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Abstract—This article presents a new approach for detecting 
curbs in urban environments. It is based on the fusion between 
semantic labeled images obtained using a convolutional neural 
network and a LiDAR point cloud. Semantic information will be 
used in order to exploit context for the detection of urban curbs. 
Using only the semantic labels associated to 3D points, we will 
define a set of 3D ROIs in which curbs are most likely to reside, 
thus reducing the search space for a curb. A traditional curb 
detection method for the LiDAR sensor is next used to correct the 
previously obtained ROIs. For this, spatial features are computed 
and filtered in each ROI using the LiDAR’s high accuracy 
measurements. The proposed solution works in real time and 
requires few parameters tuning. It proved independent on the type
of the urban road, being capable of providing good curb detection 
results in straight, curved and intersection shaped roads.

Keywords—curb detection; LiDAR; semantic information; deep 
learning; traditional method

I. INTRODUCTION 

Curbs detection is a very important subject for autonomous 
driving tasks. It is a vital step for navigable road detection, 
trajectory planning and parking.

The detection of the curb delimiters has been studied for over 
a decade. The proposed solutions found in literature vary 
according to the sensors used. Common sensors used for 
detecting curbs are Cameras, LiDARs, Stereos and radars. Each 
sensor has limitations based on the type of information it 
provides. A camera offers RGB information but is sensitive to 
illumination variations, shadows and so on. LiDARs provide 
very accurate depth and reflectance information of the 
environment, making the detection of objects in 3D space 
possible with high precision. They are independent of the 
illumination variation. However, they return erroneous results 
once laser beams are reflected of wet or black surfaces. Stereo 
sensors provide both RGB and depth, but still have the limitation 
of the camera sensor and their provided depth information has 
low precision, just as in the case of radars. Among all the used 
sensors, Cameras and LiDARs gained the highest popularity,
and a fusion between the two is in many cases preferred.

Traditional curb detection methods exist for both camera and 
LiDAR sensors. They usually imply finding and analyzing 
features or fitting a model onto data. The main advantage of such 

method is its fast processing speed. However, they require 
expensive manually parameter tuning and do not offer the 
greatest results in terms of accuracy and precision.

Deep learning semantic segmentation of car’s camera 
images has become nowadays an almost mandatory task for 
autonomous driving perception module. This is because recent 
research has managed to optimize the testing stage of the 
semantic segmentation network, making it run in real time and 
obtain outstanding results [1]. Camera images semantic 
segmentation do provide a good classification but they are not 
capable of offering a precise position of an object in 3D space.
Also, erroneous segmentation still exists and a perfect objects 
classification is for now impossible to obtain.

The proposed solution tries to overcome the problems stated
earlier by using a fused sensors approach which combines both
traditional curb detection techniques and deep learning 
techniques. For this, we propose fusing semantic segmented 
information obtained from cameras with LiDAR data. The 
points which were labeled as curb or are found to be road 
delimiters will be considered as ROIs were curbs are likely to be 
found. Curb ROIs are defined per each scanline of a LiDAR. A
traditional curb detection technique for LiDAR sensor is applied 
for each ROI and a correction of the curbs proposals is thus 
made. In the end, a polyline representation will be used to output
the final found curbs. 

The main contributions of the proposed algorithms are:

� The usage of semantic information for obtaining 
ROI of curb.

� The extraction of the curbs using traditional 
LiDAR methods is done only inside the previously 
found ROIs, thus increasing the time performance.

� Algorithm is flexible: behaves well in many types 
of urban road scenarios: straight roads, curb roads, 
fork roads, intersections.

II. RELATED WORK
Traditional camera based methods for the boundary of the road 
detection use the vanishing point as reference [7], [3]. In [7] 
authors considered the edges which converge to vanishing point 

978-1-5386-8445-0/18/ $31.00 © 2018 IEEE 301



as potential lanes or curbs edges found in urban scenarios. 
Authors in [3] also included the color distribution in order to 
detect the navigable road regions contoured by any type of road 
delimiter. 
In [24] authors proposed a digital elevation map constructed 
onto stereo data. They found potential curb cells applying a 
Canny edge detector to the map and fitted with RANSAC a 3rd 
degree polynomial to data the curb cells. Same authors in [23] 
use a spline interpolation method to represent curb segments 
which appeared to increase curb detection accuracy. Although 
in the final fitting stage many outlier points were filtered, the 
usage of camera sensors for road boundary detection still has 
limitations.
More accurate results for road boundary detection have been 
obtained using a 2D or a 3D LiDAR sensor. The difference 
between a 2D and a 3D LiDAR sensor is that 2D sensors have 
only one laser scan line and a limited FoV, while a 3D LiDAR 
has a FoV of 360 degrees and more than one scan line. 2D 
LiDAR are sometimes preferred because they are less 
expensive than a 3D one. In [13], authors used two 2D Lidar 
sensor which had the point cloud data projected onto the 
vehicle’s front ground plane in order to detect curbstones and 
lanes. They applied a sliding window technique from which a 
convex angle detection criterion was used to select the curb 
edges. In the end a path planning is made on local lane fitting 
and prediction.  Although 2D Lidar methods are fast, they are 
hard to use because of their need to perform temporal fusion
between consecutive frames in order to obtain a complete 
representation of the environment. To cope with this problem, 
3D Lidar sensors are preferred for autonomous driving tasks.
An approach for detecting curbs from 3D LiDAR data includes
representing the data under the form of a grid map (as in [4],
[6], [10], [19], [7], [22] and [8]). The spatial features used in 
order to find curb proposals are elevation difference (as in [19],
[10], [6] and [7]), curvature (as in [4], [8], [15]), density (as in 
[4] and [6]), slope [19]. Temporal persistency is also taken into 
consideration for further curb cells filtering in [4] and [19]. In 
the end, potential curb segments are generated by fitting a curve 
model onto them. Authors in [19] used a multi-model RANSAC 

in order to find the best fitting polynomial to the proposed curb 
points. In [10], authors fitted 4th order Splines to curb points in 
order to obtain the final curbs representation. Curb detection 
using the grid based representation method however does not 
offer the same accuracy for sparse LiDAR point clouds as in the 
case of a scan line based method. To address the sparsity 
problem authors in [8] proposed combining stereo sensor’s 
dense non-accurate data with laser scanners sparse accurate
data. Another problem when using a grid based approach is the 
possibility of the presence of multiple objects at different 
elevations in the same curb cell.  A previous solution for 
addressing this problem was proposed in [12] which implied 
using a modified grid representation called a multi-volumeric 
grid structure. The structure was capable of capturing multiple 
objects intervals found at different elevations in the same cell.
In [2], [ 21], [20], [14], [16] and [11] authors detected urban 
road boundaries using a scan line technique.  At basis, scan-line 
based methods for boundary extraction include sliding window 
sweeping of each LiDAR ring and the extraction and filtering 
of each spatial cue. In the end, the temporal persistency of curbs
is used and a final curve is fitted onto data.  The most used 
spatial feature is the elevation difference (as in [2], [21], [11]
and [20]), followed by the normal orientation [14], slope [20] 
or angle [2]. These features however do not provide context 
information which can decrease the false positive rate from the 
proposed potential curbs. Many of these false positives come 
from the vehicles wheel tires or even stairways which have 
similar aspect to that of a curb. Adding temporal persistency is 
a viable solution [18] which solves part of the problem but is 
inefficient for forked roads. A better solution to these problems 
would be using context information as [2] stated. A possible use 
of context information for curbstones using only LiDAR data is 
checking the height smoothness of a region of points around the 
proposed curb edges as in [11]. This method filters out part of 
the false positives but will increase the number of false 
negatives as in regions where the curb is followed by a grass 
area this statement will no longer be valid. 
In order to add context information, an enrichment of the 
LiDARs data is obtained by fusing it with camera information 

Fig. 1. The processing pipeline of the proposed system.
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as in [17], [5], [26]. In [5], authors used a 2D Lidar combined 
with a camera and proposed a curb detection and tracking 
algorithm. Authors in [17], used the normal map of the scene 
surfaces created by combining image features with 3D LiDAR 
depth information. In the end, in [17], dynamic programming 
was used in order to link curb points and to obtain the final 
curb’s position proposals. More recently, in [26] an approach 
for road detection was proposed by combining road proposals 
from preprocessed camera images using a DNN and from a 
scan-line-based Lidar road detection. A high level fusion was 
done in the end using a CRF. 

III. PROPOSED SOLUTION

We propose a top down approach for detecting the curb edge 
points. The stages of our method can be seen in figure 1, where 
SL stands for Scan Line and n is the maximum number of scan 
lines coming from one or more LiDAR sensors. First, a multi-
camera semantic segmentation is performed using an ERFNet[1]
convolutional network. The resulted images are fused with 
LiDAR’s point cloud in order to assign a semantic class to the 
3D points. This association will reduce the search area for a 
potential curb in the 3D space. Next, curb ROIs are selected and 
refined in each LiDAR scan line using only the semantic 
information from images. We search for the potential curb edge
points inside each ROI. Using 3D features computed from the
high accuracy LiDAR’s measurements, we are able to find the 
final curb proposals and to increase the precision of the semantic 
curb detection. A polyline representation is used in the end to 
represent the curb’s lower and upper edges.

The proposed method is split in five main steps:

A) 3D points semantic enhancement - where the low 
level fusion between LiDAR data and semantic images 
is performed.

B) Curb ROIs selection and extraction – in which curb 
ROIs are defined based on the semantic labels of the 
points on each LiDAR scan line.

C) Curb ROIs refinement – where each ROI is expanded 
in order to increase the chance of enclosing inside it a
curb’s upper and lower edge points.

D) Spatial features extraction and filtering – in which the 
final curb edge points for each ROI are identified.

E) Curb reconstruction – where the final polyline 
representation is built.

A. 3D points semantic enhancement
A fisheye multi-camera network capturing the entire 
surrounding view of the environment is available. The entire
process of obtaining the semantically enhanced 3D point cloud 
is described in more detail in [9].

We used ERFNet[1] to segment the images coming from the 
intelligent vehicle’s cameras. ERFNet is an efficient semantic 
segmentation architecture specially designed for autonomous 
driving tasks. It runs in real-time and offers high quality output.

For the training stage, the network was fed with annotated 
images from the car’s cameras which captured various urban
scenarios. The color coding of the semantic classes matches the 

one from the Cityscapes dataset [25] to which we added two new 
classes: CURB class, LANE_MARKINGS class. In the end, 
two basic class categories can be depicted: GROUND class
category (i.e. ROAD, TERRAIN, SIDEWALK, GROUND,
PARKING, LANE_MARKINGS, CURBS) and OBJECT class 
category (i.e. the remaining semantic classes).

Fig. 2.   Obtaining the unrefined curb ROIs.

After obtaining the semantic images for a frame in the testing 
stage, we fuse them with the 3D point cloud. For this, we project 
the LiDARs point cloud onto them. The color of the semantic
image pixel a 3D point has fallen onto will give its
corresponding semantic class. Because the field of view from 
the car’s cameras was overlapping at sides, LiDAR points might
receive in some cases two distinct semantic classes. In order to 
solve this issue, we chose the class with the maximum number 
of appearances from the images neighborhoods.

Because the LiDAR might perceive objects which are not 
visible from the camera’s view, false associations might appear.
An occlusion handling is performed to solve this problem and 
points which belong to an occluded object will not be labeled.

B. Curb ROIs selection and extraction
Using only the 3D points semantic information we are able 

to extract regions of interest from the point cloud where real 
curbstones are very likely to reside. The result of this step is 
illustrated in figure 2.

A point cloud is a set of 3D points denoted by P. A scan line 
is an ordered subset of points from P denoted with SLi,, where i
represents the number of a LiDAR sensor’s layer such that
i = [ 1, maxNrLayers ]. The order is given by the column 
number of the points inside it. A point from SLi is denoted with 
sl_pi,j, where j = [1, size(SLi)] denotes the order of the point in 
the layer.

A ROI is defined as a pair of points from a SLi and is 
denoted with Ri,k =( , ), where i is the index of the scan 
line the ROI is found on and k is the index of the ROI found on 
that scan line SLi. R represents the set of all Ri,k . The following 
equations summarize the previously explained concepts:

(1)

(2)

Each ROI point represents one of the endpoints of a 
consecutive region of 3D points. expresses the endpoint 
found near the ROAD side and is the endpoint found in the 
neighborhood of a SIDEWALK or TERRAIN class. In order to 
find a consecutive region and select a ROI Ri,k we sweep each 
LiDAR scan line SLi in an ordered manner and we analyze the 
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semantic labels of the points encountered. There are two cases 
which can be encountered when selecting a curb ROI:

1. when finding a region composed of consecutive points 
labeled as CURB class. Such a region is valid only if 
it has at least 2 points.

2. when a semantic class transition between a ROAD 
labeled region and a TERRAIN or SIDEWALK 
labeled region is present.

Fig. 3. Expanding curb ROIs for a LiDAR scan line.

The first case corresponds to the most frequent method of 
extracting a ROI using semantic information. A ROI R of a
sequence of CURB labeled points from SLi, scan line will be 
constructed as follows: 

� will be set to the point sl_pi,j when
sl_pi,j.label = CURB class and either
sl_pi,j+1.label = ROAD class or sl_pi,j-1.label =  
ROAD

� will be set to the point sl_pi,j when sl_pi,j

.label = CURB class and either sl_pi,j+1.label =
SIDEWALK | TERRAIN class or sl_pi,j-1.label
= SIDEWALK | TERRAIN class.

Notice that we restricted the ROI for the detection of curbs by 
forcing it to be around a ROAD and a SIDEWALK or 
TERRAIN labeled neighborhoods. This is because the output 
of the semantic segmentation may include false positives or 
even other curbstones which do not delimit the road area.

The second case for curb ROI selection appeared as a 
necessity because small or far distance curbs are sometimes 
omitted by the semantic segmentation while the LiDAR can still 
detect them accurately. For this case, the presence of a potential 
curb is noticed as a transition between a ROAD labeled region 
and a SIDEWALK or TERRAIN labeled region. Given a scan 
line SLi such a transition is identified when: sl_pi,j.label =
ROAD class and sl_pi,j-1.label or sl_pi,j+1.label has SIDEWALK 
or TERRAIN class assigned to. In this case, a ROI Ri,k will be 
built as follows:

� will be set to the point sl_pi,j from the scan 
line SLi , where sl_pi,j = ROAD class.

� will be set to the point sl_pi,j-1 or sl_pi,j+1 

the scan line SLi  which has either a TERRAIN 
or SIDEWALK label assigned to.

C. Curb ROIs refinement
Because the search for a curb’s edge points will be done 

only inside the regions of interest, a ROI should contain
sufficient details in order to capture the entire structure of a 
curb. The lower and upper edges of the curb along with a part 
from its neighboring regions should be present inside the ROI 
for a precise curb detection.

We noticed that the CURB class semantic information 
assigned to 3D points lacks precision and a ROI may not 
capture the entire information needed for further processing.
Also, all the ROIs detected in the transition ROAD-
SIDEWALK or TERRAIN case will have only two points 
which are not capable of encapsulating all the curb structure as 
it can be seen in figure 3. In order to solve this issue, we expand 
the previously detected ROIs. For this, we use two window of 
size ρ1 (used to expand ROIs found using the first previously 
mentioned case) and ρ2 (used to expand ROIs found using the 
second previously mentioned case) expressed in meters. This is 
because the region of points covered by the ROIs which were 
created based using the transition criterion have only two points 
inside them which cover a very small 3D space area and a 
greater expansion is needed for them. In general, for a ROI Ri,k,

will be expanded with size ρ1 or ρ2 towards the ROAD side 
and will be expanded with size ρ1 or ρ2 towards the 
TERRAIN or SIDEWALK side.

The refinement of the curb ROI proposals is necessary for 
obtaining the position of the curb in 3D space with higher 
accuracy. Figure 3 illustrates this process. The red lines delimit 
the primary unrefined curb ROIs and the dotted blue lines show
the new ROI limits defined after the expansion with an 
assumed fix window size. The horizontal line above the 
Column axis is the projection of the points semantic labels onto 
the Column axis. ’s will move towards the ROAD labeled 
region while ’s will move towards the TERRAIN or 
SIDEWALK labeled region.

Fig 4. Candidate curb transversal regions illustration 
extracted using spatial features.
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D. Spatial features extraction and filtering
Inside each previously expanded ROI we next search for the 

curb’s lower and upper edge points.
We define a curb as a monotonically ascending region of 

points which has a standard height interval (represented by the 
elevation difference feature) and a vertical structure relative to 
the ground plane (represented by the angle feature). To 
encapsulate this definitions, we first search for monotonically 
ascending point regions inside each ROI Ri,k. A sweep starting 
from is performed. A region where the first derivative of 
the points height maintains positive will be considered as a
potential curb’s transversal region. We denote with CPi,k,m the 
monotonically ascending points region, where i represents the 
index of the scan line SLi, k is the index of the ROI found on 
that scan line SLi, and m the index of the CP such that m = 
[1,maxNrCPsInAROI]. We denote as the point with 
the lowest elevation from the monotonically ascending region
and as the highest elevated point, such that:

(3)

corresponds to the potential curbs’ low edge point 
while to a curb’s high edge point (see Figure 4).

For each CPi,k,m we compute and filter two features which 
were described in the previously stated curb definition:

a. The elevation difference
In order to find the height h of the potential curb, the
absolute difference between the endpoints

and  is computed. The resulted value should 
be in a predefined curb height range as shown in 
formula (4). The range is a fixed interval 
[ representing the typical height of an 
urban curb. refers to the minimum height of a 
small urban curb. is considered to be the 
maximum elevation of a regular sized curb encountered 
in an urban environment.
The filtering of h is done as:

≤ abs( - ) ≤ (4)

b. The angle
Because of the way a LiDAR scan line is projected onto 
a curb region, the vertical structure of a curb can be 
considered by looking from a bird’s eye view 
perspective. In [20] the authors described θi,k,m as the 
angle between two vectors originating from the same 
point. The angle was used to search for the lower curb 
edge point.  By sweeping a laser scan line and 
computing the θi,k,m for each point encountered, the 
lower curb edge point was found checking the 
condition θi,k,m < θTH., where θTH is a threshold expressed 

in degrees. In this article, this feature will be computed
only for the lowest endpoint from each 
candidate curb region CPi,k,m. The formulas from [20] 
are used and adapted for our case:

[ (5)

[

Fig 5. Obtaining the final curb points.
Both tests should be passed in order for a potential curb’s 
transversal region CPi,k,m to become a valid curb. In the case 
more than one CPi,k,m satisfy the previous conditions, the 
candidate curb region found closest to is selected in the end 
as final curb region. By using these simple heuristics on each 
candidate set of points we are capable of defining the final curb
edges points. A result after performing step D can be seen in 
figure 5.
When we find the final valid CPi,k,m for a ROI Ri,k , the endpoints

and of Ri,k will migrate towards the low and high 
endpoints of CPi,k,m. This is expressed as: and 

There are cases when a set CPi,k for a ROI Ri,k might be empty
or when no CPi,k,m has passed the two features tests. These cases 
appear mostly when a false positive curb is encountered in the 
semantic image. Using the values of the spatial features 
computed from the high accuracy LiDAR measurements for 
each CPi,k,m, we are capable of eliminating most of the false 
positives, thus correcting the camera semantic information. In 
the case of no valid CPi,k element, the region Ri,k will be 
discarded.

E. Curb reconstruction
Given a set R of previously found pairs of curb lower and upper 
edges, we are interested in connecting its components based on 
the distance between them. For this we try to construct a graphs 
forest such that a graph , , represents an entire curb 
segment. A node of is represented by an element from the set 
R. An edge from is a connection between two nodes which 
are most likely from the same curb segment.
A graph must have at least one two points connected with an 
edge in order to be considered a real curb segment.  For each 
curb region node, we search for two nearest nodes which are 
found in opposite directions. Consider Ri,1 and Ri,3 two close 
neighbors of the node Ri,2, where either Ri,1 or Ri,3 is the closest 
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neighbor of Ri,2. v1 and v3 are two vectors originating both in
Ri,2 and constructed as follows:

             [ (6)

[

In order to consider edges between and , the 
following conditions should be met:

(7)

(8)

is a threshold function which makes sure the neighbors of 
the middle point are in a valid range. X is the range of the
point Ri,2 computed as the Euclidean distance between the 
sensor and Ri,2. was computed from observations taking 
into account the distance between consecutive scan lines at 
various ranges:

(9)

The output of is expressed in meters. 
A polyline is drawn for each edge of the graphs G.

IV. EXPERIMENT RESULTS
For evaluating the feasibility of the proposed, we ran it on a 
video sequence with real urban scenarios which contained 3037 
frames. The video was captured using an intelligent vehicle, 
who’s sensors infrastructure is presented in subsection A.
Because the sparsity between points from the same scan line for 
a LiDAR sensor is dependent on the distance from those points 
to the sensor, we have limited the curb detection range to 60m 
front, 40 m rear and 30m left and right. In our experiments we 
set the parameter thresholds to: ρ1 =0.7 m, ρ2 = 1.5 m, =
4 cm, = 25 cm,  θTH = 150̊ .
The shape of a road is identified from a bird’s eye view 
perspective and can be either: straight, curved, intersection. 

A. Vehicle sensors infrastructure 
The video was acquired by driving an intelligent vehicle in an 
urban European environment and by recording the data 
received from the following car sensors:

- a multi-camera network consisting of four fish-eye 
cameras which capture the surrounding view of the 
vehicle

- five 3D Lidar sensors, three of them having 32 layers 
each (32 scan lines) and the rest of them, 16 layers 
each (16 scan lines) 

The position of the sensors onto the test vehicle can be seen in 
figure 5. 

Straight
Road

Curved 
Road

Intersected 
Road

PPV 87.53% 86.22% 81.31%
TPR 71.19% 63.09% 50.98%

B. Runtime evaluation
The proposed algorithm was written and optimized in C++.
Each video frame was processed on a normal PC which had an 
Intel i7-3770K CPU with a frequency of 3.50GHZ processor.
The semantic algorithm runtime was almost 12ms per camera 
image. The fusion between the LiDAR data and the sensor was 

for a 16 layered LiDAR sensor.
The average processing time for a frame using our curb 
detection method( which starts from the Extract Ground 
Classes pts (see Figure 1) pipeline stage) was .

Fig 5. Vehicle’s sensors infrastructure.

C. Precision and recall evaluation
The testing video contained several intersections and many 
straight and curved roads.
In order to evaluate the systems performance, we compute the 
following coefficients:

- The positive predictive value (PPV) – also called the 
precision - represents the proportion of curbs detected 
correctly from all the curbs detected using the 
proposed solution in one frame and is expressed as:

- The true positive rate (TPR) – also called the recall
- represents the proportion of curbs detected correctly 
from all curbs which have been or should have been 
detected in one frame by the system and is expressed 
as:

TP represents the True Positive number which tells us the 
number of correctly detected curb regions. FP represents the 
False Positive Number which indicates the number of wrongly 

Table 1. Curb detection results evaluation for different 
types of urban road scenarios.
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detected curb regions. FN is the False negative number which 
identifies the number of true curbs which have been omitted 
from the detection. The results for computing these metrics for 
each curb category encountered in the video sequence can be 
seen in Table 1.
The precision ratios were over 80% for all road shapes. In order 
to increase this coefficient, the number of False Positives 
should be reduced as much as possible. We noticed that 
sometimes the semantic information offers erroneous curb 
classifications of regions and if a structure resembling to that of
a curb is still present, the used spatial features are not able to 
filter it out (e.g. railways). A solution would be to increase the 
accuracy of the semantic segmentation. Another would be to 
add extra features (e.g. curb continuity constraint, temporal 
persistency) in order to make the spatial filtering more 
assertive.
The recall ratios for the road shapes gave lower results 

compared to the precision coefficient value. This is because 
curb points found at a distance farther than 30m, tend to be 
omitted because of the sparsity of the LiDARs sparse data.
Solutions would be to either increase the expansion threshold 
or to increase the precision of the semantic segmentation.

Figure 6 captures the practical results of the proposed methods 
for various road types. Two examples for each road category is 
presented in each column. In the 3D space, where the LiDAR 
point cloud is represented, the points detected and the polylines 
between them are drawn with yellow on the black background. 
The car is visible as a 3D white box. We associated to each 3D 
scene the front camera images which had the curb polylines 
projected with red. Under each front camera image the result of 
the semantic segmentation is seen. Next to the two images, a 
bird’s eye view showing the curb segments is presented for a 
better understanding of the scene.

V. CONCLUSIONS

In this article, a new approach for detecting urban curbs was 
proposed. The main contribution of the article is the usage of 
semantic information from images to provide context in order to 
reduce the search space for 3D curb proposals. The semantic 
labels were obtained applying a deep learning approach to 
cameras images while the 3D features were captured using 
traditional curb detection methods for a LiDAR sensor. By 
combining the high accuracy of the LiDAR and the camera’s 
semantic information, the proposed algorithm was able to reduce 

Fig. 6. Results of the proposed method for different types of urban road scenarios.
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the search in the 3D space for curbs detection and to offer a more 
precise classification of curb region.

Possible refinements can still be made in order to increase its 
performance. Future improvements include adding a curb
continuity constraint between consecutive LiDAR scan lines or 
making use of the temporal persistency of curbs in consecutive 
frames. Other improvements include creating adaptive 
parameters in order to escape current parameter tuning.
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