d_{n}\right)^{T} .
\end{aligned}
$$

Since $Y^{T} G_{n} Y \geq 0$ (cf. $\mathbf{P} 1$, the matrix G_{n} is positive defined), we obtain:

$$
F_{n}\left(t_{1}, \ldots, t_{n}\right) \geq F_{n}\left(d_{1}, \ldots, d_{n}\right), \quad \forall\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}
$$

i.e. $\left(d_{1}, \ldots, d_{n}\right)$ is a point of minimum.

The two lemmas show that the minimum value of F_{n} is $\langle x, x\rangle-\sum_{k=1}^{p} c_{\tau_{n}(k)}^{n}\left\langle x_{\tau_{n}(k)}, x\right\rangle$.
A consequence of lemma 1 is the following equality:

$$
\begin{equation*}
\sum_{k=1}^{p} c_{\tau_{n}(k)}^{n}\left\langle x_{\tau_{n}(k)}, x\right\rangle=\sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle \tag{4.1}
\end{equation*}
$$

whence the stated affirmation 2°.
Relations (4.1) and (3.5) imply:

$$
\begin{equation*}
\sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} \geq \lambda_{n}^{\min }(p) \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle, \forall n \in \mathbb{N}^{*} \tag{4.2}
\end{equation*}
$$

On the other hand, by $\mathbf{P} 4$ we obtain, using the same equalities as in the consequence 1 , section 2 , that

$$
\begin{equation*}
\sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} \geq \lambda_{n}^{* \min } \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle, \quad \forall n \in \mathbb{N}^{*} \tag{4.3}
\end{equation*}
$$

where $\lambda_{n}^{* \min }$ is the smallest positive eigenvalue of the matrix G_{n}.

5 Main result.

Theorem 2. Let $\left\{x_{n}, n \in \mathbb{N}^{*}\right\}$ be a subset of the separable real Hilbert space \mathcal{H} and G_{n} the Gram matrices associated to the sets $\left\{x_{k}, k=1, \ldots, n\right\}, n \in \mathbb{N}^{*}$. We denote by $\lambda_{n}^{\min }=\max \left\{\lambda_{n}^{\min }(p), \lambda_{n}^{* \min }\right\}$ and $\lambda_{n}^{\max }$ the largest eigenvalue of G_{n}.

Let $A=\limsup _{n \rightarrow \infty} \lambda_{n}^{\max }$ and $B=\liminf _{n \rightarrow \infty} \lambda_{n}^{\min }$.
The following statements are true:

1. If $A<\infty$, then $\sum_{k=1}^{\infty}\left\langle x_{k}, x\right\rangle^{2} \leq A\|x\|^{2}, \forall x \in \mathcal{H}$.
2. If $\overline{\operatorname{span}\left\{x_{n}, n \in \mathbb{N}^{*}\right\}}=\mathcal{H}$ and $B>0$, then $B\|x\|^{2} \leq \sum_{n=1}^{\infty}\left\langle x_{n}, x\right\rangle^{2}, \quad \forall x \in \mathcal{H}$.
3. If $A<\infty, B>0$ and $\overline{\operatorname{span}\left\{x_{n}, n \in \mathbb{N}^{*}\right\}}=\mathcal{H}$, then the set $\left\{x_{n}, n \in \mathbb{N}^{*}\right\}$ forms a frame in \mathcal{H}.

Proof.

1. Let $x \in \mathcal{H}$ and $\varepsilon>0$. There exists $n_{0}(\varepsilon)$ such that $\lambda_{n}^{\max }<A+\varepsilon, \forall n \geq n_{0}(\varepsilon)$. From (3.4) if follows that $\sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} \leq(A+\varepsilon) \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle, \forall n \geq n_{0}(\varepsilon)$, where $\left(c_{1}^{n}, \ldots, c_{n}^{n}\right)$ is an arbitrary solution of (2.1). Take an arbitrary $n \geq n_{0}(\varepsilon)$. Since $F_{n}\left(t_{1}, \ldots, t_{n}\right) \geq 0$, $\forall\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$, we have

$$
\langle x, x\rangle \geq \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle \geq \frac{1}{A+\varepsilon} \sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2}
$$

Keeping the extreme sides and passing to limit we get

$$
\langle x, x\rangle \geq \frac{1}{A+\varepsilon} \sum_{k=1}^{\infty}\left\langle x_{k}, x\right\rangle^{2},
$$

inequality which holds for every $\varepsilon>0$.
So

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\langle x_{k}, x\right\rangle^{2} \leq A\|x\|^{2} \tag{5.1}
\end{equation*}
$$

2. Assume that the set $\left\{x_{n}, n \in \mathbb{N}^{*}\right\}$ is closed in $\mathcal{H}\left(\overline{\operatorname{span}\left\{x_{n}, n \in \mathbb{N}^{*}\right\}}=\mathcal{H}\right)$, and let $x \in \mathcal{H}, \varepsilon>0$. Then there exist $n(\varepsilon) \in \mathbb{N}^{*}$ and $\left(c_{k}^{*}\right)_{k=\overline{1, n(\varepsilon)}}$ such that $F_{n}\left(c_{1}^{*}, \ldots, c_{n}^{*}\right)<\varepsilon$, $\forall n \geq n(\varepsilon)$.

From (4.2) and (4.3) it follows that there exists $n_{1}(\varepsilon)$ such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} \geq(B-\varepsilon) \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle, \quad \forall n \geq n_{1}(\varepsilon) \tag{5.2}
\end{equation*}
$$

where $\left(c_{1}^{n}, \ldots, c_{n}^{n}\right)$ is an arbitrary solution of (2.1). Consider now $n=\max \left\{n(\varepsilon), n_{1}(\varepsilon)\right\}$. Taking into account Theorem 1, we have $F_{n}\left(c_{1}^{n}, \ldots, c_{n}^{n}\right) \leq F_{n}\left(c_{1}^{*}, \ldots, c_{n}^{*}\right)<\varepsilon$, i.e. $\sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle>$ $\langle x, x\rangle-\varepsilon$.

Consequently, by (5.2),

$$
\sum_{n=1}^{\infty}\left\langle x_{n}, x\right\rangle^{2} \geq \sum_{k=1}^{n}\left\langle x_{k}, x\right\rangle^{2} \geq(B-\varepsilon) \sum_{k=1}^{n} c_{k}^{n}\left\langle x_{k}, x\right\rangle \geq(B-\varepsilon)(\langle x, x\rangle-\varepsilon)
$$

Keeping only the inequality $\sum_{n=1}^{\infty}\left\langle x_{n}, x\right\rangle^{2} \geq(B+\varepsilon)(\langle x, x\rangle-\varepsilon)$, which holds for every $\varepsilon>0$, it follows

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\langle x_{n}, x\right\rangle^{2} \geq B\|x\|^{2} \tag{5.3}
\end{equation*}
$$

3. The statement is an immediately consequence of the previous two affirmations.

6 A particular case.

In the separable real Hilbert space \mathcal{H} we consider the orthonormal set $\left\{p_{n}, n \in \mathbb{N}^{*}\right\}$. We construct the set $\left\{e_{n}, n \in \mathbb{N}^{*}\right\}$ in the following way:

$$
\begin{aligned}
& e_{1}=a_{11}^{1} p_{1} \\
& e_{2}=a_{21}^{1} p_{1}+a_{22}^{1} p_{2} \\
& \vdots \\
& e_{k}=a_{k 1}^{1} p_{1}+\ldots+a_{k k}^{1} p_{k} \\
& e_{k+1}=a_{11}^{2} p_{k+1} \\
& e_{k+2}=a_{21}^{2} p_{k+1}+a_{22}^{2} p_{k+2} \\
& \vdots \\
& e_{2 k}=a_{k 1}^{2} p_{k+1}+\ldots+a_{k k}^{2} p_{2 k}
\end{aligned}
$$

or $E_{k}^{1}=A_{1} P_{k}^{1}, E_{k}^{k+1}=A_{2} P_{k}^{k+1}, \ldots$, where $A_{m}=\left(a_{i j}^{m}\right)_{i=\overline{1, k}, j=\overline{1, i}}, E_{k}^{1}=\left(e_{1}, \ldots, e_{k}\right)^{T}, E_{k}^{k+1}=$ $\left(e_{k+1}, \ldots, e_{2 k}\right)^{T}, \ldots, E_{k}^{l}=\left(e_{l}, \ldots, e_{l+k-1}\right)^{T}$, the matrices $P_{k}^{1}, P_{k}^{k+1}, \ldots$ being defined in an analogous way.

The matrices A_{m} are triangular and we may assume they have different dimensions. Relations (6.1) which define the set $\left\{e_{n}, n \in \mathbb{N}^{*}\right\}$ may be written in matrix form: $E=$ $M \cdot P$, where $E=\left(E_{k}^{1} E_{k}^{k+1} \ldots\right)^{T}, P=\left(P_{k}^{1} P_{k}^{k+1} \ldots\right)^{T}$, and M is a block diagonal infinite matrix: $\operatorname{diag}(M)=\left(A_{1} A_{2} \ldots\right)$.

Denoting by G_{n} the Gram matrix associated to the blocks $A_{1}, A_{2}, \ldots, A_{n}$, we get:

$$
\begin{aligned}
\operatorname{det}\left(G_{n}-\lambda I_{n \cdot k}\right) & =\left\lvert\, \begin{array}{llll}
A_{1}-\lambda I_{k} & & & \\
& A_{2}-\lambda I_{k} & & \\
& & \ddots & \\
& & & \\
& & A_{n}-\lambda I_{k}-\lambda I_{k}|\cdot| A_{2}-\lambda I_{k}|\cdot \ldots \cdot| A_{n}-\lambda I_{k} \mid
\end{array} .\right.
\end{aligned}
$$

In this way, the conditions $A<\infty$ and $B>0$ are easily satisfied, taking for instance matrices A_{m} having the same real positive eigenvalues.

The coefficients $a_{i j}^{k}$ must be taken such that $\overline{\operatorname{span}\left\{e_{n}, n \in \mathbb{N}^{*}\right\}}=\mathcal{H}$.

7 Comparison with existing results.

In [3] is given an equivalent condition under which a frame is a Riesz basis of a separable Hilbert space and there are obtained (using a different approach) formulas for the Riesz bounds: $\limsup \frac{\left(\lambda_{n}^{\min }\right)^{2}}{\lambda_{n}^{\max }}$ for the lower bound B and $\liminf _{n \rightarrow \infty} \lambda_{n}^{\max }$ for the upper bound A. Using P4 it can be proved that $\frac{\left(\lambda_{n}^{\min }\right)^{2}}{\lambda_{n}^{\max }}$ can be replaced by $\lambda_{n}^{\min }$ (which is a better value)
and, at the same time, an optimal lower bound for the frame $\left\{x_{i}: i=1, n\right\}$ considered in [3]. The condition of closedness (condition 2° in Theorem 2) is imposed in [3] too.

The advantage of our results consists in the fact that the set $\left\{x_{i}: i \in \mathbb{N}\right\}$ need not be linearly independent, as it was assumed in [3]. Though, we considered here only real Hilbert spaces.

References

[1] R. Bellman, Introducere în analiza matricială, Editura Tehnică, Bucureşti, 1969 (in Romanian).
[2] I. Daubechies, A. Grossman and Y. Meyer, Painless Nonorthogonal Expansion, J. Math. Phys., 27(1985) no 5, pp. 1271-1283.
[3] H.O. Kim and J.K. Lim, New Characterizations of Riesz Bases, Appl. Comp. Harm. Anal., 4 (1997), pp. 222-229.

Daniela Cǎtinaş
Technical University of Cluj-Napoca
Department of Mathematics
str. Gh. Bariţiu 25
3400 Cluj-Napoca
Romania
e-mail: Daniela.Catinas@math.utcluj.ro

