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Abstract 
 

A new approach for the detection of curbs (borders 

of relevant traffic isles, sidewalks, etc) is presented, in 

the context of urban driving assistance systems. The 

3D data from dense stereo is transformed into a 

rectangular elevation map. The 3D resolution and 

uncertainty of the stereo sensor are evaluated and used 

in the detection process. Edge detection is applied on 

the elevation map in order to highlight height 

variations. Relevant lines are extracted using a Hough 

accumulator. Each relevant line is validated as a curb 

by applying a set of proposed conditions. The 

algorithm was evaluated in an urban scenario. It 

works in real time and provides robust detection of 

curbs. 
  

 

1. Introduction 

 
Processing 3D data from stereo (dense or sparse) is a 

challenging task. A robust approach can prove of great 

value for a variety of applications in urban driving 

assistance.  

There are two main algorithm classes, depending on 

the space where processing is performed: disparity 

space-based and 3D space-based. Most of the existing 

algorithms try to compute the road/lane surface, and 

then use it to discriminate between road and obstacle 

points. 

Disparity space-based algorithms are more popular 

because they work directly on the result of stereo 

reconstruction: the disparity map. The “v-disparity” [1] 

approach is well known and used to detect the road 

surface in a variety of applications [2]. Unfortunately, 

it is not a natural way to represent 3D data and has 

some drawbacks: it assumes that the road should 

occupy most of the image, and it is sensitive to roll 

angle changes.  If the roll angle of the ego car changes 

from the initial calibration, than the road profile 

becomes blurry and harder to detect on the “v-

disparity” image. 

3D space-based algorithms are mainly used for ego-

pose estimation [3], [4], but also for lane and obstacle 

detection [5], [6].  

In [3] the ego-pose is estimated with respect to the 

road plane. The road plane is fitted (not in real-time) 

by a RANSAC-approach to the whole set of dense 3D 

points (after filtering non-road points). A constant band 

around the road is used to select inliers and outliers, 

even though this is against the fact that the 3D 

uncertainty from stereo increases with the depth. The 

assumption that most of the 3D points are road points is 

made again (if the ego car is close to a sidewalk with 

more 3D points that the road, it is likely to fail).  

A planar road surface is estimated from tracking in 

[4]. The method provides robust numerical results, but 

fails if occlusions (obstacles) are in front of the ego car. 

Lack of high-gradient road features also leads to failure 

(lane markings, borders, etc.). 

Obstacles are detected as clusters of image edge 

points reconstructed in the 3D space ([5]). Road 

features as lane-markings can also be detected as 

obstacles. Later in [6] a 3D lane model is proposed and 

used for obstacle/road points’ separation. Again the 

method requires high-gradient road features (edges) to 

be present and uses a constant band to select road 

inliers and outliers. The band is large and most of the 

curbs are classified as road inliers. 

The algorithm that will be presented in this paper 

manages to solve most of the drawbacks presented 

above. Its aim is to detect curbs having a height of at 

least 5 cm.  

It takes as input dense 3D reconstructed points, 

overcoming the lack of road edge features. To achieve 

real-time processing, the 3D set of points is 

transformed into a digital elevation map. Curbs are 

detected based on local derivatives of the image map, 

so the shape of the road surface is irrelevant. The 3D 

uncertainty increasing with the depth is evaluated in 



order to compute the maximum depth for robust curb 

detection.  

First we will present the model for depth resolution 

and uncertainty of the stereo sensor. After that, the 

detection algorithm will be presented and evaluated. 

 

2. The quadratic road surface model 
 

2.1. The depth resolution from stereo 
 

The set of 3D points from dense stereo will be 

transformed into a rectangular elevation map, each cell 

containing a height value. Due to the perspective 

projection, 3D points reconstructed by stereovision are 

sparser with the depth. This effect is more visible for 

the road and traffic isles surfaces, because they are 

quasi-parallel to the optical axis of the camera. 

A 3D space compressed with the depth was used in 

[5] to achieve connectivity for obstacle points. We will 

use the opposite approach, by applying a 

morphological dilation of heights on the elevation map. 

The amplitude of dilation will be computed for each 

cell from the stereo geometry.  

The effect of decreasing depth resolution for road 

points is shown in Figure 1. The distance between 

image-adjacent 3D road points increases with the 

depth.  

 
Figure 1. A lateral view of the depth resolution problem 
(F - focal length, H - height of the camera relative to the 
road level). Image-adjacent road points are not always 

adjacent in the elevation map. 

 

Considering the canonical geometry of the stereo 

system and a planar road, the Z-value of a road point 

placed at the vertical coordinate Yim (in pixels) in the 

image can be computed using (1). H is the height of the 

camera in the world reference frame, F the focal length 

of the stereo system, and α is the pitch angle of the 

camera. 
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Furthermore the depth resolution ∆Z can be 

computed at any depth Z by (2). 

 

( ) ( 1)im imZ Z Y Z Y∆ = − +              (2) 

 

Later in the paper it will be explained how to use this 

depth resolution model even for non-planar road 

surfaces. 

 

2.2. The depth uncertainty from stereo 
 

The 3D (localization) uncertainty is caused by a low 

accuracy computation of the disparity value and is 

mainly visible in the depth value. The height is also 

influenced and modeling the uncertainty will help for a 

robust detection of curbs.  

In [7] a simple model for the uncertainty of the depth 

was proposed for a canonical stereo system. The depth 

uncertainty Zerr, for a point at depth Z, was modeled as 

a function (3) of the system’s parameters (baseline B 

and focal F known from calibration) and of the 

disparity uncertainty Derr.  
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By using the standard canonical stereo equations, we 

extended this model to compute the uncertainty Yerr of 

a point with height Y and depth Z (4). H is the height of 

the camera in the world reference frame.  
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Figure 2 shows an example: the region for road 

inliers computed for a simple planar road surface 

assuming a disparity uncertainty Derr of 0.5 pixels. This 

value is quite common for surfaces with poor texture. 

At a depth of 10 meters, the height uncertainty is 3.5 

cm, while at 35 meters it reaches 15 cm. Since we want 

to detect curbs at least 5 cm tall, we limited the depth 

of detection at 10 meters. 

 



 
Figure 2. Lateral view of the inliers (darker grey) region 

around a planar road. The region is computed using 
the proposed model for the height uncertainty. 

 

3. Algorithm description 
 

The curb detection algorithm presented in this paper 

takes as input dense 3D reconstructed points. The 

output is a set of curbs, at most two (left/right). Each 

curb is represented as a chain of 3D points with 

associated height relative to the adjacent road surface. 

The borders of relevant traffic isles (elevated surfaces 

parallel to the road, such as sidewalks) are detected in 

this way.  

To achieve real-time processing, the 3D set of points 

is transformed into a digital elevation map. All 

processing steps will be performed on the elevation 

map.  

 

3.1. Building the elevation map 
 

The elevation map representation is usually used for 

relief representation. An intensity map (image) is 

superimposed, from the top, to the 3D environment. 

Each pixel has a gray value proportional to the height 

of the underlying 3D location.  

Computing the elevation map (Figure 3) from the set 

of dense 3D points is straightforward. A 3D space of 

interest (40m x 12m from bird-eye view in Figure 3) in 

front of the car is considered. The longitudinal Z and 

lateral X coordinates of each 3D point are scaled into 

the (image) coordinates space of the elevation map. 

The elevation map image has the same aspect ratio as 

the 3D space of interest. A cell has a size of 5 cm x 5 

cm in the XZ world plane. 

Each cell of the elevation map will contain the 

highest height of the 3D points contained in the cell. 

The height resolution of the elevation map about 4 mm. 

We centered the world zero level (road level at system 

calibration) at 128 in the elevation map for a better 

visualization. For all the images in this paper only 

heights around the road (1 m band) are displayed 

correctly due to a limited number of gray values (256). 

Internally the elevation map stores the whole range of 

heights on 32 bits, so no accuracy is lost. 

3D points higher than 2 meters from the ground 

(zero level from calibration) will not be stored because 

they are out of interest (it’s highly unlikely that the ego 

car can have such a pitch angle variation that a curb at 

10 meters depth will not be mapped into the elevation 

map). Empty cells are flagged and not used further.  

 

 
a. 

 
b.                                      c.  

Figure 3. The elevation map (b) for the scene in a. In c 
valid cells (with 3D data) are highlighted with white. 

 

 As seen in Figure 3, the elevation map presents poor 

connectivity between road points at far depths. Since 

we want to perform derivative operations on the 

elevation map, a strong connectivity is required. The 



amount of dilation needed for each cell is computed by 

dividing the depth resolution (2) with the size of one 

cell. To compensate for possible vertical road 

curvatures the amount of dilation obtained will be 

increased by 50%. This is necessary to avoid under-

connectivity. Figure 4 shows the dilated elevation map. 

 

 
Figure 4. The dilated elevation map. 

  

As a conclusion, instead of a set of 3D points 

without explicit connectivity, we obtained a discrete 

3D space as an elevation map. Full connectivity of road 

(and surfaces close to road) points is available. For the 

sake of simplicity, in the next subsection (B) we will 

use the term point (described 3-dimensionally as the 

map coordinates and height) for a cell of the elevation 

map. All formulas presented in section II can be 

applied in the elevation map space (it is still a 3D 

space, but with discrete locations). As mentioned in the 

section II.B curbs will be detected only up to 10 meters 

depth on the elevation image. 

 

3.2. Detecting curbs on the elevation map 

 

The main goal was to develop a fast algorithm for 

detecting curbs nearby the ego car. Our approach 

involves the Hough transform, improved with a 

validation function to reject false positives.  

The main steps of the process are: 

1. Edge detection is applied on the elevation 

map (a region of interest), in order to 

emphasize height variations. 

2. Relevant lines are computed from the set of 

edges, using the Hough accumulator. 

3. Curbs are detected from the set of relevant 

lines by using a set of proposed criteria. 
 

   
           a.             b. 

Figure 5. The elevation map (b) is computed for the 
scene in a. The region of interest used for curb 

detection is shown as a white rectangle (equivalent to 
10x11 meters). 

 

Curb points will present intensity changes on the 

elevation image, since they are points where the 3D 

height changes abruptly. It is obvious that curb points 

are included in the set of edge points of the elevation 

image. We used an optimal method [9] for detecting 

edges: the image gradient is computed with a Sobel 

filter, then non-maxima gradient points are suppressed, 

and finally edges are selected as points having the 

gradient above a threshold (Figure 6). Prior to 

detecting edges, a median 3x3 filter is applied to the 

elevation map to eliminate part of the spike-like noise 

(rough errors in the dense 3D reconstruction). 

 

 
Figure 6. Edges detected on the elevation map from 

Figure 5. 

 

The Hough accumulator [8] for lines is then built 

(Figure 7). Lines are represented in in the (r,θ) space, 

which allows modeling a finite number of lines in the 

image (line parameters are bounded). The equation 



used for representing a line is: 

 

cos( ) sin( )r x yθ θ= ∗ + ∗                    (5) 

 

The Hough accumulator counts how many edge 

points are placed on each possible line in the image 

(Figure 7). We used a resolution of 1 degree for the 

angle θ and a resolution of 1 pixel for r. 

 

Figure 7. The Hough accumulator for the edges in 
Figure 6.Only the part with positive r is shown. The 
best five candidate lines are depicted by arrows. 

 

The best five lines are selected as possible 

candidates and at most two will remain as final solution 

(left/right curbs). The process of selecting candidate 

lines from the Hough space consists of the following 

steps: 

1. The line with the maximum score in the Hough 

accumulator is selected and stored. 

2. Hough accumulator cells in the vicinity of the 

maximum score are nullified (the vicinity was 

chosen experimentally as a square of 15x15 

cells). This is necessary to avoid multiple 

detection of the same 3D curb. 

3. If less then five lines are selected, repeat the 

first two steps. 

 

 
Figure 8. The best 5 lines selected from the Hough 

accumulator (Figure 7, depicted by arrows) are drawn 
on the elevation map. 

 

The best five candidate lines are selected (Figure 8), 

based on their richness in edge points from the 

elevation image. As expected, due to noise in the 

elevation map image, most of the five lines are false 

curbs. At most two lines will be marked as true curbs, 

by estimating the height variation profile of each line (a 

curb point should have specific variation of height in 

its vicinity).  

Computing the height variation for each point of a 

line can be very unstable if only points adjacent to the 

line are used. A larger area must be used in order to 

have a result less influenced by noise. The shape of the 

area cannot be rectangular since it would not provide 

symmetry for all possible line orientations.  Therefore, 

we used a circular mask (7x7 pixels, as in Figure 9.a) 

to estimate the height variation for each line point. The 

height variation for one point is computed as a 

difference function between points placed on the same 

side as the ego car (relative to the line) and the 

opposite points inside the circular nucleus.  

 

 
 a.        b. 

Figure 9. The circular mask (7x7 pixels, in a) used for 
computing the height variation for the central point x. 

An example with real data is shown in b, line pixels are 
drawn with black. 

 

More precisely, an example with real data is 

presented in Figure 9.b: pixels inside the mask with 

their values, the line pixels drawn with black and, in the 

center, the current line point x for which the 

computation is performed. The following steps are 

applied to compute the height variation (for the center 

of the mask) along the normal of the line: 

1. Median filtering is applied for each of the 

regions A (A is on the same side as the ego car) 

and B: pixels are sorted in ascending order in 

each region, and the middle values Hm of the 

ordered sets are selected as the heights for each 

region. 

2. The height variation for the line point x is 

computed as Hm(A)-Hm(B).  

Finally, the height variation profile of each of the 

five candidate lines is evaluated by computing the 

height variation for each line point (Figure 10). A line 

point is considered curb point if it has a height between 

5 and 35 centimeters. A score is computed for each 



line, as the percentage of curb points of the total 

number of line points. A line is considered a curb if it 

has a score higher than 40%. The best two (or one, or 

none) curbs are selected, having the highest scores. 

 
       a.                       b. 

Figure 10. The process of computing the height 
variation profile of a line is performed by sliding a 

circular mask in a. In b the profile is drawn for lines 
marked as 1 and 2 in the Hough space from Figure 7. 

Only line 1 is classified as curb. 

4. Results 

 

The algorithm was implemented in C++. The dense 

3D information was generated using a calibrated stereo 

rig with grayscale cameras and a commercial dense 

stereo board [10].  

Due to the use of software-specific C optimizations 

and the elevation map representation, a processing time 

of 10 to 12 ms was achieved for the algorithm itself (on 

Pentium 4 at 2.6 Ghz). Building the elevation map is 

the most time consuming part, taking between 6 to 8 

ms. The detection of curbs on the elevation map is very 

fast, about 4 ms. 

Overall, with the image acquisition and the dense 

hardware reconstruction, a sustained processing frame-

rate of 35 fps is obtained.   

Regarding the robustness of the algorithm we 

performed the following evaluation that will be 

extended in the future:  

• A number of 50 stereo images of different 

(random) scenes were selected (out of 

several hours of stored stereo images, 

recorded while driving the ego-car). 

• Results were analyzed for each frame in 

terms of missed curbs and false curbs. 

Visual validation was performed by 

checking the projection of each 3D curb 

back onto the image plane. 

For curbs higher than 5 cm the algorithm proved 

very robust, with no missing curbs (80 curbs were 

present in the 50 scenes, 3 of the scenes are shown in 

Figure 13). On one of the 50 scenes, a false curb 

appeared due to poor 3D reconstruction (Figure 12).  

Even though the proposed method was not designed 

for small curbs, it was also tuned and tested on smaller 

curbs (3-4 cm) but it is less robust: about 15% of the 

detected curbs were false ones. This is because small 

curbs have the height too close to the uncertainty of the 

stereo reconstruction. Future improvements of the 

stereo board used will improve the behavior for small 

curbs.  

The algorithm also works for curved curbs, assuming 

the curvature is low (Figure 13.c). 

 

  
   a. 

 
b. 

 
c. 

Figure 13. Results for various scenes, curbs are drawn 
on the elevation map and projected back onto the left 

image.  



 

 
Figure 12. A false curb is detected due to a noisy 3D 

reconstruction (images are taken while the ego car was 
steering, so the lateral motion blur influenced the 

reconstruction). 

5. Conclusions 

 

A new curb detection algorithm was presented. The 

algorithm proved to be robust. Most of the erroneous 

detections are caused by bad 3D data from the dense 

stereo board. The current version copes well with most 

(but not all) types of errors in the 3D data set.  

The proposed algorithm works in real-time and 

provides robust results. It can be used in a variety of 

applications that require detection of road-elevated 

delimiters such as curbs.   

Future development and evaluation will be 

performed: 

• Further and more complex evaluation of the 

proposed algorithm, 

• Use the intensity image information (texture) to 

improve the sensitivity of the algorithm for small 

curbs (3-4 cm), 

• The use of a neural network-based classifier to 

discriminate between false and true curbs, based 

on their height variation profile, 

• Using tracking can greatly reduce the rate of false 

positives. 
 

6. References 
 
[1] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time 

obstacle detection on non flat road geometry through V-

disparity representation,” in IEEE Intelligent Vehicles 

Symposium, Versailles, June 2002, pp. 646–651. 

 

[2] Broggi, C. Caraffi, P. Paolo Porta, and P. Zani, “The 

Single Frame Stereo Vision System for Reliable Obstacle 

Detection used during the 2005 DARPA Grand 

Challenge on TerraMax”, in IEEE Intelligent 

Transportation Systems Conference, Toronto, Canada, 

September 17-20, 2006, pp. 745-752. 

 

[3] Sappa, D. Gerónimo, F. Dornaika, and A. López, “Real 

Time Vehicle Pose Using On-Board Stereo Vision 

System”, Int. Conf. on Image Analysis and Recognition, 

LNCS Vol. 4142, Springer Verlag, Póvoa de Varzim, 

Portugal, September 18-20, 2006, pp. 205-216. 

 

[4] M. Cech, W. Niem, S. Abraham, and C. Stiller, 

“Dynamic ego-pose estimation for driver assistance in 

urban environments”. In IEEE Intelligent Vehicles 

Symposium, Parma, Italy, 2004, pp. 43-48. 

 

[5] S. Nedevschi, R. Danescu, D. Frentiu, T. Marita, F. 

Oniga, C. Pocol, R. Schmidt, T. Graf, “High Accuracy 

Stereo Vision System for Far Distance Obstacle 

Detection”, IEEE Intelligent Vehicles Symposium 

(IV2004), Parma, Italy, pp. 292-297, 2004.  

 

[6] S. Nedevschi, R..Schmidt, T. Graf, R. Danescu, D. 

Frentiu, T. Marita, F. Oniga, C. Pocol, “3D Lane 

Detection System Based on Stereovision”, IEEE 

Intelligent Transportation Systems Conference (ITSC), 

Washington, USA, pp.161-166, 2004. 

 

[7] S. Nedevschi, F. Oniga, R. Danescu, T. Graf, R. Schmidt,  

“Increased Accuracy Stereo Approach for 3D Lane 

Detection”, IEEE Intelligent Vehicles Symposium, 

(IV2006), June 13-15, 2006, Tokyo, Japan, pp. 42-49. 

 

[8] J. Canny,  “A computational approach to edge detection”, 

IEEE Trans. Pattern Analysis and Machine Intelligence, 

pp. 679-698, Nov. 1983.  

 

[9] D. H. Ballard, “Generalizing the Hough Transform to 

Detect Arbitrary Shapes”, Pattern Recognition, 

13(2):111-122, 1981. 

 

[10] J. Woodfill, G. Gordon, D. Jurasek, T. Brown, and R. 

Buck, “The Tyzx DeepSea G2 Vision System, A 

Taskable, Embedded Stereo Camera”, IEEE Conference 

on Computer Vision and Pattern Recognition, (New 

York, NY), June 2006. 

 

 

 


