
Global Map Building Based on Occupancy Grids Detected from Dense Stereo

in Urban Environments

Abstract

A method for global map building from occupancy

grids is presented in this paper. Occupancy grids

provide a low-level representation of the environment,

suitable for autonomous navigation tasks, in urban

driving scenarios. The occupancy grids used in our

approach are computed with a method that outputs an

occupancy grid with three distinct cell types: road,

traffic isles and obstacles. First, we perform a

temporal filtering of the false traffic isles present in the

grids. Obstacle cells are separated into static

(probably infrastructure) and dynamic. An enhanced

occupancy grid is built, containing road, traffic isle,

static obstacle and dynamic obstacle cells. The global

map is obtained by integrating the enhanced

occupancy grid along several successive frames. It can

be used in various ways, such as alignment with

external maps, or for terrain mapping.

1. Introduction

Most of the global mapping applications are oriented

towards the robotics field, with either indoor mapping

or outdoor (terrain) mapping. Existing work is oriented

toward 3D data alignment and registration for scenes

with static content, without dynamic obstacles. Urban

traffic scenarios present many dynamic scene items

(vehicles, pedestrians, etc).

In [2] the problem of outdoor unstructured terrain

mapping and navigation is approached. A robot

equipped with a stereo vision system is used for data

acquisition. A combination of visual odometry, inertial

ego sensors and GPS is proposed for computing the

rotation and translation between the reference systems

of successive measurements.

A stereovision guided robot that can plan paths,

build maps and explore an indoor environment is

presented in [3]. Occupancy grids are used for path

computation and map building. Results with the

mapping of an indoor room are presented.

In [4] a stereo-based approach for building 3D maps

is presented. First, the best local alignment between

successive point clouds is computed. Then, a quasi-

random updating algorithm minimizes the global

inconsistency of the map. The system is tested by

performing several indoor mapping experiments.

Digital elevation maps (DEM) can be used to

represent and process 3D data from stereovision. They

provide a compact representation, with a smaller size

and complexity than the coarse set of 3D points.

A complex method for building the digital elevation

map of a terrain (for a planetary rover) is proposed in

[5]: local planar surfaces are used to filter the height of

each DEM cell, and the stereo correlation confidence

for each 3D point is included in the filtering process. In

[6] the elevation map is built straightforward from the

disparity map. The authors avoid using a 3D

representation of the reconstructed points by projecting

a vertical 3D line for each DEM cell onto the left,

disparity, and right image. Based on these projections,

the disparity of the point associated with the cell is

selected and possible occlusions are detected. The

obtained DEM is used for a global path-planning

algorithm.

The road, traffic isle and obstacle detection

Florin Oniga
1
, Sergiu Nedevschi

1
, Radu Danescu

1
, Marc-Michael Meinecke

2

(1)
 Technical University of Cluj-Napoca, Romania

{florin.oniga, sergiu.nedevschi, radu.danescu}@cs.utcluj.ro

(2)
 Volkswagen AG, Electronic Research, Wolfsburg, Germany

marc-michael.meinecke@volkswagen.de

algorithm presented in [1] uses digital elevation maps

(DEM) to represent 3D dense stereo data. The DEM is

enhanced based on the depth uncertainty and resolution

models of the stereo sensor. A RANSAC-approach,

combined with region growing, is used for the

detection of the optimal road surface. Obstacles and

traffic isles are detected by using the road surface and

the density of 3D points. This algorithm outputs the

road surface parameters and an occupancy grid (Fig. 1)

with three distinct cell types: road, traffic isles and

obstacles. The fact that parts of the 3D space ahead are

reconstructed from multiple stereo pairs (in successive

frames) is not taken into account for results

enhancement.

In this paper we perform temporal integration of the

occupancy grids computed with the algorithm from [1].

The result is a global map of the ego vehicle’s

environment. This map provides occupancy

information with an increased trust degree compared to

the occupancy grids computed from individual frames.

In contrast with existing approaches, urban driving

scenarios present an additional complexity issue:

dynamic obstacles. Therefore, obstacle cells are first

separated into static / dynamic obstacles. In section 4

we present how the enhanced occupancy grid is built,

containing road, traffic isle, static obstacle and

dynamic obstacle cells. In section 5 we present how a

global occupancy grid is built (integration of the

occupancy grid along several successive frames).

In the next section (2) we present the motion model

that we use for computing the ego car’s translation and

rotation between successive frames.

Fig.1. The occupancy grid detected by the algorithm,

displayed in 3D. Blue for road, red for obstacles and

yellow for traffic isles.

2. Ego motion compensation between

successive frames

Most of the enhancements we propose in this paper

are based on temporal integration. Next, we describe

the simple model used for estimating the translation

and rotation of coordinates system (ego car related) in

time.

Coordinates from the current reference frame O(t)

can be transformed straightforward into the previous

reference frame O(t-1), assuming the translation d and

rotation angle α are known (Fig. 2).

The ego car’s standard speed and yaw-rate sensors

can be used to estimate these parameters. The

following motion model was used: the ego has a

circular trajectory between successive frames, and the

arc length and radius are computed based on the ego

car speed v, yaw-rate value γ and frame relative

timestamp ∆t. The yaw-rate sensor provides the

rotation angle, and the translation is computed

geometrically:

tα γ= ⋅ ∆ , (1)

The arc length is computed based on the ego speed

and frame relative timestamp:

L v t= ⋅ ∆ (2)

Fig. 2. Ego motion is expressed as the Euclidian

distance between origins and relative angle between

axes.

O(t)

O(t-1)

Ego

(t-1)

Z(t-1)

Z(t)

X(t-1)

X(t)

α

d

α

L

The radius of the circular trajectory is:

L
R

α
= (3)

Finally, the length of the chord associated with the

arc is:

2 sin 2 sin
2 2

v t
d R

α α

α

⋅ ∆
= ⋅ ⋅ = ⋅ ⋅

 (4)

Beside the yaw angle, the pitch and roll angles might

also influence the temporal integration of the

occupancy grids. The roll angle might have a small

influence for several consecutive frames but for large

distances it will always integrate to zero (roads are

normally horizontal on the lateral direction). The pitch

angle, on the other hand, has larger influences over far

distances because it describes the local road geometry.

For uphill or down hills it cannot be ignored.

For pitch computation we used the ego motion

detection algorithm presented in [7], although a more

accurate way would be the use of a gyro sensor. The

rotation matrix Rt used for aligning the reference

systems of successive frames (O(t) and O(t-1)) is built

based on the relative yaw (1) and the relative pitch

angle. The translation Tt is estimated with (2) and then

its components on each axis are computed.

 Along a sequence of frames (starting with frame 0),

the global rotation matrix Rw and the global translation

vector Tw must be computed for each new frame. A 3D

point Pt from the current frame O(t) is represented in

the first frame O(0) of the sequence by P0.

0 wt t wt
P R P T= + , (5)

where Rwt and Twt are the global rotation matrix and

translation vector between the current reference frame

O(t) and the global (first frame) reference frame O(0).

The point Pt transformed in the previous reference

frame O(t-1) is:

1t t t t
P R P T− = + (6)

The following relationship exists between Pt-1 and

P0:

0 1 1 1wt t wt
P R P T− − −= + (7)

By replacing Pt-1 from (6) into (7):

0 1 1 1wt t t wt t wt
P R R P R T T− − −= + + (8)

Since (5) and (8) must be equivalent, the global

rotation and translation for the current frame O(t) can

be computed from the global rotation and translation of

the previous frame O(t-1):

1 1 1,
wt wt t wt wt t wt

R R R T R T T− − −= = + (9)

For the first frame, t=0, the global rotation is the

identity matrix and the global translation is zero.

0 3 0 3,1, 0
w w

R I T= = (10)

A 3D point P is represented in the occupancy

grid/DEM space as (row, column, height), therefore

these formulas will be applied straightforward in the

occupancy grid space used for 3D data representation.

3. Traffic isles filtering based on temporal

persistence

The algorithm presented in [1] detects traffic isles

and less than 5% of the detected traffic isles are false.

However, they can appear in front of the ego car and

cause false collision situations. In [8] a curb detection

algorithm was presented, based on a multi-frame

persistence map. We adapted this concept of multi-

frame persistence for filtering traffic isles.

Similar to false curbs, false traffic isles have an

important feature: they persist only for a limited

number of consecutive frames (mostly for two frames).

Furthermore, traffic isles are static scene items. Based

on these features, we propose a fast and efficient

approach to filter false traffic isles: a multi-frame

persistence map is built (the ego motion between

frames is taken into consideration) and only traffic isle

cells that persist for several frames are validated.

Traffic isles are static related to the road surface: if

the ego motion between successive frames is

compensated, then traffic isle cells from the current

frame should overlap traffic isle cells from the previous

frame.

First, let us review the concept of multi-frame

persistence map (PM). The PM is a rectangular map of

the same size as the DEM. A cell (i,j) (i for the Z

direction and j for X) of PM shows the lifetime (in

consecutive frames) of the DEM cell (i,j): for how

many consecutive frames was the cell detected as

traffic isle, in a global reference frame (the same 3D

location relative to the road, along the sequence of

frames).

The persistence map PMT for the current frame is

built from the PMT-1 of the previous frame and the set

of traffic isle cells detected on the DEMT of the current

frame.

For each location (i, j) of PMT:

• If (i,j) is not an edge point then PMT(i,j)=0;

• Otherwise, if (i,j) is edge then:

1. Compute the coordinates of current frame

point (i, j) in the previous frame, as real

numbers (i’, j’).

2. PMT(i,j)=MAXIMUM (W) + 1, where the

set W contains the persistence values of the

previous frame PMT-1 for the 4 closest

neighbors of (i’,j’),

() ()

() ()

' , ' , ' , ' ,
1 1

' , ' , ' , '
1 1

PM i j PM i j
T TW

PM i j PM i j
T T

− −=

− −
.

Using the maximum persistence of the four cells

closest (instead of a single point) to the real

coordinates from the previous frame is required to

compensate some sources of errors:

• Possible lack of accuracy from the ego

sensors,

• Most of the time, integer coordinates (i,j) from

DEMT do not have a correspondent DEMT-1

location with integer coordinates (i’, j’),

• Pitch angle variation might occur between

frames (due to road bumps etc), causing small

depth shifts of the coordinates between

successive frames.

Fig. 3. The first frame of the sequence used.

Once the persistence map PM is computed, traffic

isle cells should be selected as cells having the

persistency higher than a threshold. A threshold too

low will cause many false traffic isle cells to occur,

while a value too high will cause unjustified delay for

detecting true traffic isle cells.

We performed the same experiment as in [8], but for

traffic isles instead of curbs, for selecting the optimal

threshold: a sequence of 200 frames was acquired

while driving through an empty parking lot, without

any objects or traffic isles in the analyzed ROI (Fig. 3).

The road surface had normal texture, with common

features such as braking traces, different color patches

etc.

Fig. 4. The percentage N of cells as a function of the

persistence value P.

 a. b.

Fig. 5. False traffic isles (yellow) appearing on the

training sequence: left image projection (a) and the

classified grid (b, yellow - traffic isles and blue - road).

All of the detected traffic isles cells are false, due to

the poor accuracy of the 3D reconstructed road. A total

number of about 40000 traffic isle cells were detected

(an average of 200 cells per frame). The total number

of traffic isle cells having the same persistence value

was evaluated (Fig. 4) relative to the total number of

traffic isle cells. A distribution similar to the one in

[10] was obtained (this is natural since curbs are the

borders of traffic isles – they present similar features).

A value Th of 3 or 4 frames is acceptable for the

threshold, greatly reducing the number of traffic isle

cells. The only downside is that a true traffic isle cell is

validated only after Th frames since it entered the

analyzed ROI. However, this has minor influence upon

detection (no traffic isles are missed). Even for a speed

of 50km/h, it will take about 30-40 frames for the ego

car to reach a traffic isle cell placed at the maximum

depth.

4. Static / dynamic obstacles separation

The confidence of the obstacles detected by [1] can

be increased by tracking each obstacle over time (along

consecutive frames). This would help to filter false

obstacles and also to extract dynamic obstacle features.

Urban scenes are often crowded with static obstacles

(parked vehicles, poles etc.). This can make the task of

tracking multiple obstacles quite difficult.

To provide a smaller set of candidates for tracking,

we propose the detection of static obstacles in a manner

similar to the temporal filtering of traffic isles.

If the ego motion is compensated between successive

frames then obstacle blobs that overlap precisely along

several frames are probably static. Two approaches can

be used to find static obstacles.

One way to check how well obstacle blobs overlap

along consecutive frames is to use the computed

density map proposed in [1].

Considering an obstacle blob from the current frame,

we compute its location in the previous frame

(assuming it is static). Next, the blob of densities from

the current frame, associated with the obstacle, is

matched with the density map of the previous frame.

Matching (a SAD function) is performed at multiple

locations around the estimated obstacle location in the

previous frame. If a local maximum of the matching

function is detected at the estimated location (or close-

to) then we consider the obstacle has zero or negligible

speed, which cannot be sensed from stereo data (few

km/h). Such obstacles with no speed are considered

static.

This approach provides good results but it can be

time consuming due to the SAD matching function,

applied at multiple locations.

Fig. 6. The enhanced occupancy grid: static obstacles

are displayed with red and dynamic obstacles with

green.

a. b.

c.

Fig. 7. The persistence map (a) is shown, for the

scenario in c. The enhanced grid (with static / dynamic

obstacles) is shown in b. The front car is the only

moving obstacle; the vehicles on the left are waiting for

the green light.

Obstacles that do not overlap along frames (with

compensated ego motion) are considered dynamic and

a different class is assigned to their cells (Fig. 6).

Kalman or other tracking approach can be employed

for dynamic features computation (speed, acceleration,

etc).

The faster alternative is to build a persistence map

for obstacle cells, in a similar manner as proposed for

the filtering of false traffic isles (section IV). The

persistence map will show the lifetime for each

obstacle cell (for how many consecutive frames it was

labeled as an obstacle cell, in a global reference

system).

Static obstacle cells will tend to have an increased

lifetime while dynamic ones will have a shorter

lifetime. However, depending on the obstacle size and

speed, some of the obstacle cells might overlap cells

from the same obstacle along several frames. This can

offer false clues about the nature of individual cells.

Therefore, the discrimination will be performed at blob

level, in the following manner:

• For each obstacle blob the average persistence

value is computed from the persistence values of

its cells.

• If the average persistence of the blob is above a

threshold (a desired number of frames with no

or negligible blob movement), the blob is

considered static, otherwise dynamic.

5. Global Grid Computation

The occupancy grid computed is covering only a

region of the 3D space ahead, limited by the

characteristics of the stereo sensor. This area might be

enough for navigation, but it might be too small for

task such as alignment with local maps, due to the lack

of enough infrastructure items (traffic isles, poles, etc).

Based on the ego motion, we propose the merging of

the occupancy grids, detected along several frames,

into a global occupancy grid (Fig. 8). Low-level

integration (at cell level) is performed for the static

scene items (road, traffic isles and static obstacles). A

simple voting strategy is used to establish the class of

each cell from the global grid (multiple frames

contribute for each global cell).

Optionally, dynamic obstacles can be integrated into

the global grid, but at a higher level of representation

(blobs).

7. Results

The proposed improvements are effective into

obtaining an occupancy grid with fewer false detections

and more information within the grid: more cell types

are provided. This new information is valuable for

higher level tasks such as navigation. The global

occupancy grid, although it is just an experimental

approach, provides a more complete representation of

the vehicle’s surrounding environment. This allows

easier alignment of the results with external maps. As a

simple test, we computed the global grid (only traffic

isles and static obstacles) for a sequence of about 270

frames, along a distance of about 200 meters. The

scenario consisted of two consecutive intersections

(Fig. 10). The global grid was then scaled and

superimposed manually (Fig. 9) to the satellite image

of the scenario (available from Google Earth).

Fig. 8. The global occupancy (top image) grid along 50

frames, while cornering (ego moves along the green

curve) in an urban scenario (bottom image).

Fig. 9. Global occupancy grid superimposed to the

satellite image of the region. The trajectory of the ego

car is shown with the green curve.

Fig. 10. From left to right: the first frame of the

sequence, a frame with the turn right intersection, a

frame with the turn left intersection.

5. References

[1] F. Oniga, S. Nedevschi, M-M. Meinecke, T-B. To,

“Road Surface and Obstacle Detection Based on

Elevation Maps from Dense Stereo”, the 10th

International IEEE Conference on Intelligent

Transportation Systems, Sept. 30 - Oct. 3, 2007,

Seattle, Washington, USA.

[2] K. Konolige, M. Agrawal, R. Bolles, C. Cowan, M.

Fischler, B. Gerkey, “Outdoor Mapping and

Navigation using Stereo Vision”, In Proc. of Intl.

Symp. on Experimental Robotics (ISER), Rio de

Janeiro, Brazil, July 2006

[3] D. Murray and C. Jennings. “Stereo vision based

mapping and navigation for mobile robots”, In

Proceedings of the IEEE InternationalConference on

Robotics and Automation (ICRA’97), pages 1694-

1699, New Mexico, April 1997.

[4] J.M. Saez and F. Escolano: “A Global 3D Map-

Building Approach Using Stereo Vision”, In

Proceedings of IEEE International Conference on

Robotics and Automation (ICRA) (2004).

[5] Z. Zhang, “A stereovision system for a planetary rover:

Calibration, correlation, registration, and fusion” in

IEEE Workshop on Planetary Rover Technology and

Systems, April 1996.

[6] M. Vergauwen, M. Pollefeys, and L. V. Gool, “A

stereo-vision system for support of planetary surface

exploration,” Journal Machine Vision and

Applications, vol. 14, no. 1, pp. 5–14, April 2003.

[7] S. Bota and S. Nedevschi, “Camera Motion Estimation

Using Monocular and Stereo-Vision”, 4th International

Conference on Intelligent Computer Communication

and Processing, 2008, Cluj-Napoca, Romania.

[8] F. Oniga, S. Nedevschi, M-M. Meinecke, “Curb

Detection Based on a Multi-Frame Persistence Map for

Urban Driving Scenarios”, The 11th International

IEEE Conference on Intelligent Transportation

Systems, 2008, Beijing, China.

