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Abstract 
 

A method for global map building from occupancy 

grids is presented in this paper. Occupancy grids 

provide a low-level representation of the environment, 

suitable for autonomous navigation tasks, in urban 

driving scenarios. The occupancy grids used in our 

approach are computed with a method that outputs an 

occupancy grid with three distinct cell types: road, 

traffic isles and obstacles. First, we perform a 

temporal filtering of the false traffic isles present in the 

grids. Obstacle cells are separated into static 

(probably infrastructure) and dynamic. An enhanced 

occupancy grid is built, containing road, traffic isle, 

static obstacle and dynamic obstacle cells. The global 

map is obtained by integrating the enhanced 

occupancy grid along several successive frames. It can 

be used in various ways, such as alignment with 

external maps, or for terrain mapping. 

1. Introduction 

 

Most of the global mapping applications are oriented 

towards the robotics field, with either indoor mapping 

or outdoor (terrain) mapping. Existing work is oriented 

toward 3D data alignment and registration for scenes 

with static content, without dynamic obstacles. Urban 

traffic scenarios present many dynamic scene items 

(vehicles, pedestrians, etc).   

In [2] the problem of outdoor unstructured terrain 

mapping and navigation is approached. A robot 

equipped with a stereo vision system is used for data 

acquisition. A combination of visual odometry, inertial 

ego sensors and GPS is proposed for computing the 

rotation and translation between the reference systems 

of successive measurements.  

A stereovision guided robot that can plan paths, 

build maps and explore an indoor environment is 

presented in [3]. Occupancy grids are used for path 

computation and map building. Results with the 

mapping of an indoor room are presented. 

In [4] a stereo-based approach for building 3D maps 

is presented. First, the best local alignment between 

successive point clouds is computed. Then, a quasi-

random updating algorithm minimizes the global 

inconsistency of the map. The system is tested by 

performing several indoor mapping experiments.  

Digital elevation maps (DEM) can be used to 

represent and process 3D data from stereovision. They 

provide a compact representation, with a smaller size 

and complexity than the coarse set of 3D points.  

A complex method for building the digital elevation 

map of a terrain (for a planetary rover) is proposed in 

[5]: local planar surfaces are used to filter the height of 

each DEM cell, and the stereo correlation confidence 

for each 3D point is included in the filtering process. In 

[6] the elevation map is built straightforward from the 

disparity map. The authors avoid using a 3D 

representation of the reconstructed points by projecting 

a vertical 3D line for each DEM cell onto the left, 

disparity, and right image. Based on these projections, 

the disparity of the point associated with the cell is 

selected and possible occlusions are detected. The 

obtained DEM is used for a global path-planning 

algorithm. 

The road, traffic isle and obstacle detection 
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algorithm presented in [1] uses digital elevation maps 

(DEM) to represent 3D dense stereo data. The DEM is 

enhanced based on the depth uncertainty and resolution 

models of the stereo sensor. A RANSAC-approach, 

combined with region growing, is used for the 

detection of the optimal road surface. Obstacles and 

traffic isles are detected by using the road surface and 

the density of 3D points. This algorithm outputs the 

road surface parameters and an occupancy grid (Fig. 1) 

with three distinct cell types: road, traffic isles and 

obstacles. The fact that parts of the 3D space ahead are 

reconstructed from multiple stereo pairs (in successive 

frames) is not taken into account for results 

enhancement. 

In this paper we perform temporal integration of the 

occupancy grids computed with the algorithm from [1]. 

The result is a global map of the ego vehicle’s 

environment. This map provides occupancy 

information with an increased trust degree compared to 

the occupancy grids computed from individual frames. 

In contrast with existing approaches, urban driving 

scenarios present an additional complexity issue: 

dynamic obstacles. Therefore, obstacle cells are first 

separated into static / dynamic obstacles. In section 4 

we present how the enhanced occupancy grid is built, 

containing road, traffic isle, static obstacle and 

dynamic obstacle cells. In section 5 we present how a 

global occupancy grid is built (integration of the 

occupancy grid along several successive frames).  

In the next section (2) we present the motion model 

that we use for computing the ego car’s translation and 

rotation between successive frames. 

 

 

 
Fig.1. The occupancy grid detected by the algorithm, 

displayed in 3D. Blue for road, red for obstacles and 

yellow for traffic isles. 

2. Ego motion compensation between 

successive frames 
 

Most of the enhancements we propose in this paper 

are based on temporal integration. Next, we describe 

the simple model used for estimating the translation 

and rotation of coordinates system (ego car related) in 

time.  

Coordinates from the current reference frame O(t) 

can be transformed straightforward into the previous 

reference frame O(t-1), assuming the translation d and 

rotation angle α are known (Fig. 2).  

The ego car’s standard speed and yaw-rate sensors 

can be used to estimate these parameters. The 

following motion model was used: the ego has a 

circular trajectory between successive frames, and the 

arc length and radius are computed based on the ego 

car speed v, yaw-rate value γ and frame relative 

timestamp ∆t. The yaw-rate sensor provides the 

rotation angle, and the translation is computed 

geometrically: 

 

tα γ= ⋅ ∆ ,       (1) 

 
The arc length is computed based on the ego speed 

and frame relative timestamp: 

 

L v t= ⋅ ∆         (2) 

 

 
 

Fig. 2. Ego motion is expressed as the Euclidian 

distance between origins and relative angle between 

axes. 
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The radius of the circular trajectory is: 

 

L
R

α
=         (3) 

 

Finally, the length of the chord associated with the 

arc is: 
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Beside the yaw angle, the pitch and roll angles might 

also influence the temporal integration of the 

occupancy grids. The roll angle might have a small 

influence for several consecutive frames but for large 

distances it will always integrate to zero (roads are 

normally horizontal on the lateral direction).  The pitch 

angle, on the other hand, has larger influences over far 

distances because it describes the local road geometry. 

For uphill or down hills it cannot be ignored.  

For pitch computation we used the ego motion 

detection algorithm presented in [7], although a more 

accurate way would be the use of a gyro sensor. The 

rotation matrix Rt used for aligning the reference 

systems of successive frames (O(t) and O(t-1)) is built 

based on the relative yaw (1) and the relative pitch 

angle. The translation Tt is estimated with (2) and then 

its components on each axis are computed. 

 Along a sequence of frames (starting with frame 0), 

the global rotation matrix Rw and the global translation 

vector Tw must be computed for each new frame. A 3D 

point Pt from the current frame O(t) is represented in 

the first frame O(0) of the sequence by P0.  

 

0 wt t wt
P R P T= + ,   (5) 

 

where Rwt and Twt are the global rotation matrix and 

translation vector between the current reference frame 

O(t) and the global (first frame) reference frame O(0).  

The point Pt transformed in the previous reference 

frame O(t-1) is: 

 

1t t t t
P R P T− = +    (6) 

 

The following relationship exists between Pt-1 and 

P0: 

 

0 1 1 1wt t wt
P R P T− − −= +    (7) 

By replacing Pt-1 from (6) into (7): 

 

0 1 1 1wt t t wt t wt
P R R P R T T− − −= + +  (8) 

 

Since (5) and (8) must be equivalent, the global 

rotation and translation for the current frame O(t) can 

be computed from the global rotation and translation of 

the previous frame O(t-1): 

 

1 1 1,
wt wt t wt wt t wt

R R R T R T T− − −= = +  (9) 

 

For the first frame, t=0, the global rotation is the 

identity matrix and the global translation is zero. 

 

0 3 0 3,1, 0
w w

R I T= =    (10) 

 

A 3D point P is represented in the occupancy 

grid/DEM space as (row, column, height), therefore 

these formulas will be applied straightforward in the 

occupancy grid space used for 3D data representation.  

 

3. Traffic isles filtering based on temporal 

persistence 
 

The algorithm presented in [1] detects traffic isles 

and less than 5% of the detected traffic isles are false. 

However, they can appear in front of the ego car and 

cause false collision situations. In [8] a curb detection 

algorithm was presented, based on a multi-frame 

persistence map. We adapted this concept of multi-

frame persistence for filtering traffic isles.  

Similar to false curbs, false traffic isles have an 

important feature: they persist only for a limited 

number of consecutive frames (mostly for two frames). 

Furthermore, traffic isles are static scene items. Based 

on these features, we propose a fast and efficient 

approach to filter false traffic isles: a multi-frame 

persistence map is built (the ego motion between 

frames is taken into consideration) and only traffic isle 

cells that persist for several frames are validated.  

Traffic isles are static related to the road surface: if 

the ego motion between successive frames is 

compensated, then traffic isle cells from the current 

frame should overlap traffic isle cells from the previous 

frame.  

First, let us review the concept of multi-frame 

persistence map (PM). The PM is a rectangular map of 

the same size as the DEM. A cell (i,j) (i for the Z 

direction and j for X) of PM shows the lifetime (in 



consecutive frames) of the DEM cell (i,j): for how 

many consecutive frames was the cell detected as 

traffic isle, in a global reference frame (the same 3D 

location relative to the road, along the sequence of 

frames). 

The persistence map PMT for the current frame is 

built from the PMT-1 of the previous frame and the set 

of traffic isle cells detected on the DEMT of the current 

frame.  

For each location (i, j) of PMT: 

• If (i,j) is not an edge point then PMT(i,j)=0;  

• Otherwise, if (i,j) is edge then: 

1. Compute the coordinates of current frame 

point (i, j) in the previous frame, as real 

numbers (i’, j’). 

2. PMT(i,j)=MAXIMUM (W) + 1, where the 

set W contains the persistence values of the 

previous frame PMT-1 for the 4 closest 

neighbors of (i’,j’),  
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Using the maximum persistence of the four cells 

closest (instead of a single point) to the real 

coordinates from the previous frame is required to 

compensate some sources of errors: 

• Possible lack of accuracy from the ego 

sensors, 

• Most of the time, integer coordinates (i,j) from 

DEMT do not have a correspondent DEMT-1 

location with integer coordinates (i’, j’), 

• Pitch angle variation might occur between 

frames (due to road bumps etc), causing small 

depth shifts of the coordinates between 

successive frames.  

 

 
Fig. 3. The first frame of the sequence used.  

 

Once the persistence map PM is computed, traffic 

isle cells should be selected as cells having the 

persistency higher than a threshold. A threshold too 

low will cause many false traffic isle cells to occur, 

while a value too high will cause unjustified delay for 

detecting true traffic isle cells.  

We performed the same experiment as in [8], but for 

traffic isles instead of curbs, for selecting the optimal 

threshold: a sequence of 200 frames was acquired 

while driving through an empty parking lot, without 

any objects or traffic isles in the analyzed ROI (Fig. 3). 

The road surface had normal texture, with common 

features such as braking traces, different color patches 

etc.  

 

 
Fig. 4. The percentage N of cells as a function of the 

persistence value P. 

 

     
               a.                                    b.         

Fig. 5. False traffic isles (yellow) appearing on the 

training sequence: left image projection (a) and the 

classified grid (b, yellow - traffic isles and blue - road). 

 

All of the detected traffic isles cells are false, due to 

the poor accuracy of the 3D reconstructed road. A total 

number of about 40000 traffic isle cells were detected 

(an average of 200 cells per frame). The total number 

of traffic isle cells having the same persistence value 



was evaluated (Fig. 4) relative to the total number of 

traffic isle cells. A distribution similar to the one in 

[10] was obtained (this is natural since curbs are the 

borders of traffic isles – they present similar features). 

A value Th of 3 or 4 frames is acceptable for the 

threshold, greatly reducing the number of traffic isle 

cells. The only downside is that a true traffic isle cell is 

validated only after Th frames since it entered the 

analyzed ROI. However, this has minor influence upon 

detection (no traffic isles are missed). Even for a speed 

of 50km/h, it will take about 30-40 frames for the ego 

car to reach a traffic isle cell placed at the maximum 

depth. 

 

4. Static / dynamic obstacles separation 
 

The confidence of the obstacles detected by [1] can 

be increased by tracking each obstacle over time (along 

consecutive frames). This would help to filter false 

obstacles and also to extract dynamic obstacle features. 

Urban scenes are often crowded with static obstacles 

(parked vehicles, poles etc.). This can make the task of 

tracking multiple obstacles quite difficult.  

To provide a smaller set of candidates for tracking, 

we propose the detection of static obstacles in a manner 

similar to the temporal filtering of traffic isles.  

If the ego motion is compensated between successive 

frames then obstacle blobs that overlap precisely along 

several frames are probably static. Two approaches can 

be used to find static obstacles. 

One way to check how well obstacle blobs overlap 

along consecutive frames is to use the computed 

density map proposed in [1]. 

Considering an obstacle blob from the current frame, 

we compute its location in the previous frame 

(assuming it is static). Next, the blob of densities from 

the current frame, associated with the obstacle, is 

matched with the density map of the previous frame. 

Matching (a SAD function) is performed at multiple 

locations around the estimated obstacle location in the 

previous frame. If a local maximum of the matching 

function is detected at the estimated location (or close-

to) then we consider the obstacle has zero or negligible 

speed, which cannot be sensed from stereo data (few 

km/h). Such obstacles with no speed are considered 

static.  

This approach provides good results but it can be 

time consuming due to the SAD matching function, 

applied at multiple locations.  

 

Fig. 6. The enhanced occupancy grid: static obstacles 

are displayed with red and dynamic obstacles with 

green. 

 

  
a.                               b. 

 
c. 

Fig. 7. The persistence map (a) is shown, for the 

scenario in c. The enhanced grid (with static / dynamic 

obstacles) is shown in b. The front car is the only 

moving obstacle; the vehicles on the left are waiting for 

the green light. 

 

Obstacles that do not overlap along frames (with 

compensated ego motion) are considered dynamic and 



a different class is assigned to their cells (Fig. 6). 

Kalman or other tracking approach can be employed 

for dynamic features computation (speed, acceleration, 

etc). 

The faster alternative is to build a persistence map 

for obstacle cells, in a similar manner as proposed for 

the filtering of false traffic isles (section IV). The 

persistence map will show the lifetime for each 

obstacle cell (for how many consecutive frames it was 

labeled as an obstacle cell, in a global reference 

system).   

Static obstacle cells will tend to have an increased 

lifetime while dynamic ones will have a shorter 

lifetime. However, depending on the obstacle size and 

speed, some of the obstacle cells might overlap cells 

from the same obstacle along several frames. This can 

offer false clues about the nature of individual cells. 

Therefore, the discrimination will be performed at blob 

level, in the following manner:  

• For each obstacle blob the average persistence 

value is computed from the persistence values of 

its cells.  

• If the average persistence of the blob is above a 

threshold (a desired number of frames with no 

or negligible blob movement), the blob is 

considered static, otherwise dynamic.  

 

5. Global Grid Computation 
 

The occupancy grid computed is covering only a 

region of the 3D space ahead, limited by the 

characteristics of the stereo sensor. This area might be 

enough for navigation, but it might be too small for 

task such as alignment with local maps, due to the lack 

of enough infrastructure items (traffic isles, poles, etc).  

Based on the ego motion, we propose the merging of 

the occupancy grids, detected along several frames, 

into a global occupancy grid (Fig. 8). Low-level 

integration (at cell level) is performed for the static 

scene items (road, traffic isles and static obstacles). A 

simple voting strategy is used to establish the class of 

each cell from the global grid (multiple frames 

contribute for each global cell).  

Optionally, dynamic obstacles can be integrated into 

the global grid, but at a higher level of representation 

(blobs). 

 

7. Results 
 

The proposed improvements are effective into 

obtaining an occupancy grid with fewer false detections 

and more information within the grid: more cell types 

are provided. This new information is valuable for 

higher level tasks such as navigation. The global 

occupancy grid, although it is just an experimental 

approach, provides a more complete representation of 

the vehicle’s surrounding environment. This allows 

easier alignment of the results with external maps. As a 

simple test, we computed the global grid (only traffic 

isles and static obstacles) for a sequence of about 270 

frames, along a distance of about 200 meters. The 

scenario consisted of two consecutive intersections 

(Fig. 10). The global grid was then scaled and 

superimposed manually (Fig. 9) to the satellite image 

of the scenario (available from Google Earth).  

 

 
 

 
Fig. 8. The global occupancy (top image) grid along 50 

frames, while cornering (ego moves along the green 

curve) in an urban scenario (bottom image). 

 



 
Fig. 9. Global occupancy grid superimposed to the 

satellite image of the region. The trajectory of the ego 

car is shown with the green curve. 

 

 

 

 
Fig. 10. From left to right: the first frame of the 

sequence, a frame with the turn right intersection, a 

frame with the turn left intersection. 
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