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Abstract— The problem of road/obstacle separation of 3D points 

is revisited in this paper, in the context of driving assistance 

systems and dense stereovision. We propose some measures to 

cope with scenarios where only few road points are recovered in 

3D, or the road has an atypical geometry. When a non-planar 

road model is employed, e.g. a quadratic road surface, the 

vertical profile of the road is usually reliable for the 3D region 

that contains the road inliers. Therefore, using this surface for 

obstacle/road separation outside the inliers region is less reliable. 

Our solution is a mixed road model: the quadratic road surface is 

filtered temporally and extended with a planar patch to cover the 

whole space of interest. The planar surface used for extension is 

computed from the parameters of the quadratic surface. 

Keywords- road surface estimation, obstacle/road separation, 

dense stereovision 

I. INTRODUCTION 

Obstacle detection through image processing has followed 
two main trends: single-camera based detection and two (or 
more) camera based detection (stereovision-based detection). 
The stereovision-based approaches have the advantage of 
directly measuring the 3D coordinates of an image feature, this 
feature being anything from a point to a complex structure. The 
main constraints concerning stereovision applications are to 
minimize the calibration and stereo-matching errors in order to 
increase the measurements accuracy and to reduce the 
complexity of stereo-correlation process.  

An important part in the obstacle detection process is the 
separation of the obstacle points from the road points. Some of 
the obstacle detection methods are based on the flat road 
assumption [1,2]. This is a poor model since deviations from 
the flat road model may be as large as or larger than the 
obstacles we wish to detect. In consequence the separation and 
the 3D objects position estimation cannot be done.  

The non-flat road assumption is compulsory for a robust 
object detection method. In literature this assumption was 
introduced by non-flat road approximation as series of planar 
surface sections [3,4] or by modeling of the non-flat roads by 
higher order surfaces [5,6]. Many approaches perform lane 
detection by fitting the parameters of a 3D clothoid model 
using a monocular or stereo image and supplementary lane 
geometry constraints. The 3D lane can be used for obstacle 
road/separation. 

Disparity space-based algorithms work directly with the 
primary result of stereo reconstruction: the disparity map. The 
“V-disparity” approach [4] is widely used to detect the road 
surface. It has some drawbacks: is not a natural way to 
represent 3D (Euclidian) data, it assumes the road is dominant 
along the image rows, and it can be sensitive to roll angle 
changes (the road profile becomes blurry and harder to detect 
on the “V-disparity” image). One way to avoid this problem is 
by using a specialized vehicle with small roll variations [7]. An 
extended “V-disparity” approach is presented in [8], where the 
roll angle can be computed assuming the scene has a planar 
road surface and assuming the presence of high-gradient road 
features (edges). The "U-V-disparity" concept, introduced in 
[9], is used to classify the 3D road scene into relative planar 
surfaces and to extract the features of roadside structures and 
obstacles. 

An approach for the detection of the road surface based on 
a Digital Elevation Map (DEM) representation is presented in 
[10]. The 3D data inferred from dense stereo are transformed 
into a rectangular DEM. A quadratic road surface model is 
initially fitted, by a RANSAC approach, to the region in front 
of the ego vehicle. A region growing-like process refines this 
primary solution, driven by the 3D uncertainty model of the 
stereo sensor. A robust global solution for the road surface is 
obtained. An extended and improved version of this approach 
was later presented in [11]. The work we will present in this 
paper is related to this approach, making the method more 
appropriate for some difficult scenarios. 

II. OVERVIEW OF THE PROPOSED IMPROVEMENTS 

Fitting a surface to a set of dense 3D points can be a time 
consuming task, due to the size of the data set. As already 
mentioned, a real-time approach for quadratic surface fitting to 
dense stereo data has been proposed in [11]: 

1. The road surface is fitted, using a RANSAC approach, 
to a small patch in front of the ego vehicle. This 
insures the best solution is extracted for the initial set 
of inliers. 

2. The parameters of the road surface are refined 
iteratively by a region growing process: new points 
are added to the set of inliers, if they verify the current 
surface and are adjacent to the current set of inliers. 
The parameters are re-estimated (least square 
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minimization) after each iteration (when the region 
grows with a certain number of inliers).  

 This approach is computationally efficient, but it will not 
work robustly for some particular scenarios:  

1. When the road is poorly textured and only few 3D points 
are available, the surface parameters are estimated on a small 
set of road inliers. It is likely that the elevation uncertainty 
from stereo does not have a Gaussian distribution on the 
reduced inliers set. Thus, the least square minimization can be 
biased: the most influenced parameter is the quadratic term of 
the surface. It will have a low accuracy, and this can corrupt the 
obstacle/road separation at far depths. This side effect is 
depicted in Fig. 1.  

2. When dealing with extreme slopes (uphill or downhill 
roads), the road is usually composed of a quadratic surface 
patch at the bottom of the slope, where the vertical curvature is 
strong, and a planar surface patch at medium and far depths 
(see Fig. 2). 

  

Fig. 1. A side view of a difficult scenario: the real road surface (blue), the 

quadratic surface (red) computed from the small set of inliers, and the planar 

extension of the quadratic surface (red) from the inliers region. The obstacle at 

far depths is incorrectly classified by the quadratic surface.  

To cope with these sensitive scenarios, we propose a road 
model that combines a quadratic model, for the region of road 
inliers, with a planar surface (with green in Fig. 1) for the 
remaining depth range. 

A key issue for scenarios with sparse 3D road 
reconstruction is the stabilization of the surface parameters, in 
order to reduce their oscillations. This can be achieved through 
Kalman filtering.  

 Two variants are investigated for the planar extension. One 
involves estimating the planar extension from a subset of the 
quadratic surface inliers, through a least-square minimization. 
The alternative is to estimate the planar extension based on the 
local slope of the quadratic surface at the location of the 
furthermost inliers. 

III. THE ROAD MODEL 

This proposed mixed model should perform better than the 
each model alone. In addition, it is more stable to sparse 3D 
data than a higher degree model such as cubic surfaces or B-
spline curves. 

The resulting surface will be composed of two main 
patches, a quadratic one up to the depth of the furthermost road 
inlier, and a planar one for the remaining 3D space of interest.  

The quadratic model used is presented next, in sub-section 
A. In sub-section B the Kalman stabilization of the quadratic 
surface parameters is presented. The modeling of the planar 
surface used for extension is presented in sub-section C.   

 

 

Fig. 2. When the quadratic road surface (red) is estimated at the bottom of an 

uphill road, its vertical curvature might cause a severe increase of the 

estimated road elevation at far depths. This happens if the uphill has a strong 

vertical curvature variation near its base, and a constant slope further away 

(the planar blue patch).  

A. The quadratic road model 

The quadratic road model allows roll and pitch angles, and 
quadratic variation of the elevation (the Y coordinate) with the 
depth (the longitudinal Z coordinate).  

Equation (1) shows the algebraic form of the road model, 
by defining the height value Y with respect to the depth Z and 
the horizontal displacement X. 

2'Y a X b Z b Z c= − ⋅ − ⋅ − ⋅ − .   (1) 

Fitting the quadratic surface to a set of 3D points (Xi, Yi, Zi, 
i=1..n) involves minimizing an error function. The error 
function S represents the sum of squared errors along the 
height: 
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Where Yi is the elevation of the 3D point i and YRi is the 
elevation of the surface at coordinates (Xi, Zi). Minimizing only 
along the Y-axis is enough because, even for curved roads, the 
normal of the surface is close to the Y-axis (only few degrees 
difference). The computational complexity is highly reduced 
by avoiding minimization against the normal of the surface. 

By replacing (1) into (2) the following equation is obtained, 
where the unknowns are a, b, b’, and c: 
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The minimum of this function is 0 for perfect fitting. For S 
to have a minimum value, its partial derivatives with respect to 
the unknowns must be 0. The following system of equations 
must be solved: 
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After writing explicitly each equation, the system (4) 
becomes (matrix form): 
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Where n is the number of points, and generically 
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The solution of this system, if it exists, provides the 
quadratic road parameters. 

B. Quadratic Surface Stabilization 

The parameters of the quadratic surface are computed from 
the current stereo pair 3D data. Even if dense stereo is used to 
generate 3D data, scenarios with poor road texture (due to 
various reasons – scene illumination, camera quality etc.) will 
have fewer 3D road points reconstructed. The road surface will 
have oscillating parameters if the 3D set of road points is too 
sparse. The quadratic surface is extended (one of the variants) 
at far depths with a planar surface derived from the parameters 
of the quadratic one. Therefore, stabilization of the parameters 
over time must be performed.  

A standard Kalman filter is applied to the parameters [a, b, 
b’, c] of the road surface. Modeling the measurement and the 
process noise is the most important part that insures the 
stability of the Kalman filter.  

Evaluating the measurement noise (matrix R) is a difficult 
part, because the measurements are the actual parameters of the 
surface. The noise in the parameters is propagated from the set 
of inliers used to compute the road surface. The configuration 
(size and area covered) of the inliers set is directly linked to the 
accuracy of the parameters.  

  

Fig. 3. The computed surface (an extreme situation, blue) should be contained 

within the area of uncertainty from stereo (bounded by the red curves). 

 
 

Another aspect that must be considered is the correlation 
between the surface parameters. For instance, if a wrong 
curvature is estimated (on a small inliers set), then the least 
square fitting tends to compensate this with pitch and free term 
variations. This behavior can be modeled considering that the 
area of uncertainty along Y, caused by the stereo 
reconstruction, should contain the computed surface (see Fig. 
3). When the set of inliers is small then their uncertainty has no 
longer a normal distribution and extreme biases can appear in 
the surface shape. 

The uncertainty values for the parameters b, b’, c related to 
the depth are computed as the parameters of the parabola that 

verifies the points (Zmin, -∆Ymin), (Zmid, ∆Ymid), and (Zmax,    

-∆Ymax). Zmin is the Z coordinate of the closest inlier, Zmax is 
the Z coordinate of the furthermost inlier, and Zmid is the 
middle of the inliers interval along Z. The associated absolute 

values ∆Y are the uncertainties from stereo along the Y-axis, 
assuming a disparity uncertainty of 0.5 pixels [11]. Thus, the 
parameters of this parabola provide the measurement noise: 
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The uncertainty for the roll term of the road surface is 
estimated in a similar way (only line fitting instead of 
parabola), by considering the width of the inliers set and the 
height uncertainty at Zmid. 

The values associated with the process noise (matrix Q) are 
tuned in order to model the parameters variation that might 
occur between two successive frames:  

• for a: the roll angle expected variation is about 0.5 
degrees, 

• for b: the pitch angle expected variation is about 
0.5 degrees (although this extreme variation 
between two frames is rare, mainly due to road 
bumps such as speed limiters), 

• for b’: the vertical curvature expected variation is 
chosen to insure that while approaching an 
uphill/downhill road (of about 10% slope), the 
Kalman filter allows the curvature radius to 
change from infinity to about 50 meters, along 15-
20 frames (typical approach time at a speed of 50 
km/h), 



• for c: the road elevation expected variation near 
the ego car is about 5 centimeters (this is also 
related to speed bumps). 

 
For each frame, these values are scaled in order to 

compensate the variable ego speed and possible variations in 
the stereo acquisition frame-rate. 

C. The planar Road Model 

The planar road model used for the extension of the 
quadratic surface allows only roll and pitch angles. The goal of 
this extension is to capture the most appropriate shape of the 
road at far depths.  

Equation (1) shows the algebraic form of the planar road 
model, by defining the height value Y with respect to the depth 
Z and the horizontal displacement X. 

 

Y a X b Z c= − ⋅ − ⋅ − .    (10) 

 

There are two possibilities to estimate the desired plane:  

1. By least square fitting of a plane to a subset of the 
quadratic surface inliers. 

2. Based on the local slope of the quadratic surface at 
location of the furthermost inliers. 

The first approach involves selecting a subset S of inliers 
with the following properties:  

3. They must be the furthermost inliers from the ego 
car (we are interested in the local slope at far 
depths),  

4. The subset must cover a minimal depth range (5-
10 meters) in order to provide numerical stability 
to the computed plane.  

Using a similar approach as in sub-section III.A, the 
coefficients of the plane are obtained by solving (11), applied 
to the subset S. 
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This variant has the main disadvantage that is does not 
insures elevation and slope continuity at the boundary between 
the two different surfaces. 

The second possibility is better: the planar extension 
surface is build from the parameters of the quadratic surface. It 
has the same roll angle, and the pitch angle is equal to the pitch 
angle of quadratic surface at its furthermost inlier. Assuming 
the furthermost inlier is placed at the depth Zmax, the local 
slope of the quadratic surface is obtained by deriving (1) with 
respect to Z: 

max2 '
planar quadratic quadratic

dY
b b b Z

dZ
= = − − ⋅ . (12) 

 

The free term of the plane is computed by considering that 
at the depth Zmax, the quadratic and the planar surface must 
have the same elevation. 

D. The Mixed Road Model 

To summarize the discussion, the mixed model proposed 
uses a quadratic surface (aq, bq, b’q, cq) up to the depth of the 
furthermost road inlier, and a planar surface (ap, bp, cp) further 
away (Fig. 4). The road elevation at a given 3D location (X, Z) 
is given by: 
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Fig. 4. The mixed road model proposed. 

 

IV. IMPLEMENTATION DETAILS 

Building the DEM and the computation of the quadratic 
surface parameters on the DEM follows the steps described in 
[11]: 

• For each DEM cell, the elevation of the highest 
point (within the cell) is stored, or the cell is 
marked empty. A DEM cell covers a 10x10 cm 
patch in the horizontal plane. Singular empty cells 
are filled with the neighbors’ elevation, in order to 
improve the connectivity in the DEM. 

• The quadratic road surface is fitted, using a 
RANSAC approach, to a small DEM patch in 
front of the ego vehicle.  

• The parameters of the road surface are refined 
iteratively by a region growing process: new 
points are added tot the set of inliers and the 
parameters are re-estimated after each iteration. 



The Kalman filter is applied to the quadratic road surface 
for stabilization (described in section III.B). The planar 
extension is estimated from the parameters of the quadratic 
surface (described in section III.C).  

Finally, the parameters of the mixed model are transformed 
from the DEM reference frame into the world reference frame 
and the road/obstacle separation is performed. The elevation of 
the road for each 3D point (X, Z) location is compared with the 
elevation of the 3D point.  3D points that are above the road 
surface with a certain elevation difference are considered 
candidate obstacle points for higher-level modules (see Fig. 5). 
The minimum elevation difference is provided by the 
uncertainty of the stereo sensor [11] and can be computed as a 
function of the focal length, stereo baseline, depth, and 
disparity uncertainty. 

 

 

Fig. 5. Obstacle area defined by the mixed road model. 

 

 

 
a. 

 
b. 

Fig. 6. a. The measured (blue) versus the filtered (red) curvature term b’ are 

shown for 120 frames while driving on a relatively flat road, with poor 3D 

reconstruction, b. The measured (blue) versus the filtered (red) curvature term 

b’ are shown for 45 frames while driving toward a 10% uphill road. 

 

 

 
a. 

 
b. 

 
c. 

 
d. 

Fig. 7. a. Side view of the quadratic road model and the set of 3D points, b. 
Side view of the mixed road model and the set of 3D points, c. The quadratic 

road surface projected onto the left image, d. The mixed model surface 
projected onto the left image. 

V. RESULTS AND FUTURE WORK 

The algorithm was tested both offline and online with an 

onboard dense stereo system. It runs in real-time, in about than 

7-10 ms per frame. Implementation was done in C++, and the 

tests were carried out on a Pentium Dual-Core processor.  

The evaluation of the Kalman filtering was performed in 

two directions: to test the stability of the filter on scenarios 

with reduced number of road points and to evaluate its ability 



to converge to the true road shape with minimal delay. 

First, the filtering was evaluated on a relatively flat road, 

with poor texture. The graph showing the measured curvature 

term versus the filtered one (see Fig. 6.a) proves that the filter 

is able to remove most of the measurement noise. 

The second graph (see Fig. 6.b) shows the filtered curvature 

while driving towards an uphill road. The road has a good 3D 

reconstruction, and the filter is able to quickly converge. 

However, in frames 20-22 the windshield wipers were on, 

partially obscuring the stereo system. A poor set of road inliers 

was available, but the filter successfully filtered the wrong 

measurements due to the adaptive way of estimating the 

measurement noise (as a function of the inliers’ set). 

As expected, the mixed road model performs better than the 
quadratic model alone in most of the scenarios (an example in 
Fig. 7) in terms of separating points into road or obstacle 
points. Various results of the obstacle/road separation are 
shown in Fig. 8. The improvements are visible at far depths, 
where the mixed road model is less likely to perform wrong 
classifications. 

VI. REFERENCES 

[1] J.Weber, D. Koller, Q.-T. Luong and J. Malik, “An integrated 
stereo-based approach to automatic vehicle guidance,” Fifth 
International Conference on Computer Vision, 20-23 June 1995, 
Cambridge, MA, USA, pp.52-57.  

[2] T. A. Williamson, “A high-performance stereo vision system for 
obstacle detection,” PhD Thesis CMU-RI-TR-98-24, Robotics 
Institute Carnegie Mellon University, Pittsburg, September, 
1998. 

[3] J. Hancock, “High-Speed Obstacle Detection for Automated 
Highway Applications,” Tech. Report CMU-RI-TR-97-17, 
Robotics Institute, Carnegie Mellon University, Pittsburg, May, 
1997. 

[4] R. Labayrade, D. Aubert, J.P. Tarel, “Real Time Obstacle 
Detection in Stereovision on Non Flat Road Geometry Through 
V-disparity Representation,” Proceedings of IEEE Intelligent 
Vehicle Symposium (IV’2002), June 18-20, 2002, Versailles, 
France. 

[5] R. Aufrere, R. Chapuis, F. Chausse, ”A model-driven approach 
for real-time road recognition,” Machine Vision and 
Applications, Springer-Verlag, 2001, pp. 95-107. 

[6] J. Goldbeck, B. Huertgen, “Lane Detection and Tracking by 
Video Sensors,” In Proc.of IEEE International Conference on 
Intelligent Transportation Systems, October 5-8, 1999, Tokyo 
Japan, pp. 74–79. 

[7] A. Broggi, C. Caraffi, P. Paolo Porta, and P. Zani, “The Single 
Frame Stereo Vision System for Reliable Obstacle Detection 
used during the 2005 DARPA Grand Challenge on TerraMax,” 
in IEEE Intelligent Transportation Systems Conference, 
Toronto, Canada, pp. 745-752, September 17-20, 2006. 

[8] R. Labayrade and D. Aubert, “A single framework for vehicle 
roll, pitch, yaw estimation and obstacles detection by 
stereovision,” IEEE Intelligent Vehicles Symposium, Columbus, 
USA, pp. 31 – 36, June 2003. 

[9] Z. Hu and K. Uchimura, “U-V-Disparity: An efficient algorithm 
for stereovision based scene analysis,” in IEEE Intelligent 
Vehicles Symposium, Las Vegas, USA, pp. 48–54, June 2005. 

[10] F. Oniga, S. Nedevschi, M-M. Meinecke, T-B. To, “Road 
Surface and Obstacle Detection Based on Elevation Maps from 
Dense Stereo,” the 10th International IEEE Conference on 
Intelligent Transportation Systems, Sept. 30 - Oct. 3, 2007, 
Seattle, Washington, USA. 

[11] F. Oniga, S. Nedevschi, “Processing Dense Stereo Data Using 
Elevation Maps: Road Surface, Traffic Isle, and Obstacle 
Detection,” IEEE Transactions on Vehicular Technology, March 
2010. 

 

 

 

 

 
Fig. 8. Obstacle road separation works better at far depths with the mixed road 

model: obstacle points with green and road points with magenta. 


