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Abstract— In this paper we present a theoretical approach to
power control for ad-hoc wireless networks using sliding mode
control theory. We allow user mobility, as well as addition of
new links to the wireless network or removal of inactive links
from the network. We derive a dynamic system based on the
signal-to-interference ratio (SIR) of links in the network whose
control input is related to the transmitted power, and show
how sliding mode control theory is used to derive the power
equations that lead to an equilibrium point where the link SIRs
are optimized.

I. INTRODUCTION

The increasing demand for wireless services requires a
more efficient use of the limited resources that are available
in a radio communication system. An important component
of radio resource management is transmitter power control,
which contributes to minimizing interference, increasing the
wireless network capacity, and extending the battery life of
active nodes in the wireless network by ensuring that these
transmit at the minimum power level necessary to achieve a
specified quality of service defined in terms of the SIR.
A good power control mechanism should balance several
conflicting requirements which can be summarized as fol-
lows:

• The SIR of any node in the wireless network can be
increased by increasing its transmitted power.

• Increasing the transmitted power for one node will
increase the interference experienced by all the other
nodes in the network, which may increase their trans-
mitted powers as well to overcome the increased inter-
ference.

• Increasing the transmitted power consumes more energy
and shortens the battery life of nodes in the wireless
network.

When all nodes keep increasing their transmitted power to
meet specified SIR values, they will end up transmitting
at their maximum allowed power level which will exhaust
their battery energy rapidly. This can create instability in the
wireless network which may experience rapid deactivation
of nodes due to battery failure.

Two key issues under the scrutiny of the on-going research
in power control for wireless networks are users mobility
[1], and addition/removal of users to/from the network [2],
which should be studied in the context of the conflicting
requirements mentioned previously. Traditionally, these two
issues have been treated separately, and in an empirical

manner. In our paper we propose a systematic approach
of these two issues simultaneously, using the mathematical
framework of sliding mode control theory [3]. We note that
alternative approaches based on control theory were used for
analyzing power control algorithms in [4]–[6].

The purpose of the paper is two-fold: 1. to find a math-
ematical model for wireless networks that incorporates user
mobility as well as network dynamics (addition/removal of
user to/from the network); 2. to design a decentralized sliding
mode control law that stabilize the system and meet the
quality of service requirements. We present the derivation of
the dynamic equation of the SIR error function, and apply
sliding mode control theory to obtain a sliding mode control
law that will bring the error to the origin through appropriate
power updates. The power updates will be designed to
allow a maximum number of N active links with specified
minimum SIRs in the wireless ad-hoc network. We will also
investigate how the sliding mode control can be used in the
context of a dynamic network when new links become active
and are added to the network, or links that become inactive
are removed from the network.

The paper is organized as follows. In the next section
we present the main expressions used in power control
for wireless networks. In Section III we give the sliding
mode control design when the users are assumed to be
mobile. In section IV we show some numerical simulations
results. In Section V we briefly show how to deal with the
admission/removal of users, when the sliding-mode control
is used. Conclusions show some of the tracks we still have
to investigate. All proofs are gathered into the Appendix that
completes the paper.

II. THE WIRELESS NETWORK MODEL

According to [2] an ad-hoc wireless network can be
regarded as a collection of interfering wireless links between
mobile nodes of the network which apply power control
algorithms to improve the quality of the link. As measure
of the link quality the SIR at the receiver is used which is
expressed as [2], [7]

γi =
Giipi∑

j �=i

Gijpj + ηi

i, j = 1, . . . , N (1)

where pi is the transmitted power of user i, Gii is the
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gain of the channel between user i and its corresponding
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receiver, Gij is the gain of the channel between other user j
in the system and receiver i, and ηi is the power of the
additive white Gaussian noise (AWGN) that corrupts the
received signal at receiver i. Channel gains are assumed time-
varying with known lower and upper bounds. The measurable
variables, available to the i-th node are: γi, Gii, pi, ηi.

In this context, for each link i, a lower SIR value γm
i is

imposed, and in order for all links to operate properly it is
required that γi ≥ γm

i , ∀i. When the actual SIR of link i is
below the specified lower bound γm

i the link is not functional
as a communication link, but works as a disturbance for all
functional links in the network, [2]. When the actual SIR of
link i is above γm

i but below a pareto-optimal value γM
i we

need to employ power control to increase it.
By denoting the interference experienced by the link with:

di =
∑
j �=i

Gijpj (2)

and under the assumption that the AWGN is stationary (that
is ηi = constant =⇒ η̇i = 0) we obtain by taking the
derivative of equation (1):

γ̇i = − ḋi

ηi + di
γi +

Ġii

ηi + di
pi +

Gii

ηi + di
ui (3)

The pareto-optimal vector of the network
( γM

1 ... γM
N )T describes the equilibrium of the

network for a given configuration [(Gij , Ġij)]ij and should
be estimated by design. We assume that N is the total
number of users that the network, once designed, could
accommodate. We assume that the transmission power is
bounded as 0 ≤ pm

i ≤ pi ≤ pM
i and the SIR is bounded as

0 ≤ γm
i ≤ γi ≤ γM

i .

III. MODELING POWER CONTROL ASSUMING USERS

MOBILITY

The proposed update for power will be based on mini-
mization of the error function

ei = γM
i − γi; γi ≥ γm

i (4)

for all links in the network. Thus, we obtain the following
set of equations for link i = 1, . . . , N⎧⎪⎪⎨
⎪⎪⎩

ṗi = ui

ėi = − ḋi

ηi + di
ei − Ġii

ηi + di
pi − Gii

ηi + di
ui +

ḋi

ηi + di
γM

i

(5)
which should be controlled to reach an equilibrium point as
close to the origin as possible. From equation (1) we note
that the quantity ηi + di is known for each link based on
knowledge of current link SIR γi, gain Gii, and transmitted
power pi:

1
ηi + di

=
γi

Giipi
(6)

Thus, from (5) we note that the user dynamics is parameter
time-varying with an exogenous disturbance ḋi. Variables di

and ḋi revel the interaction between user i and the other

users of the network. The N dynamic systems in (5) are
interconnected through variables di given by

d = (Υ − ΥΔ) p (7)

where Υ = [Gij ]i,j , ΥΔ = diag([Gii]i), dT =
[ d1 . . . dn ]. Taking the derivative of (7) and using that
ṗi = ui we get the dynamics of variables di from:

ḋ = (Υ − ΥΔ) u + (Υ̇ − Υ̇Δ) p (8)

Note that, for the control laws to keep the users errors to
zero, from (5) with ei = ėi = 0, we get

u0
i = − Ġiipi

Gii
+ ḋiγ

M
i

Gii
∀i (9)

A solution for a sound design of wireless power control,
while dealing with the user mobility (Ġij �= 0), is the sliding
mode control concept. In order to make this idea possible we
append to the system (5) the auxiliary variable xi, so that
the dynamics of the i-th node is as follows:⎧⎨

⎩
ṗi = ui

ėi = fe
i − γi

pi
ui

ẋi = fi(·)
; fe

i = γi

Giipi
(ḋiγi − Ġiipi) (10)

We use the following sliding manifolds:

si = ei + cixi = 0 ∀i (11)

and look for both the proper appended dynamics ẋi = fi(·)
and proper decentralized controls, ui(t), able to stabilize the
wireless network dynamics into an equilibrium.

Proposition 1: The wireless network consisting of N
dynamical nodes (10), with the connectivity matrix A =
[Aij ]i,j=1,..N , as follows:

Aii = γi

Giipisi
(Giiui + Ġiipi − ci

Giipi

γi
ẋi);

Aij = − γ2
i

Giipi

1
sj

(Gijuj + Ġijpj)
(12)

may be stabilized by a sliding mode control law, defined on
(11), if the following requirements are fulfilled:

(P1.1). The diagonal entries in the connectivity matrix (12)
are positive - Aii > 0 - that is:

1
si

(Giiui + Ġiipi − ci
Giipi

γi
ẋi) > 0 (13)

(P1.2). The diagonally dominance condition for the con-
nectivity matrix (12) - |Aii| >

∑
j |Aij | - is fulfilled, that

is:∣∣∣ 1
γisi

(Giiui + Ġiipi − ci
Giipi

γi
ẋi)

∣∣∣ >
∑

j

∣∣∣Gijuj+Ġijpj

sj

∣∣∣
(14)

(P1.3). The appended dynamics, fi(·), is consistent with
the sliding mode reaching condition with disturbance rejec-
tion;

(P1.4). The appended dynamics is properly constrained;
(P1.5). The dynamics of the i-th node is constrained on

the sliding manifold (11), as follows:

si = 0 → |cifi(·)| < γM
i (15)

(P1.6). The appended dynamics may guarantee xi = ẋi =
0 when si = ṡi = 0 and ei = ėi = 0.
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(1.7). The power does not saturate, that is:

ui < 0 if pi = pM
i and ui > 0 if pi = pm

i

(16)
Proof: See Appendix.

Proposition 2: The wireless network consisting of N
dynamical nodes (10) and the following appended dynamics:

ẋi = fx
i +

γi

cipi
ui; (17)

fx
i = − γi

Giipi
si +

Ġiiγi

ciGii
− γi

Giipi
kisgn(si) (18)

may be stabilized, on the sliding manifolds (11), by a
decentralized control law, that fulfills the conditions (P1.3)-
(P1.7), if:

ki > 0
ci >

γM
i

ς

∑
j Gmax

ij (pM
j − pm

j ) + |Ġmax
ij |pM

j > 0
(19)

where ς � 1.
Proof: see Appendix.

Note that for the appended dynamics chosen as in (17),
the dynamics of the sliding variable is as follows:

ṡi = ėi + ciẋi = fe
i + cif

x
i (20)

and, consequently, the control variable ui does not influence
the expression of the first derivative of the sliding variable.
Still, the discontinuous term kisgn(si) from the appended
dynamics, if properly designed, is able to cope with the
unknown disturbance of the i-th node. Therefore, the control
variable ui may be used to smoothly adjust the power value.

Proposition 3: The following control law:

ui(t) = − Ġii(t)
Gii(t)

pi(t) + ûi(t) (21)

satisfies the conditions (P1.3)-(P1.6) for the wireless network
of the Proposition 2, as follows:

(P3.1). The conditions (P1.3)-(P1.4) are fulfilled if either:

ki > max{γM
i

ci
|ḋmax

i |, Gmax
ii

ci

(pM
i )2

pm
i

γM
i

γm
i

} (22)

or

ki > max{γM
i

ci
|ḋmax

i |, Gmax
ii pM

i
γM

i

ciγm
i
} and

sgn(ûi) = −sgn(si)
(23)

(P3.2). The conditions (P1.5)-(P1.6) are fulfilled if

ûi(t) = −εi(t)xi(t) + ai(t)si(t) + bi(t)sgn(si) (24)

|ciεi(t)xi(t)| < γM
i (25)

where εi(t), ai(t), bi(t) are either constants or functions
depending on the i-th node (known) variables, and εi > 0,
εi �= 0.
Proof: see Appendix.

Proposition 4: For the wireless network given in Propo-
sition 2, the saturation problem (P1.7) is solved by the
following control:

ũi = sgn(pi − pM
i )sgn(pm

i − pi)ui+
+(sgn(pM

i − pi) − 1)|ui| + (1 + sgn(pm
i − pi))|ui|

(26)
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Fig. 1. Simulation results

where ui is as in Proposition 3, with the gain ki as follows:

ki = k̃i +
|Ġii|
Gii

pM
i (27)

where k̃i is chosen as the gain ki in (22).
Proof: see Appendix.

Theorem 1: The wireless network given by the Propo-
sitions 2 and 4 is stabilized to an equilibrium point by a
sliding mode control (26), (21), (24) with ai = bi = 0 and
ε(t) = const. if:

(T1).

ci <
γM

i

pM
i

(
1 + |Ġmax

ii |
Gmin

ii

)
− pm

i

(28)

(T2).

|xi(0)| < |ei(0)|
ci

; sign(xi(0)) = −sign(ei(0)); (29)

(T3).

εi <
min{

∣∣∣∣ γM
i
ci

−|wM
i |

∣∣∣∣,
∣∣∣∣pM

i −pm
i +

|Ġmin
ii |

Gmax
ii

pm
i −|wM

i |
∣∣∣∣}

xi(0)
(30)

where wM
i = γM

i

Gmin
ii pm

i
(ki + ei(0) + cixi(0))

Proof: see Appendix.

IV. NUMERICAL SIMULATIONS

In order to test the validity of the proposed sliding mode
control scheme we have performed numerical simulations.
The gains Gij were considered time-varying as follows
Gij(t) = �(d4

ij(t))
−1 where � = 0.097 and di is the distance

from the user i to the base j. The gain modification was
based on the ”random” function, as follows: Ġii = εGii,
where ε ∈ [−1, 1] is a random number. We assumed the
distance bounds as 10 m ≤ di ≤ 10000 m, pm

i = 0.1 Watts,
pM

i = 2 Watts, γm
i = 1, γM

i = 12. The simulations
were performed for a ”fixed assignment”, [7], scenario, with
a single base and three users, using the Euler integration
algorithm. We used the control law from Theorem 1. From
Figure 1 we see that the errors vanish eventually, while the
power is constrained to the imposed range of variation.
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V. ADMISSION/REMOVAL OF USERS TO/FROM THE

WIRELESS NETWORK

In this section we only give an idea about how to deal
with a time-varying number of users. Like in [2] we divide
the users in two groups, as follows: Ak - the group of users
with γi ≥ γm

i (active users) and Bk - the group of users
with γi < γm

i . The users from Bk do not ”feel” the users
from Ak, but the users from Ak are disturbed by users from
Bk. The users from Ak should cooperate with users from
Bk in order to let them enter the network without disrupting
the ”team” of users from Ak. The power control is given as
follows:

ṗi = vi if i ∈ Ak (closed − loop control)
ṗi = δi if i ∈ Bk (open − loop control) (31)

where δi are constants that should be estimated. The index k
for the sets Ak and Bk stands for the topology of the network
at discrete time k. Each user may interact with a different
number of other users at different time moments, k. It is
worth noted that removal / admission of users into a wireless
network is translated to a dynamical network undergoing a
switching topology.

Essentially, the removal of a link can be either the result
of forced disconnection, of one or many users, in order to
maintain the SIR of the other users above γm

i , or the result
of a giving-up to connection (drop out) coming from the
user. In the case of a forced disconnection there has to be a
well-stated method to choose which users are disconnected.

The complexity of the power control for wireless networks
when the number of users is time-varying is challenging. It
comes up in two distinguished cases:

1. Users mobility makes the interaction among users and
bases to be limited to a finite geographically stated horizon; if
the j-th user is far away from the i-th base then Gij = 0. The
proper functioning of the network (the active links are not
removed) should be guaranteed in cases when Gij(k1) �= 0,
Gij(k2) = 0, Gij(k3) �= 0, for k1 < k2 < k3 consecutive
time instances.

2. If the network is in an equilibrium point or in a transient
towards an equilibrium point: a). the admission of a new
link must not remove any other link; b). a drop out of a
link should end into an equilibrium point without power
saturation.

Taking into account the heuristics given in [2] we construct
a virtual dynamics of the wireless network that allows us to
mathematically model the ideas of admission / removal of
users. Thus, we add two new terms to the dynamics of the
i-th SIR, as follows:

ṗi = ui(t)
γ̇i(t) = − ḋi(t)

ηi+di(t)
γi(t) + Ġii(t)

ηi+di(t)
pi(t) + Gii(t)

ηi+di(t)
ui(t)

+αiγi(t − τ1) − βiγi(t − τ2)
(32)

with τ1 < τ2, αi > 0, βi > 0.
The reasoning beyond the virtual dynamics (32) is as follows:

”αiγi(t − τ1)”: When entering the network the i-th user
is accommodated in a time interval τ1, by receiving a little

more power. Thus, during the accommodation period of time
its SIR is prevented from switching many times between
γi < γm

i and γi > γm
i .

”−βiγi(t − τ2)”: On the other hand, if γi(t) > γm
i for

all t > τ2, since the i-th user was given a limited horizon
τ1 + τ2 for communication, it should cease communication
(should be penalized through control) to give the chance
of connection to other users, if and only if the network
is so busy that joining of new users is possible only by
disconnecting some of the old users. Thus, the last term
introduced in (32) is intended to hinder a too fast increasing
of the SIR γi towards the target γM

i , giving a chance to other
users to be accommodated by the network, as well.

The users from Bk, waiting to join the network, are
included as disturbances for the network nodes Ak, hence
in (32):

di = dAi + dBi ;
dAi =

∑
j∈Ak

Gijpj

dBi =
∑

j∈Bk
Gijpj

(33)

From (32) and (33), the error dynamics for the virtual
network is as follows:

ėi =
˙dA
i +ḋB

i

ηi+dA
i +dB

i
(γM

i − ei) − Ġii

ηi+dA
i +dB

i
pi−

Gii

ηi+dA
i +dB

i
ui − αiei(t − τ1) + βiei(t − τ2) + (αi − βi)γM

i

(34)
A quick analysis of (34) revels the fact that working on
the virtual network dynamics, when a user first connects
(γi 
 γm

i ) the term −αiei(t − τ1) helps the error vanish.
On the other hand, after τ1 + τ2, the term βiei(t − τ2) will
make the error rise, hence the SIR is decreased in order to
accommodate in the network other users as well. Still, we
have no choice to work with the virtual dynamics (32). The
choice we are left with is to work on the real dynamics of
the wireless network, assuming the i-th node dynamics from
the previous section:

ṗi = ui; ėi = fe
i − γi

pi
vi; ẋi = fx

i + γi

cipi
vi; (35)

with the modified control law:

vi = ui+
pi

γi
(αiγi(t−τ1)−βiγi(t−τ2)−(αi−βi)γM

i ) (36)

where ui is given as in the previous section. The design
of the power control for the wireless network should be
done for a maximum of N users with specified target SIRs.
Then, an investigation on how the network switches from
N1 active users to N2 active users, N1, N2 < N , should be
performed. Similar to the previous section, by applying the
sliding mode control, the stability of the switching network
- that result by admission/removal of users - depends on the
sliding variables associated with each node of the network.
Taking into account the disturbance (33), the stability of the
network is given by the connectivity matrix A, partitioned
as follows: [

AAA AAB

ABA ABB

]
> 0 (37)

where: AAA = [Aij ], i, j ∈ Ak; ABB = [Aij ], i, j ∈ Bk;
AAB = [Aij ], i ∈ Ak, j ∈ Bk, see Appendix. The design
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phase should provide proper values for the open-loop control,
δi, and also, for the following parameters: αi, βi, ki, ci, εi

and xi(0). The design should fulfill the same requirements
given in Proposition 1.

VI. CONCLUSIONS

In order to simultaneously study both the problem of user
mobility and addition/removal of users to/ from a wireless
network we have applied the sliding mode control theory to
the wireless network power control. We derived a continuous
time model for the network dynamics and appended a new
variable to the real model of the node. The appended variable
contributes with an integral effect to both the control and
sliding variables. The design is based on sufficient conditions
and their necessity is a matter of future investigations. In
future work we also plan to investigate further the proposed
approach in the context of dynamic networks in which
the number of active links in the network varies in time.
Moreover, further investigations will be performed for a
fixed assignment scheme with change of the assigned base
depending on the distance user-base. The proposed control
algorithm will be also tested on the ”macro-diversity”, [7],
scenario.

VII. APPENDIX

A. Proof for Proposition 1

(P1.1)-(P1.2). Using (5), (6), (8), by imposing the reaching
condition for MIMO systems to the wireless network, as
follows:

N∑
i=1

ςisiṡi < 0 ςi > 0 (38)

siṡi = si
γi

Giipi
(
∑

j �=i γiGijuj − Giiui+∑
j �=i γiĠijpj − Ġiipi + ci

Giipi

γi
ẋi)

(39)

it turns out that the stability of the network is given by the
matrix A given in (12). From [8, p. 349] we have that if
all main diagonal entries of a diagonally dominant matrix A
are positive, then all the eigenvalues of A have positive real
part. Taking into account that Gii > 0, pi > 0, γi > 0 the
positiveness of the diagonal entries Aii > 0 requires (13).
The condition of diagonally dominance on the matrix A is
given by the inequalities (14).

(P1.3). From (38) it turns out that the appended dynamics
of the i-th node should fulfill the sliding mode reaching
condition, that is siṡi = si(ėi + cifi(·)) < 0. Since, from
(10), ėi depends on the unknown disturbance ḋi, and the
control variable ui is constrained by the saturation problem,
the function fi(·) should be able to reject the disturbance.

(P1.4). From (10)-(11) we note that the disturbance vari-
ation may be expressed as follows:

ḋi = piGii

γ2
i

ėi + Ġiipi+Giiui

γi
= piGii

γ2
i

ṡi − piGii

γ2
i

cifi(·)+
+ Ġiipi+Giiui

γi

(40)

If we assume −γM
i < ėi < γM

i , then, from (40), the
appended dynamics should be so that:

−γM
i < ṡi − cifi(·) < γM

i (41)

(P1.5). When si = ṡi = 0, from (41) the constraint (15)
is required.

(P1.6). When si = ṡi = 0 and also ḋi = 0, the i-th
node dynamics should be able to reach the equilibrium (ei =
0, xi = 0), hence xi = 0 should be an attractor for the
appended dynamics ẋi − fi(·) = 0.

(P1.7). In order to study the power saturation problem we
discretize the dynamics: ṗi = ui, as in pi(k + 1) = pi(k) +
τui, τ > 0. Thus, it is obvious that we should constrain ui <
0 whenever pi(k) = pM

i and ui > 0 whenever pi(k) = pm
i .

B. Proof for Proposition 2

By replacing (17)-(19) into (13), it turns out that

inf
si

1
si

(Giiui+Ġiipi−ci
Giipi

γi
ẋi) = inf

si

(ci+
ciki

|si| ) = ci > 0

Therefore Aii > 0 ∀i and the condition (P1.1) is fulfilled.
Moreover (14) becomes as follows:

inf
si,γi

∣∣∣∣ 1
γisi

(Giiui + Ġiipi − ci
Giipi

γi
ẋi)

∣∣∣∣ =
ci

γM
i

(42)

By choosing the constants ci properly, high enough, the
condition (P1.2) may be fulfilled if

ci

γM
i

>
∑

j

∣∣∣Gijuj+Ġijpj

sj

∣∣∣ (43)

Using (14),(42) and the fact that |uj | < pM
j −pm

j we compute
the supremum for the value ci in (14) taking into account
that:∣∣∣Gijuj+Ġijpj

sj

∣∣∣ <

∣∣∣∣Gmax
ij (pM

j −pm
j )+|Ġmax

ij |pM
j

sj

∣∣∣∣ = ηij

|sj | (44)

as follows:

ci >
γM

i

ς

∑
j

ηij (45)

where ς � 1 stands for |sj | ≈ 0.

C. Proof for Proposition 3

(P3.1). From (10), (17)-(19), (20) the sliding variable
dynamics is as follows:

ṡi = γ2
i

Giipi
ḋi − ciγi

Giipi
si − ciγi

Giipi
kisgn(si) (46)

If we impose: siṡi < − ciγi

Giipi
s2

i < 0, the gain ki is required
to be:

ki >
γM

i

ci
|ḋmax

i | (47)

Therefore, condition (P1.3) is fulfilled by the appended
dynamics (17)-(19) if the gain ki is chosen as in (47). In
order to guarantee the fulfillment of the condition (P1.4),
(17)-(18) and (21) are replaced into (41). Thus, we get the
following condition that ûi should fulfill:

−γM
i < ṡi +

ciγi

Giipi
si +

ciγi

Giipi
kisgn(si)− γi

pi
ûi < γM

i (48)
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Since ṗi = ui, ûi should be constraint by |ûi| < pM
i − pm

i .
Therefore, in order for the reaching condition siṡi < 0 to
be fulfilled again, the gain ki should be chosen either as in
(22) or (23).

(P3.2). By replacing (17)-(19) into (40) we get the follow-
ing expression for the disturbance:

ḋi =
piGii

γ2
i

ṡi +
ci

γi
si +

ciki

γi
sgn(si) (49)

From (49), it is obvious, that ḋi = 0 should imply both
si = 0 and ṡi = 0. The (ei, xi) dynamics is as follows:

ėi = γ2
i

Giipi
ḋi − γi

pi
ûi

ẋi = γi

Giipi
si − γi

Giipi
kisgn(si) + γi

cipi
ûi

(50)

If ḋi = 0 and si = 0, since the dynamics ẋi = −εixi,
εi > 0, is stable, the equilibrium (ei, xi) = (0, 0) may be
reached.

D. Proof for Proposition 4

From (21), it is obvious that if we impose |ûi| >
pmax|Ġii|/Gii, the condition (P1.6) is re-written as follows:

ûi < 0 if pi = pM
i and ûi > 0 if pi = pm

i

(51)
Note that from (17)-(18), (21), (24), the dynamics of the
appended variable xi is as follows:

ẋi + εi(t)xi + wi(t) = 0; (52)

where wi(t) = w1
i si + w2

i sgn(si). Since in the steady
state xi(t) = −wi(t)/εi(t) it is obvious that the sign of
the variable xi will follow the sign of the variable −si.
Therefore, the choice of the control (21),(23) would be
convenient if the bounds (pi = pm

i or pi = pM
i ) are not

reached during the transient. Since from (52) the dynamics
of the appended variable may be approximated by

xi(t) = xi(0)e−
∫ t
0 εi(s)ds − ∫ t

0
wi(r)e−

∫ t
r

εi(s)dsdr (53)

the transient could be slow because it depends on the values
of εi(t) and wi(t). Moreover, (48) does not guarantee that
the case pi = pM

i , ûi > 0, si < 0, ṡi > 0 or the other
way around would never be reached. Since there is no such
guarantee, when the power saturation is critical, we should
consider the case with (21), (22) and choose the control ui as
in (26). This is a conservative case and, in order to guarantee
(48), a new gain ki , as in (27), is required.

E. Proof for Theorem 1

(T1). From (15), when si = 0, the constraint |ciẋi| =
|ciεixi| < γM

i should be fulfilled. On the other hand as

|ṗi| = | − Ġii

Gii
pi − εixi| < pM

i − pm
i

it turns out that ci|εixi| < ci(pM
i − pm

i + |Ġmax
ii |

Gmin
ii

pM
i ) < γM

i

and, consequently (28) should be fulfilled.
(T2) Since xi and si have opposite signs, (see (52)), si

should have the sign of ei. Therefore, xi(0) should be chosen
as in (29).

(T3) Using wM
i = supt w(t), (see (52) and (18)), we

estimate the following function:

xi(t) = xi(0)exp(−εit) + wM
i

εi
(exp(−εit) − 1) (54)

From (15) and (54) we find a bound for xi(0) as follows:

|εixi(0)| + |wM
i | <

γM
i

ci
(55)

From the limitation on the variation of power:

|εixi(0)| + |wM
i | < pM

i − pm
i +

|Ġii|
Gii

pi (56)

From (55) and (56) the variable εi can be chosen as in (30).

F. Partitions of the connectivity matrix for
admission/removal of nodes

Using the fact that for all users j ∈ Bk sj = ej = γm
i −

γi > 0, we have:

Aii = γi

Giipisi
(Giivi + Ġiipi − ci

Giipi

γi
ẋi) ∈ AAA;

Aij = − γ2
i

Giipi

1
sj

(Gijvj + Ġijpj) ∈ AAA

Aij = − γ2
i

Giipi
(Gijδj + Ġijpj) 1

γm
j −γj

∈ AAB

(57)
and

Aii = γi

Giipi
(Giiδi + Ġiipi ) 1

γm
i −γi

∈ ABB;

Aij = − γ2
i

Giipi

1
sj

(Gijvj + Ġijpj) ∈ ABA

Aij = − γ2
i

Giipi
(Gijδj + Ġijpj) 1

γm
j −γj

∈ ABB
(58)

In order to have Aii > 0 for i ∈ Bk in (58), the increment
δi should be chosen either as a constant δi > |Ġii|

Gii
pM

i or as

a time variant function δi(t) = oi−Ġiipi

Gii
where oi > 0.
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