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Abstract—This paper discusses the architecture of an environ-
ment perception system for autonomous vehicles. The modules
of the system are described briefly and we focus on important
changes in the architecture that enable: decoupling of data
acquisition from data processing; synchronous data processing;
parallel computation on GPU and multiple CPU cores; efficient
data passing using pointers; adaptive architecture capable of
working with different number of sensors. The experimental
results compare execution times before and after the proposed
optimizations. We achieve a 10 Hz frame rate for an object
detection system working with 4 cameras and 4 LIDAR point
clouds.

I. INTRODUCTION

As the world prepares for the first stages of the public adop-
tion of automated vehicles, stated to occur in the beginning of
the 2020s [1], there is an expanding need for research towards
comprehensive, redundant and accurate software solutions for
environment perception. Their development is linked with the
potential of bringing forward both significant improvements
to the quality of life, as well as new challenges for the global
economy [2].

In order to provide the best description of a vehicle’s
surrounding environment the system must acquire, process
and summarize information covering the entire area around
the car, captured with a multitude of sensing devices, offering
measurements that complement each other, in terms of range,
detected features, etc. Redundancy also stems from the use
of a wide array of devices, which must be coupled with the
ability of the system to provide stable results, even at a reduced
fidelity, in the case of one or more partial or complete failures.

To this end, visible light cameras provide rich information
about the surrounding environment which enables tasks such
as pixel-level segmentation, where each pixel is assigned to an
object class based on a variety of factors. Besides issues such
as varying illumination conditions and occlusions, their princi-
pal downside is that without additional, often computationally
expensive processing, the output data is bi-dimensional, which
is insufficient for an autonomous-grade perception system.

To overcome this limitation, Light Detection And Ranging
(LIDAR) technology has been popularized in recent years,
partially due to significant reductions in the cost of the devices.
LIDAR scanners operate by firing non-visible LASERs and
measuring the time-of-flight of the reflected beam, thus creat-
ing a 3D scan of the environment. Some sensors have moving

scan heads which capture a 360◦ view of its surroundings. The
output of such devices is commonly referred to as a 3D Point
Cloud or scan, and is comprised of a number of points, often
expressed using Cartesian coordinates, with some additional
information such as reflectance.

II. RELATED WORKS

Before availability of cost-effective LIDAR technology be-
came available, most solutions, such as the one presented in
[3], relied on stereovision approaches for reconstructing 3D
information from the scene captured with multiple cameras.
This process requires significant computing resources or ded-
icated hardware in order to achieve accurate results.

One of the most successful stereo-based systems, detailed
in [4], used a stixel-based representation for reconstructed 3D
data, which, alongside monocular cameras, RADARs and a
high accuracy digital map achieved performance levels that
allowed the researchers to complete a 103km journey with
complex scenarios.

In [5], the authors present an algorithm for grid-based
environment particularly suited for urban areas. Here, they
use a ground plane estimation technique to differentiate points
scanned by a high density LIDAR device into ground and
obstacle points. A 2.5D stixel representation enables further
classification of curbs and scene objects.

The authors of [6] highlight the important role the design of
a system’s architecture plays in terms of the overall robustness
when coping with world uncertainties. The article presents a
summary and investigation of several existing architectures. In
[7] and [8] a distributed system architecture for autonomous
vehicles, based on the AUTOSAR standard is presented in
detail, including the assignment and interaction mechanisms
of the component sub-systems.

The remainder of the paper will go over the operation of
each of the modules that comprise our proposed perception
system. For more technical details about the system and the
processing modules the reader should consult the original
publication from [9]. In this paper we focus on improvements
to the architecture and execution time optimizations. Section
IV provides performance benchmarks of our system, before
section V, which summarizes our work.

III. PROPOSED ARCHITECTURE

Figure 1 illustrates the overall architecture of the proposed
system. It can be observed that following the data synchro-
nization and standardization module (Flow Manager, left) the978-1-5386-8445-0/18/$31.00 c©2018 IEEE

223



Fig. 1. Overview of proposed system

system can be differentiated into two separate processing sub-
chains: one for processing 3D LIDAR measurements acquired
by M sources (top, blue) and one for 2D image data, captured
by N cameras (bottom, green). Most of the modules operate
on measurements originating from a single sensor and need to
be multiplied accordingly.

The intermediary results from both sequences is finally
aggregated in the final Sensor Fusion module which outputs
a list of classified objects along with a fused 3D cloud,
composed of points enhanced with semantic and appearance
information. Auxiliary information such as the movements of
the ego-vehicle and the calibration parameters for the sensing
devices is aggregated by the first module and linked to the
data before initiating a processing cycle.

In keeping with the overarching view for the implemented
perception system, which mandates that all sensory informa-
tion is delivered synchronously for processing, there is an
explicit need to ensure this at a software-based level, as the
complex data collecting system cannot offer this guarantee. To
meet this requirement, the Flow Manager aggregates data from
all available sensors into so called data batches. Each sensor
measurement can be aggregated into at most one data batch,
or it can be dropped completely if the overall batch does not
satisfy some imposed timing constraints.

One of the most important design decisions taken towards
optimizing the performance of the entire processing chain
as a whole was using only data pointers as means of inter-
module communication. This approach comes with obvious
benefits, as large data, such as 3D scans or images are not
copied when being passed between modules, but also requires
a globally consistent set of rules in terms of data allocation/de-
allocation. To this end, we have opted for a strategy where the
module introducing new data into the processing chain, be it

raw measurements or intermediate results, is solely responsible
for clearing the memory when appropriate.

As the computing hardware available for both offline devel-
opment and online testing is fitted with a dedicated Graphics
Processing Unit (GPU) beside the multi-core CPU, some of
the modules along the image processing sub-chain, namely
Image Undistortion and Image Segmentation, are designed to
exploit this resource. Currently, the tasks carried out by them
are optimized for nVidia GPUs using the CUDA API. As
copying the input data from the main system memory to the
internal GPU memory is a potential performance bottleneck,
this is done only by the first module in the GPU sub-chain,
which then passes along the pointers for GPU memory.

The rest of the processing is done on the CPU, which further
contributes towards true parallelism, as the computations are
done on separate devices. 3D Point cloud processing can be
also migrated to the GPU, but since it would make that singular
device a resource contention point while the CPU would
be under-utilized, we have opted for the current approach.
For increasing the utilization of the processor, some of the
processing modules feature code sections paralleled using the
OpenMP API.

Figure 2 presents the most frequently encountered sequence
of processing steps for a data batch. After all inputs arrive
at the Flow Manager, each LIDAR scan is motion corrected
sequentially, while, in parallel on the GPU, each image un-
dergoes Image Undistortion followed by Segmentation. Once
all clouds are corrected, the Point Cloud segmentation process
can start. Moreover, at this point data fusion can take place for
the images for which the segmentation was completed. Finally,
objects can be assigned classes after all images were included
in the fusion process.
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Fig. 2. Typical timeline of an execution cycle of the processing chain (time progresses left to right)

A. Data input constraints

Flexibility of our implementation was always a factor
throughout the development process, yet achieving high com-
putational performance often imposes some constraints. The
inputs to our perception system are provided by a proprietary
data acquisition system which meets our requirements. The
processing chain does not feature hard coded sensor arrange-
ments, and can be initialized at runtime with a varying number
of measurement devices, for each of which calibration data is
provided.

There must always be at least one camera and one 3D
scanner available. The module that interfaces with the acqui-
sition system collects and attaches the relevant intrinsic and
extrinsic calibration information to the data batches. In terms
of image data, the acquisition system guarantees that only
valid, complete and in-order sets of images from all available
detectors are sent for processing, and that frames within a set
were captured virtually synchronously. LIDAR data provided
is ensured to be timestamped at an individual point level, and
that the clocks of the scanners are in-sync with the processing
PCs. Moreover, the detectors’ scanning motion is roughly in
sync.

B. Flow Manager

The principal mechanism for controlling the operation of
the proposed processing chain resides in the data flow manage-
ment module, referred to as the Flow Manager (FM). It serves
multiple purposes, with the main goal of aligning the incoming
data’s structure to the one employed by the optimized chain.

The main functionalities of Flow Manager are:
• Create data-batches - collect and match input from mul-

tiple sensors
• Data synchronization - call other modules in a syn-

chronous manner, regardless of asynchronous data acqui-
sition

• Decoupling of data acquisition and data processing - sep-
arate threads for listening to new data and data processing

Creating the aforementioned synchronized data batches,
which contain measurements from all connected sensors, im-
plicitly requires some form of data buffering, in order to store
and aggregate incoming samples. This approach can introduce

delays and computing overhead, however, we have determined
that their magnitudes are acceptable in the context of our
solution. LIDAR scans are stored in a per sensor buffer with
a hard coded depth of one, in order refrain from processing
too old data.

In actuality, for 3D data, the module keeps three buffers
for each detector: an accumulation buffer where new data is
always placed, a multi-detector consistent buffer which con-
tains temporally coherent scans from all the sensors meaning
the time difference between the first and last acquired scan is
less than an imposed threshold, ThLIDAR

LIDAR (eq. 1) and a final
in-use buffer which holds the consistent buffer incorporated in
the data batch currently being processed. Scans which are not
placed in the consistent buffer are eventually discarded.

ThLIDAR
LIDAR ≥ max (|ts (scani)− ts (scanj) |) ,

∀i ≤ M, j ≤ M, i �= j (1)

Before storing incoming point clouds into the accumulation
buffer, we also perform a pre-processing step by converting
the received data structure, in order to keep only valid return
measurements - 3D points for which the scanner’s receiver
actually registered the reflected laser beam. This step has less
to do with memory constraints, but instead it simplifies and
speeds-up further procedures.

Handling image data is done using a similar scheme, which
takes into account the higher (3x) throughput. For this, the
consistent buffer is replaced with a image queue structure,
which holds a number of temporally coherent sets of images,
added each time all the accumulation buffers associated to
active cameras receive new frames. As previously mentioned,
our current system works under the assumption the cameras
are hardware synchronized, and, as such, a set containing
a frame from each active camera is intrinsically assumed
temporally coherent.

Preparing a new data batch for the processing chain consists
of searching the image queue for the first set that was captured
after the LIDAR reference point, within a given time limit,
ThLIDAR

CAM (eq. 2). Here, we do not use the absolute time
difference, as the ordering of the events is relevant. As the
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queue is time ordered, this procedure is fast, with too old
image sets being marked for removal. The reference point is
selected as either the start or the end timestamps from one of
the connected scanners, this being a user selectable property.

ThLIDAR
CAM ≥ ts (camera) − ts (scani) ≥ 0, i ≤ M, (2)

The chosen image set’s timestamp also functions as the
batch’s master timestamp, which will be used for tagging
the final output. The Motion Correction modules use this
information for temporally aligning 3D data to the images,
for which they require ego-motion data, also aggregated by
the FM upon batch creation.

1) Operation modes: The Flow Manager module supports
three types of operations: single threaded, multi-threaded and
signal-based.

• Single threaded use consists of sequentially sending the
data batch’s components to the appropriate processing
modules, on a single thread, belonging to the data acquisi-
tion system. This means it is a blocking operation, which
can be useful in the context of offline data exporting,
but it can severely affect the online performance of the
system.

• Multi-threaded operation is much better-suited for online
operation, as only the buffering and data batch aggre-
gation operations take place on the acquisition system’s
threads. Processing is split on two additional threads, one
for 2D image processing and one of 3D data processing.
This decoupling is one of the key elements contributing
to the overall system’s performance, including in terms of
flexibility of running on lower-spec computing hardware,
where potential data batches are inherently dropped until
processing finishes.

• While in multi-threaded mode the generation of a new
data batch can only be triggered by the formation of a
new LIDAR consistent buffer, the signal-based augmen-
tation can increase the overall throughput by triggering
a new batch’s creation when the previous one finished
processing. This mechanism requires a signal to be passed
back from the last processing module in the chain, in
order to check whether a valid, non-processed consistent
buffer is available. If not, default multi-threaded operation
resumes.

C. Image processing modules

1) Image Undistortion: This module is responsible for
undistorting the fisheye images from the cameras. We provide
only an overview of the method used and show improvements
to the implementation.

A camera model proposed by Geyer [10] and Cristopher
Mei [11] is used. Cameras are calibrated using the Kalibr tool
[12]. Extrinsic calibration is performed using markers and a
special calibration room. Undistortion is performed by creating
a virtual surface in front of the camera, sampling points from
this surface with a given resolution, projecting the points onto

the original image and interpolating the color values. Mainly
two types of projection are possible: planar (projective) and
cylindrical. We have found that the cylindrical projection offers
a high horizontal field of view while introducing a limited
amount of distortion.

The current implementation runs on the GPU. A lookup
table is generated which specifies the position to which each
of the surface points are projected. This table needs to be
generated only once and during the online processing a single
pass over the image is performed, the stored positions are
retrieved and the color values are interpolated using bilinear
interpolation. The resulting image is kept in the GPU memory
and sent to the next module for segmentation.

2) Image Segmentation: The image segmentation operates
on the undistorted fisheye image and provides semantic class
information at pixel level. A CUDA implementation of the
ERFNet [13] is used for this task. The classifier weights were
tuned on our own dataset with labeled images.

Optimizations performed for this module include: reducing
the image resolution to half along the rows only, or both along
the rows and columns; receiving the input image directly in
the GPU memory from Image Undistortion; paralellizing post-
processing operations which transfer the resulting image from
the GPU memory to the host memory and constructing the
semantic label image; avoiding constructing the color label
image when not necessary.

D. Point cloud processing modules

1) Motion Correction: The Motion Correction module ad-
dresses the intrinsic distortion introduced in LIDAR 3D scans
when the platform to which the scanners are rigidly mounted
is moving. Of course, without feedback from a detection and
tracking solution regarding moving targets, only distortions
due to the ego-movement can be handled. Our current ap-
proach is a slightly updated version of the one presented in
[9].

For correcting a point cloud acquired over a time period
to the master timestamp of the data batch, 6-Degrees of
Freedom ego-motion data is required. Firstly, all the scanned
points are individually transformed to a single time instance
representation (that of the end of acquisition), based on their
respective timestamps, after which a common transformation
is applied to all points in order to bring them to the time
instance of the image acquisition (the batch master timestamp).
The movement undertaken by the ego-vehicle between the end
of the scan and the master timestamp is also outputted to the
Point cloud-based object detection module.

2) Point Cloud Segmentation: The corrected point clouds
are fused and a Digital Elevation Map is created. Object
cuboids are extracted based on a version of the approach
presented in [14] adapted to LIDAR point clouds. The cuboids
without object classes are sent to the fusion module where
classification is performed based on the fusion between the
point cloud and the semantic segmentation from the image
views.
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Fig. 3. Left: Motion corrected 3D points projected onto the undistorted image of the frontal view; Right: Detected and classified objects in the bird’s eye
view; blue rectangles represent cars; Arrows indicate correspondences between objects from the two views

E. Sensor Fusion

The sensor fusion module is responsible for generating the
Spatio-Temporal Appearance-based Representation (STAR).
The 3D point clouds originating from different sensors are
fused together with the semantic segmentation from each
camera view. Since the order in which these results are
available is arbitrary, the fusion module must treat all cases in
which input data can arrive.

Data is received and logged from each sensor. Data from
each sensor should arrive once during a processing cycle.
This is assured by the Flow Manager module. Fusion happens
when all connected LIDAR point clouds have arrived and a
segmentation is ready. The points from all the LIDARS are
projected onto the segmented image and the points which fall
inside the image will get a semantic class.

Wrong associations between points and semantic classes
happen when an object visible by the LIDAR is occluded in the
image view. These cases are detected and the corresponding
semantic labels are marked as unreliable (occlusion handling).
Points with multiple labels from different image views get the
label from the view in which the projection is closer to the
image center.

If all sensor input from connected modules has arrived, we
perform operations which require the complete set. A signal is
sent to the Flow Manager indicating the end of a processing
cycle, enabling it to send the next data batch. We associate
semantic classes to objects detected by the Point Cloud-based
Segmentation module.

Optimizations performed for this module include: avoiding
further processing during fusion when a 3D point clearly
falls outside the image; caching projection coordinates; using
points already transformed into common car coordinate system
instead of transforming them during processing; reordering
of operations to make use of previous calculations; multi-
threaded implementation of the fusion operation.

IV. EXPERIMENTAL RESULTS

Our perception system was developed in the C++ language
and integrated into an industry-standard proprietary, time-
triggered framework with both data playback and live opera-
tion (on the test vehicle). As such, each of the constituent parts
of the processing chain is an independent software module
which is loaded into the runtime environment where they can
be interconnected via the interface.

Offline testing of the perception system was carried out
using recorded data sequences that accurately reproduce the
flow and timing of sensory information. The hardware spec-
ification of the computer running the processing chain was:
Intel Core i9-7900X CPU, 128GB Physical System Memory
and a NVIDIA GeForce GTX 1080 Ti GPU.

The common vehicle setup included 4 cameras and 4
LIDAR scanners (of different capabilities). The inter-LIDAR
scan timing constraint, ThLIDAR

LIDAR, has a set value of 40ms,
while the LIDAR-camera constraint, ThLIDAR

CAM is set to
110ms.

Figure 3 illustrates the 3D measurements from all scanners
projected onto the front camera, with coloring based on
the relative distance to the vehicle (left) and the associated
detected objects, colored according to their class assigned
based on the semantic information (i.e. Blue - vehicles, Red -
Vulnerable Users, Green - Vegetation).

Table I shows the measured execution times of relevant
modules before and after the described optimizations. The
time shown is an average over 500 measurements. The time
required for the whole processing chain is measured in Flow
Manager from the moment the data-batch is sent to the
moment when the ready signal is received from the Sensor
Fusion module.
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TABLE I
AVERAGE EXECUTION TIMES FOR EACH MODULE

Module before after
Image Undistort 12.15 ms 0.97 ms

Image Segmentation 38.18 ms 19.00 ms
Motion Correction 1.52 ms 0.49 ms

Point Cloud Segmentation - 45.00 ms
Sensor Fusion 5.64 ms 1.55 ms

whole processing chain 304 ms 100 ms

V. CONCLUSION

The architecture of the perception system has been reworked
and heavily optimized. The most important changes include:

• Introduction of the Flow Manager module, which assures
data synchronization, creates valid data-batches and de-
couples listening for new input from processing.

• Separating processing modules to CPU-based (mainly
point cloud processing and fusion modules) and GPU-
based (mainly image processing modules) which allows
for their parallel execution.

• Working with data pointers in each module. This avoids
unnecessary data copy operations which add up quickly.
Also forces the owner of the data to manage its lifetime
and encourages data reusage.

• Parallelization of operations performed on the CPU.
• Providing a GPU implementation for image undistortion,

which allows direct access of the resulting image in the
device memory.

• Lowering the image resolution for image segmentation.
• Performing point cloud filtering and transforming the

point cloud to the common car reference frame as soon
as possible. Later operations use this representation.

The current system can be augmented in the future in several
aspects, such as adding a live operation monitor agent that can
detect device failures and reconfigure the system on-the-fly,
providing built-in support for the next generation of Solid State
LIDAR sensors, with the ability of targeted measurements,
aggregating data from other types of sensors such as short/long
range RADAR. However, further performance optimization for
in-car use will remain our priority.
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