
Stereovision on Mobile Devices for Obstacle

Detection in Low Speed Traffic Scenarios

Alexandra Trif, Florin Oniga, Sergiu Nedevschi

Computer Science Department

Technical University of Cluj-Napoca

Romania
alexandram.trif@gmail.com, Florin.Oniga@cs.utcluj.ro, Sergiu.Nedevschi@cs.utcluj.ro

Abstract—Since smart mobile devices having capabilities of

synchronous stereo image acquisition have been released on the
market, the topic of real-time 3D environment reconstruction by

stereovision on such mobile platforms has become of a greater

interest among researchers. In this paper we continue the sparse
stereovision approach proposed in [15], while focusing on

improving the reconstruction results by refining the disparity
computation accuracy to a sub-pixel level and by using the

available sensors to gain more information about the position of
the device relative to the world. After the 3D points are
reconstructed by triangulation, a correction is applied on them to

compensate for a possible pitch rotation of the device. Moreover,

we present a fast approach for detecting the obstacle on the

estimated trajectory of the vehicle. A series of experiments have
been conducted which proved that although mobile development
is constrained by the available features of the device and its

operating system, sensor information is beneficial, and more
importantly, both reconstruction accuracy and obstacle detection

at short-medium distances and real-time processing can be
achieved. Thus, developing driving assistance functions with such

devices is possible for low vehicle speeds / short range scenarios,
which often occur in urban environments.

I. INTRODUCTION

The most important issue of a driving assistance application
is to understand the environment in which the car is moving,
more specifically to know where various objects are and
whether they may interfere with the vehicle on its moving
trajectory. Thus, with the aid of the stereo-cameras and the
sensors available on the mobile device the objects existent in
the field of view can be reconstructed and then transposed to
the world reference frame. Moreover, the high speed and low
power consumption requirements of mobile applications
impose an efficient implementation of the stereovision
algorithm. Thus a tradeoff must be made between the
performance of the algorithm (accuracy, maximum depth
estimation, etc.) and the complexity of the processing (speed,
power consumption, etc).

Many stereovision approaches have been proposed in the
last decade, and next, we will briefly revisit some of the most
relevant ones. In [1] Hirschmüller et al. present a real-time
correlation-based stereovision system, by analyzing and
comparing the results of various matching cost functions. They
propose two methods of reducing the number of matching
errors and also a solution to improve matching at object
borders. In [2] an edge-based stereo-reconstruction system is

presented, with focus on improving the accuracy of obstacle
detection at far distances. A dense stereo solution with sub-
pixel accuracy is described in [3], based on the Semi-Global
Matching (SGM) method [4] and using the Census transform
as the matching metric. The SGM was introduced in 2005 by
Hirschmüller, and it was proved to provide accurate stereo-
matching results in real time, by searching for pixel
correspondences based on Mutual Information and also
approximating a global cost [4]. In [5] Stefano proposes
another area-based matching approach, the Single-Matching
Phase (SMP) local algorithm, which eliminates redundant
differences and sums while computing the Sum of Absolute
Differences matching cost. Even though extensive work has
been done in the stereovision domain, none of these previously
mentioned solutions were intended to run on smart mobile
devices.

Recently some research has been directed towards the
implementation on smart mobile devices of some computer
vision algorithms, 3D reconstruction being an example. A very
good analysis of the advantages and limitations of mobile
devices regarding computer vision and augmented reality
applications is presented in [9]. As it was already noted in [9]
and [12], most of the solutions either use the mobile device
only as a client, the processing being performed on a server [9],
or the processing is applied offline on a set of previously
captured images, the computational complexity thus playing a
less important role [12]. However, there are a few mobile
applications that perform the processing entirely on the device,
some of which are shortly described in what follows.

In [10], Langguth and Goesele describe a solution for
sparse 3D reconstruction of objects using structure from
motion. Multiple pictures of the scene are captured from
different view angles using the camera of a mobile phone, the
user being guided by the application to move the device in the
best position for a better reconstruction. In [11] another
approach is presented, in which two smart phones are used to
create a master-slave photometric stereo system. Thus, both
devices capture images, but the slave device also uses its flash
to illuminate the scene, while the master applies the
photometric reconstruction algorithm. In [12], Pan et al.
describe their solution of generating a 3D model of the scene
from panoramic images in real time. An application for fast 3D
reconstruction of house plans is described in [13]. The user is
guided to capture data needed for the later creation of a virtual
tour of the indoor environment.

In the last years, there has been a significant progress in
terms of technical capabilities and processing power on the
market of smart mobile devices (phones and tablets). Pushed
forward by the entertainment industry, some manufacturers (so
far LG and HTC, to our knowledge) have released smart
mobile devices that have two forward-facing cameras, which
can acquire synchronous stereo images.

In this paper we investigate whether such a smart device
can be used as both acquisition and processing platform for
stereovision based driving assistance, while also using the
gravity sensor available on the device to improve the
reconstruction results by eliminating the rotation applied on the
3D points by a potential pitch angle of the device. We also
propose a real-time obstacle detection algorithm that selects the
maximum agglomeration of points on the vehicle’s trajectory
and computes the mean distance towards it.

In section II an overview of the entire stereovision
algorithm is presented, with emphasis on the sub-pixel
interpolation methods used in stereo-matching and on the pitch
angle correction applied to the reconstructed points. In section
III the algorithm used for obstacle detection is explained.
Finally, some experimental results are given in section IV.

II. ALGORITHM OVERVIEW

This paper presents a continuation of the algorithm
presented in [15]. The major steps of the algorithm are based
on the standard stereovision approach, as depicted in Fig. 1.
Furthermore, some constraints are imposed in order to reduce
the search space in the stereo-matching step and to improve the
reliability of the found matching point. Also, the disparity
computation in the matching step is refined to sub-pixel
accuracy. All these steps have already been detailed in [15].
Additionally, a correction is applied on the reconstructed points
in order to compensate for a possible pitch rotation. Moreover,
different sub-pixel interpolation methods have been tested and
analyzed.

Fig. 1. Algorithm overview

A. Stereo-matching

Due to the low computational complexity requirements of
the application we considered an edge-based stereovision
approach to be the most appropriate. Therefore, after the
images are rectified using the approach described in [6], edges
are detected in the left image using the well-known Canny
algorithm. The left image is then used as reference in the
stereo-matching step, and the Sum of Absolute Differences is
used as matching metric. A pseudo-code of the stereo matching
function is presented below, and it was detailed in [15]:

Function Stereo-matching

1: for each edge-point in the left image do
2: compute the gradient magnitude mL
3: set gradient threshold t ← mL/2
4: for each point p in the disparity range in the right image

do
5: compute the gradient magnitude mR
6: if mR>t then
7: compute SADp
8: add SADp to SAD-list
9: if SADp<SADmin then SADmin ← SADp end if
10: end if
11: end for
12: apply constraint for repetitive patterns
13: if not repetitive pattern then
14: apply sub-pixel interpolation
15: end if
16: add current match to matches-list
17: end for
18: return matches-list

B. Sub-pixel accuracy

Depth computation depends on the disparity between the
pixels in the left and right images. Therefore, if the matching
results are improved to reach a sub-pixel accurate level, this
will also be reflected on the refinement degree of the depth
estimation results. Sub-pixel accuracy is necessary because the
matching point in the right image is not always located on an
integer pixel, but rather between two pixels.

Sub-pixel accuracy can be achieved by interpolating the
matching cost of the best-matching pixel and its two left and
right neighbors. There are a few interpolation methods
described in literature, which have been implemented and
tested in our solution. One of them is parabola interpolation, in
which a parabola is fitted on the values of the correlation cost
function corresponding to the best-matching pixel (SADmin) and
its left (SADleft) and right (SADright) neighbors. The
displacement ds from the integer coordinate of the previously
found correspondent pixel is computed as:

min2(2)

left right

s

left right

SAD SAD
d

SAD SAD SAD

−
=

+ −

(1)

Another interpolation function that can be used is the
symmetric “V”. According to [8], the displacement ds is
computed as:

()
()

min min

min min

,
0.5

2 ,

left right

s

left right

MIN SAD SAD SAD SAD
d

MAX SAD SAD SAD SAD

− −
= −

− −

 (2)

Furthermore, in order to improve the accuracy of sub-pixel
estimation, we implemented the histogram equalization
approach presented in [14]. As already noted in [14] sub-pixel
displacements tend to be biased towards integer values, which
can be observed from the histogram of sub-pixel
displacements. Thus, the histogram equalization approach tries
to distribute the sub-pixel values on the entire interval of
displacements [-0.5, 0.5]. Due to the fact that the histogram is
symmetric around 0, this solution considers the sub-pixel
displacement as a random variable x in the range [0, 0.5] and

estimates its probability density function as a linear function
when the histogram of sub-pixel displacements was generated
using symmetric “V” interpolation. The transformation
function is then given by the cumulative distribution function
of x. With this method, the obtained function for computing the
sub-pixel displacement is the following:

 (3)

where

(4)

The histograms we obtained can be seen in Fig. 2 and a
comparison between the effects the different sub-pixel
estimation methods have on the reconstructed points will be
presented in the Experimental results section.

Fig. 2. Histograms of sub-pixel displacements obtained using parabola

interpolation, symmetric “V” interpolation and histogram equalization

C. 3D reconstruction

The last step of the algorithm is represented by the 3D
reconstruction operation. Because the images are rectified, we
can use the well-known formulas for 3D reconstruction in a
canonical configuration, which are widely available in
literature [7].

Due to the fact that the mobile device is mounted on the
dashboard in the car every time the application is used, a
different pitch angle may be introduced every time the device’s
position is adjusted. Thus, considering the fact that the points
are reconstructed relative to the camera reference frame, they
may appear tilted in the 3D space, as it can be seen in Fig. 4b.
As a consequence, an auto-calibration of at least the pitch angle
is necessary in order to rotate the points back to their correct
position in the 3D space, as in Fig. 4c.

Although the definition of a pitch is a rotation about the y-
axis, we call a pitch a rotation about the horizontal axis of the
device, which is the x-axis.

In order to apply the pitch correction on the 3D points, we
first need to know the pitch angle α. For this we make use of

the gravity sensor available on the mobile device. This sensor
provides the force of gravity that is applied to the device on the
x-, y- and z-axes, in m/s

2
. Because the rotation is performed

about the x-axis, the pitch angle is computed as:

 (5)

where Gz and Gy are the components of the gravity on the z-
and y-axis, respectively, as depicted in Fig. 3. Further, once we
know the pitch angle, the new coordinates of the points are
computed using the following formulas:

(6)

Fig. 3. The components of the gravity G on the y- and z-axes

Fig. 4. a) The left image from the stereo-pair, acquired with a 10 degree pitch

angle. b) Left view of the reconstructed 3D points, before applying the pitch

angle correction. c) Left view of the reconstructed 3D points, after applying
the pitch correction.

III. OBSTACLE DETECTION

Once we have a better sense about the location of object
points in the 3D space, we can eliminate those points that are
outside the vehicle’s trajectory, and we can also determine
whether there is an obstacle on that trajectory. Our obstacle
detection approach is using the histogram of point depths in the
scene to determine at what distance the maximum
agglomeration of points is located. Thus, the algorithm can be
split in the following steps: vehicle trajectory estimation,
building the histogram of depths and locating the obstacle.
These steps will be described in more detail in what follows.

A. Trajectory estimation

Assuming that the vehicle is moving along a curvilinear
path, in order to estimate its trajectory we need to know the
radius of the curve on which it is moving. Thus, from the
physics of circular motion we know that the car has a
centripetal acceleration, whose formula is the following:

 (7)

where ac is the centripetal acceleration, vt is the velocity of the
car and R is the radius of the curve on which the car is moving.
Therefore, if we know the acceleration ac and the velocity vt,
from (7) we can compute R.

The velocity vt can be determined by using the GPS
available on the mobile device. Along with the current location
coordinates, the GPS also provides information about the
moving speed in m/s. The velocity could also be taken from the
vehicle’s CAN bus via Bluetooth. Beside the speed, the yaw-
rate of the vehicle can also be obtained from the CAN bus,
which can be used in the computation of the radius R.

In order to find out the acceleration ac, we can use the
linear acceleration sensor of the device. This sensor provides
the acceleration on the three axes (x, y, z) without taking into
consideration the acceleration due to gravity (as opposed to the
accelerometer which does not discard the gravity from its
results). Due to the fact that the device is placed in the car, we
know that the centrifugal force is acting on it. The centrifugal
and centripetal forces and also their acceleration components
are equal in magnitude, so we can approximate the centripetal
acceleration that we need with the lateral acceleration applied
on the x-axis of the device. Once we know the radius R, we
can select all the points that lay in a tunnel along the moving
path by computing their distance towards the center of the
curve.

B. The histogram of point depths

In order to simplify the histogram computation process, all
the points on the curved path are unrolled along a straight line.
We consider the vehicle to be positioned in the point
V(0,0,0).Thus, for every point P(xp, yp, zp) in the tunnel, we
compute the angle α determined by the center of the curve, the
point P and the point V using the law of cosines in the PCV
triangle, as depicted in Fig. 5 on the left. Then the length of the
arc determined by V and the projection of P on the circle is
computed as:

 (8)

Further, the new position of point P along the transformed
straight path is computed as:

P(xp, yp, zp) →P(-δ, yp, Lα) (9)

Fig. 5. Unrolling the points in the tunnel along the path of the vehicle. The
red continuous line is the curved trajectory of the vehicle. The blue dashed

lines are delimiters for the tunnel in which obstacles are searched for. V is the

vehicle, C is the center of the curve, P is a point in the tunnel.

The histogram is then computed by using windows of 10
cm in length along the straight trajectory of the car, and
counting the points which lay in each window. Due to the fact
that objects which are more far away have less corresponding
reconstructed edge points, the histogram is normalized to
compensate for this difference in the number of reconstructed
points. Considering that most obstacles on the road are
vehicles, the normalization function we use depends on the
area of the projected object in the image:

 (10)

Thus, assuming that the sizes of the vehicles are somewhat
constant, the area will depend on f2/Z2 and we can use the
inverse of this coefficient to normalize the histogram.

C. Obstacle detection

In order to detect the obstacle on the road, we traverse the
normalized histogram and search for the maximum
agglomeration of points. Moreover, based on our observations
from the Experimental results section which state that the
dispersion of the points around the mean increases with the
distance towards the object, we considered using an adaptive
window in our search for the obstacle in the histogram. Thus,
the size of the window depends on the distance at which we are
currently searching, and a formula for computing the window
size at every step is given by:

 (11)

where ∆d is the disparity error, Z is the distance, b is the
baseline and f is the focal length of the cameras. We considered
∆d to be 0.25.

IV. EXPERIMENTAL RESULTS

The application was tested on an LG V900 Optimus Pad
device, which has an Nvidia Tegra 2 chipset including a dual-
core ARM Cortex A9 CPU. The baseline of the stereo camera
system is 4.5 cm.

In order to test the reconstruction accuracy of the system,
we acquired a sequence of left-right pairs of images of a car
located at measured distances in the range 2 m – 9 m. The 3D
coordinates were computed in the left camera reference frame,
and the mobile device was mounted horizontally using a laser
level (to ensure alignment with the ground plane) and aligned
with the test vehicle longitudinal axis.

Firstly, we tested the depth estimation accuracy of our
system when using different sub-pixel interpolation methods
and we compared the effects they have on the reconstructed
points. For this test we selected only the points that lay on the
car and computed their mean and standard deviation on the z-
axis. The reconstruction results and the images used in our
experiments can be seen in Fig. 6.

In Table I the results obtained using parabola interpolation
are presented. The results obtained using symmetric “V” and
histogram equalization can be found in Tables II and III,
respectively. When analyzing the mean of the reconstructed
points, we observe that the chosen interpolation method does
not affect it significantly. Up to a distance of 6 m the mean
distance is accurately determined, at 7 m we have an error of
only 30-40 cm, at 8 m the error is 50 cm and at 9 m the error
increases to 1.3 m.

The standard deviation of the reconstructed points describes
how far away from the mean they are scattered. We noted in
[15] that as the distance grows, the points are more spread out
on the z-axis, as it can be seen in Fig. 6.

TABLE I. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE

384X216 AND THE PARABOLA SUB-PIXEL INTERPOLATION FUNCTION

Measured

distance (m)

Mean

(mm)

Standard deviation

(mm)

Number of edge

points

2 2051 94 769

3 2923 188 557
4 3968 375 360

5 4997 534 296
6 5942 828 194

7 6778 996 204

8 7530 508 131
9 7717 626 90

TABLE II. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE

384X216 AND THE SYMMETRIC “V” SUB-PIXEL INTERPOLATION FUNCTION

Measured

distance (m)

Mean (mm) Standard

deviation (mm)

2 2042 88

4 3997 415

6 5913 779

7 6694 927

8 7536 692

TABLE III. ACCURACY OF DEPTH ESTIMATION WHEN USING IMAGES OF SIZE

384X216 AND THE HISTOGRAM EQUALIZATION SUB-PIXEL INTERPOLATION

Measured
distance (m)

Mean (mm) Standard
deviation (mm)

2 2035 85

4 4017 444

6 5879 761
7 6603 877

8 7522 791

Fig. 6. Depth estimation results (top) and the corresponding 384x216-sized left image from the stereo-pair used for reconstruction (bottom): a) the car

is at 2 m; b) the car is at 4 m; c) the car is at 6 m; d) the car is at 8 m.

 From the tables we observe that when we use the
symmetric “V” interpolation function we achieve an
approximately 6% reduction of the points’ dispersion around
the mean, while the histogram equalization method improves
this percentage to about 9-10%. However, in some cases, the
standard deviation of the points worsens, the 4 m case being
such an example.

The main causes for this dispersion of the points around the
mean include the blurring introduced by the rectification step,
as the final pixel intensity is obtained by interpolation, the
limited accuracy of the sub-pixel interpolation (1/4 to 1/6
pixels, as noted in [2]) and the small resolution of the images.
Thus, a small sub-pixel error could lead to greater errors in
depth estimation.

For testing the obstacle detection algorithm, we acquired a
sequence of images in traffic. The results we obtained can be
seen in Fig. 10 and Fig. 9. In Fig. 10 the estimated trajectory of
the vehicle is drawn with a yellow line, as it was moving along
a curved road. In Fig. 9 the obstacle detection results are
depicted, while also measuring the distance towards the
detected object on the vehicle’s path.

Concerning the performance of the application, we
managed to achieve an average speed of 6.5 frames per second
on 384x216 grayscale images when using a window of 7x7 in
the stereo-matching function. Our solution for detecting the
obstacle on the vehicle’s trajectory proved not to be time-
consuming, as it only reduces the processing speed to an
average of 6 frames per second. Taking into account that recent
smart mobile devices (including our test device) feature dual
core processors, we performed an analysis of a potential multi-
threaded implementation. Due to the fact that the affinity of a
thread cannot be set to a certain processor programmatically,
and moreover, there are a number of other services running in
the background, the average improvement in speed that can be
obtained by splitting the processing on two threads is
approximately 20%.

Fig. 9. Obstacle detection
results: the yellow rectangle

marks the slice of the tunnel

where the obstacle was
detected:

a) obstacle detected at 4 m;

b) obstacle detected at 5.3 m;
c) obstacle detected at 7.4 m.

Fig.10. The estimated trajectory of the vehicle (the yellow line) while moving
along a curved road

REFERENCES

[1] H. Hirschmüller, P. R. Innocent, J. M. Garibaldi, “Real-time correlation-

based stereo vision with reduced border errors”, International Journal of

Computer Vision, 47(1/2/3):229-246, April-June 2002.

[2] S. Nedevschi et al., “High Accuracy Stereo Vision System for

FarDistance Obstacle Detection”, IEEE Intelligent Vehicles Symposium,
June 14-17, 2004, University of Parma, Parma, Italy, pp. 292-297.

[3] I. Haller, C. Pantilie, F. Oniga, S. Nedevschi, "Real-Time Semi-Global
Dense Stereo Solution with Improved Sub-Pixel Accuracy",
Proceedings of 2010 IEEE Intelligent Vehicles Symposium, June 21-24,

2010, University of California, San Diego, CA, USA, pp. 369 - 376.

[4] H. Hirschmüller, “Accurate and Efficient Stereo Processing by Semi-
Global Matching and Mutual Information”, IEEE Computer Society

Conference on Computer Vision and Pattern Recognition CVPR'05,
vol. 2, pp. 807-814, June 2005.

[5] L.D. Stefano, M. Marchionni, S. Mattoccia, “A fast area-based stereo

matching algorithm”, Image and Vision Computing, vol. 22, 2004, pp.
983-1005.

[6] C. Vancea, S. Nedevschi, “Analysis on Different Image Rectification

Approaches for Binocular Stereovision Systems”, in Proceedings of
2006 IEEE ICCP, September 1-2, 2006, Cluj-Napoca, Romania, vol. 1,

pp. 135-142.

[7] E. Trucco, A. Verri, “Introductory Techniques to 3D Computer Vision”,

Prentice Hall, 1998.

[8] J. Woodfill et al., “Data Processing System and Method”, U.S. Patent
6,215,898 B1, April 10, 2001.

[9] C. Arth, D. Schmalstieg, “Challenges of Large-Scale Augmented Reality

on Smartphones”, ISMAR 2011 Workshop: Enabling Large-Scale
Outdoor Mixed Reality and Augmented Reality, October 26, 2011, Basel,

Switzerland.

[10] F. Langguth, M. Goesele, “Guided Capturing of Multi-view Stereo
Datasets”, Eurographics, 2013.

[11] J.H. Won, M.H. Lee, I.K. Park, “Active 3D Shape Acquisition Using

Smartphones”, IEEE Computer Society Conference on Computer Vision

and Pattern Recognition Workshops, June 2012.

[12] Q. Pan et al., “Rapid Scene Reconstruction on Mobile Phones from
Panoramic Images”, in Proceedings of 2011 IEEE ISMAR, 2011, pp. 55-
64.

[13] A. Sankar, S. Seitz, “Capturing indoor scenes with smartphones",
in Proceedings of the 25th annual ACM symposium on User interface

software and technology (UIST '12), 2012.

[14] C. D. Pantilie, S. Nedevschi,“SORT-SGM: Subpixel Optimized Real-
Time Semiglobal Matching for Intelligent Vehicles”, IEEE Transactions

on Vehicular Technology, 61(3): 1032-1042, March 2012.

[15] F. Oniga, A. Trif, S. Nedevschi, "Stereovision for Obstacle Detection on
Smart Mobile Devices: First Results", accepted at IEEE Intelligent

Transportation Systems Conference 2013, Netherlands, 6-9 October
2013

