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Abstract—Vehicle taillight detection is an important topic
in the fields of collision avoidance systems and autonomous
vehicles. By analyzing the changes in the taillights of vehicles,
the intention of the driver can be understood, which can prevent
possible accidents. This paper presents a convolutional neural
network architecture capable of segmenting taillight pixels by
detecting vehicles and uses already computed features to segment
taillights. The network is composed of a Faster RCNN that detects
vehicles and classify them based their orientation relative to the
camera and a subnetwork that is responsible for segmenting
taillight pixels from vehicles that have their rear facing the
camera. Multiple Faster RCNN configurations were trained and
evaluated. This work also presents a way of adapting the ERFNet
semantic segmentation architecture for the purpose of taillight
extraction, object detection and classification. The networks were
trained and evaluated using the KITTI object detection dataset.

Index Terms—Vehicle detection, taillight detection, segmen-
tation, deep learning, convolutional neural networks, vehicle
orientation detection.

I. INTRODUCTION

Analyzing the state of vehicle taillights is an important topic
in the field of collision avoidance systems since it can inform
drivers of the how other vehicles will behave in the near future.
In autonomous driving systems, knowing the intention of other
drivers can lead to better route planning and can reduce the
number of avoidable accidents. In order to analyze their state,
taillights must be first identified from an image.

Most existing methods focus on detecting taillights using
explicit thresholds to extract red pixels or using a convolu-
tional neural network (CNN) on extracted vehicle bounding
boxes to segment taillight pixels. Since the methods using
explicit thresholds are sensitive to illumination changes and
are incapable extracting taillights from red vehicles, and the
CNN based methods require the detection of vehicle bounding
boxes before passing vehicle sub-images through a large
network, this paper presents a convolutional neural network
for extracting the taillights from vehicles during daytime
scenarios using features computed for vehicle detection. The
main contributions of the paper are the following:

• Proposed a CNN structure that detects vehicles and their
orientation and uses the already computed features and
the orientations to segment taillights.

• Different convolutional neural networks capable of tail-
light segmentation were trained and evaluated.

• The ERFNet model for semantic segmentation was modi-
fied for the purpose of object detection, object orientation
detection and taillight segmentation.

This paper is organized in the following way: Section II
presents other works on the topic of taillight detection, Section
III provides a detailed description of the neural network
architecture, Section IV details the training process and shows
the experimental results of the system and section V concludes
the paper.

II. RELATED WORK

Many of the early systems for vehicle signaling detection
[1]–[5] were capable of extracting taillights only during night-
time scenarios. Other systems capable of extracting vehicle
taillights during daytime have been proposed in [6], [7] and
[8]. Since taillights are predominantly red, most of those
systems focus on extracting red pixels from images. This
approach is very sensitive to illumination changes in the image
and are incapable of extracting taillights from red vehicles.

Almagambetov et al. [6] have proposed a system for sig-
naling detection in which they segment taillight pixels by
first transforming an image into the Y’UV color space and
then thresholding the obtained image to extract red and white
pixels. The obtained regions are grouped into pairs if they
passed two tests. The first test checks if two regions have
similar shapes and sizes and if they are situated at a similar
height in the image. The second test compares checks if two
regions have similar colors by comparing their histograms. The
authors also use Kalman filtering to track detected taillights
in order to reduce false negatives.

In [7]–[10] the authors first detected vehicles and then
searched for taillights within the obtained bounding boxes.
The system described in [7] converting an image into the HSV
color space, uses explicit thresholds to extract red pixels and
then uses the OPTICS algorithm to extract the largest two
clusters. In [8], the authors use the Y-distance test from [6]
and compare the sizes and shapes of regions to detect pairs. In
[10], the authors detect rear lights by using a lamp response
function which measures the chance of a pixel to be a red
component.
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Fig. 1. Network architecture block diagram. An image is passed through a base network that produces a feature map. The feature map is used by a RPN to
produce object bounding boxes which are refined by the classification subnetwork. The classification subnetwork also outputs an orientation of the detected
objects relative to the camera. The rear-view cars are passed through a taillight segmentation head which extracts the taillight pixels.

More robust deep learning based methods for taillight
extraction were proposed in [11] and [12]. G. Zhong et al. [12]
first detect vehicles using fast RCNN [13] and then segment
rear light regions using a fully convolutional network (FCN)
[14]. J. G. Wang et al. [11] have fine tuned an AlexNet network
with ”breaking” and ”normal” training samples to recognize
if a vehicle is breaking or not.

The method described in this paper is a continuation of
[15] in which the system first detects vehicles using a boosting
classifier. Two methods are used to segment the taillight pixels
from detected vehicle bounding boxes. The first method uses
explicit thresholds for detecting red pixels, and the second
method uses a FCN to segment the taillights. The main
drawbacks of the first method are that it is incapable of
detecting taillights from red vehicles and that it struggles with
illumination changes in the scene. The second method is more
robust to illumination changes and is able to extract taillight
pixels from red vehicles but it has the disadvantage of needing
to pass each detected vehicle sub-image separately through a
large network. This work aims to extract taillight pixels from
vehicles with their rear facing the camera by using the same
features for both vehicle detection and taillight segmentation.

III. PROPOSED NETWORK ARCHITECTURE

Vehicle detection is an important part in taillight segmen-
tation since it reduce the number of false positive detections
and reduces the search space for taillights. Different neural
networks were trained in order to detect vehicle taillights.
CNNs such as Faster RCNN [16] and YOLO [17] have
made a big impact in the field object recognition, being
able to accurately extract bounding boxes of several object
categories from images. Inspired by the work Mask RCNN
[18], where the authors have extended a Faster RCNN to use
the same features computed by a neural network for both
object detection and segmentation in order to achieve instance
level segmentation, this work uses one such network to both
extract vehicle bounding boxes and segment taillight pixels.

To reduce the taillight search space and to decrease the
number of false positives even further, only vehicles having

their rear side facing the camera should be processed for
taillight segmentation.

Based on the information above, this work uses a Faster
RCNN to detect vehicle bounding boxes and classify them
based on their orientation relative to the camera. A taillight
segmentation head is then trained to extract taillight pixels
from the detected bounding boxes classified as having their
rear facing the camera. A block diagram of the network can
be viewed in Fig. 1.

A. Vehicle detection

Vehicle detection and classification was done using a Faster-
RCNN. The FasterRCNN is composed of a base network
which outputs a feature map, a Region Proposal Network
(RPN), and a classification network. The RPN proposes a set
of anchor boxes at each feature point from the feature map,
classifies the anchor boxes into one of two classes (object
and non-object) and computes regression offsets for refined
object detection. The classifier assigns different classes to the
detected boxes and further corrects the bounding boxes using
different offsets.

The anchors used to train the RPN have been constructed
using a set of scales and aspect ratios from an original
bounding box of size 16x16. The scales used were {1, 2, 3,
4, 5} and the ratios used were {0.25, 0.5, 0.75, 1} resulting
in a total of 5 ∗ 4 = 20 anchors per point in the feature map.

The following base networks were trained for the purpose of
object detection and classification: VGG16 [19], AlexNet [20]
and a variation of the ERFNet encoder [21]. The problem with
the original ERFNet encoder is that it has only 3 downsampler
blocks, unlike VGG16 which has 4 pooling layer used to
produce the feature map. ROIAlign is used to reduce the
feature map corresponding to each detected box to a fixed
size (7x7 for VGG16 and ERFNet and 6x6 for AlexNet).
In case of the ERFNet encoder, ROIAlign does a much
bigger downscale of the features which leads to overfitting the
training data by having a mAP on the training set of over 0.7%
and under 0.35% on the validation set. ERFNet encoder was
modified in the following way: another downsampler block
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Fig. 2. Left: non-bottleneck-1d block. Right: Downsampler block; the outputs
of the convolutional and max pooling layers are concatenated into a feature
map.

Fig. 3. The eight orientation classes relative to the camera.

that outputs 256 channels was added before the last 4 non-
bottleneck-1d blocks and the number of filters in those last
4 blocks was doubled therefore it outputs a feature map of
256 channels instead of 128. The downsampler blocks and
the non-bottleneck-1d blocks are illustrated in Fig. 2.

B. Relative orientation detection

The orientation of detected vehicles relative to the camera
is obtained by the network classifier. The classifier can output
one of 9 classes, 8 for orientation as shown in Fig. 3 and
one for background. The classifier for AlexNet and VGG are
the same as in the original networks. The classification layers
for each of those networks are shown in Table I. For all
networks, the fist two fully connected layers produce 4096
channel outputs and the third produces 9 channel outputs.

TABLE I
CLASSIFICATION LAYERS

BaseNet AlexNet VGG16 ERFNet

L
ay

er
s

Dropout
Fully Connected

ReLU
Dropout

Fully Connected
ReLU

Fully Connected

Fully Connected
ReLU

Dropout
Fully Connected

ReLU
Dropout

Fully Connected

Fully Connected
ReLU

Dropout
Fully Connected

ReLU
Dropout

Fully Connected

C. Taillight segmentaiton

A taillight segmentation head was added to the network
for the purpose of taillight segmentation. Since we are only
interested in rear facing vehicles, only the vehicles classi-
fied as Rear, Rear-left or Rear-right are passed through the
taillight segmentation head. The taillight segmentation heads
used are shown in Table II. All segmentation heads contain
2 deconvolutional layers, also called transposed convolution
layers, which are layers trained to upscale feature maps. The
upscale block in the case of ERFNet is a deconvolutional layer
followed by a batch normalization layer. The results of all
segmentation heads are passed through a 1x1 convolutional
layer that reduces the the number of channels to 1 and a
sigmoid layer that transforms the values at each point between
(0, 1) resulting in a grayscale image. This image is thresholded
with 0.5 such that the value 0 represents background pixels
and the value 1 represent taillight pixels. Since the taillight
segmentation head outputs a fixed size image (28 x 28 for
VGG16 and ERFNet and 24 x 24 for AlexNet), the output is
then resized to the size of the detected bounding box.

TABLE II
TAILLIGHT SEGMENTATION HEADS

AlexNet and VGG16 ERFNet

Layers num ch Layers num ch
Deconv 2x 256 Upscale 128
Conv 3x3 256 Non-bt-1d 128
Conv 3x3 256 Non-bt-1d 128
Conv 3x3 256 Upscale 64
Conv 3x3 256 Non-bt-1d 64
Deconv 2x 256 Non-bt-1d 64

Conv 1x1

Sigmoid

IV. EXPERIMENTAL RESULTS

The models were trained using a subset of the KITTI object
detection dataset [22]. Since the ground truth is needed to
quantize the orientations, 80% of the training set was used as
train data, 10% as validation data and the rest 10% as test
data. The Faster RCNN is trained first on the train set and
then the taillight segmentation head is added to the network.
For taillight extraction, 811 images from the KITTI object
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Fig. 4. Network results with ERFNet as a base network. Left column: vehicle and orientation detection. Right column: taillight segmentation.

detection dataset were manually labeled out of which 649
images were used for training, 81 for validation and the rest
81 for testing. Since the taillight set is just a small part of the
KITTI dataset, the Faster RCNN part of the network is frozen.
Fig. 4 presents the results of the network that uses ERFNet
as a base. All training and testing was done on a system with
an i5-2500 CPU, a GTX Titan Black GPU with 6GB VRAM
and 8GB RAM.

A. Vehicle detection and relative orientation classification

The models that use VGG16 as base networks, were trained
using stochastic gradient descent (SGD) [23] over 30 epochs
with the learning rate set to 0.001 for the first 10 epochs,
0.0001 for the next 10 epochs and 0.00001 for the last 10
epochs. The model with AlexNet as a base network was
trained in a similar manner but the learning rate was reduces
every 30 epochs instead of every 10 and was trained over
150 epochs. The models with ERFNet as the base network
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TABLE III
ORIENTATION DETECTION PERFORMANCE

Base Network Right Front-right Front Front-left Left Rear-left Rear Rear-right

VGG16 60.54% 58.24% 79.98% 67.69% 69.29% 68.64% 80.48% 69.83%
AlexNet 62.06% 60.02% 79.34% 69.77% 61.80% 70.19% 80.79% 62.59%
ERFNet 60.93% 46.70% 79.06% 69.02% 60.80% 67.55% 79.75% 70.60%

were trained using the Adam [24] optimizer over 100 epochs
with a starting learning rate of 0.0005 set every epoch as
0.0005 ∗ (1 − (epoch − 1)/100)0.9. The performance of the
networks was measured using mean average precision (mAP)
metric. A detection is considered valid if the intersection over
union between the detected box and a ground truth box is
greater than 0.5. Table IV shows the mAP on the validation
and test sets and table III shows the average precision (AP) for
all the orientation classes. It can be seen that when ERFNet
is trained from scratch, instead of using weights pretrained
on ImageNet [25], the mAP is almost 6% higher. Only the
ERFNet model trained from scratch is illustrated in table III.

TABLE IV
ORIENTATION MAP

Base Network Imagenet pretrained validation mAP test mAP

VGG16 yes 71.05% 69.22%
AlexNet yes 71.83% 68.32%
ERFNet yes 64.00% 63.33%
ERFNet no 69.97% 66.81%

The loss of the FasterRCNN is computed as L = Lrpg cls+
Lrpg reg+Lcls+Lreg where . Lrpg cls is the log loss over the
vehicle and non-vehicle classes, Lcls is the log loss over the
orientation classes, and Lrpg reg and Lreg are the bounding
box regression losses. The smooth L1 loss, defined in (1), is
used for computing the regression losses and it is used instead
of L2 loss since it is less sensitive to outliers.

smoothL1
(x) =

{
0.5x2 if |x| <1
|x| − 0.5 otherwise

(1)

B. Taillight Segmentation

After adding the taillight segmentation head and freezing the
Faster RCNN, all models were trained over 60 epochs using
the Adam optimizer with a starting learning rate of 0.001. The
loss of taillight segmentation head is computed using Binary
Cross Entropy. The learning rate is decreased by half every
10 epochs. The performance of the segmentation is evaluated
using the Intersection over Union (IoU) metric shown below:

IoU =
TP

TP + FP + FN
(2)

where TP is the number of true positives, FP is the number
of false positives and FN is the number of false negatives.
Table V shows the IoU on the validation and test sets as well
as the average inference time of the networks.

TABLE V
TAILLIGHT SEGMENTATION IOU AND INFERENCE TIME

Base Network validation IoU test IoU Inference time

VGG16 21.06% 19.74% 235ms
AlexNet 18.72% 21.55% 77ms
ERFNet 24.03% 24.45% 98ms

V. CONCLUSION AND FUTURE WORK

This work proposes a convolutional neural network structure
capable of segmenting vehicle taillights using precomputed
features. The system uses a Faster RCNN to detect vehicles
and classify them based on their relative orientation to the
camera along with a segmentation head that extracts taillight
pixels. Three different network configurations were evaluated.
The ERFNet encoder architecture was modified for the pur-
poses of object detection by increasing the amount of filters in
its last 4 blocks and adding a new downsampler block before
them.

Future work will focus on improving the taillight segmen-
tation IoU by exploring different architectures for the taillight
segmentation head, increasing the number of images used for
training the taillight segmentation head and using a Feature
Pyramid Network (FPN) [26] as a base network in order to
use features from earlier layers for taillight segmentation. A
method for training the network end-to-end, instead of training
the Faster RCNN first and then the taillight segmentation head,
will also be explored.
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