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Abstract 
 

This paper presents a lane detection system that 

combines stereovision-specific techniques with 

grayscale image processing for maximizing the 

robustness and applicability against the difficult 

conditions found on the urban roads, marked or non 

marked. The lane marking features are extracting 

using a fast and robust dark-light-dark transition 

detector that’s aware of the perspective effect. The 

clothoid lane model is matched to the extracted 

features using line segment fitting for two distance 

intervals, under special constraints that ensure 

correctness. Freeform lane border detection, 

independent of the geometry constraints, driven by 

lane marking features only, is used to solve the 

situations not suited for clothoid representation. 

Intensive validation techniques are used for tracking 

initialization, and for monitoring of the noise level on 

the road, in order to avoid false positives. The results 

of each detection method are fused together in a 

Kalman filter based framework. 

1. Introduction 

 

Driving assistance systems are already beginning to 

emerge as commercial products, as they have reached 

the acceptable reliability for highway operation. The 

urban scenario, however, requires additional research, 

as it presents a whole new range of problems. One of 

the earliest sensorial systems for urban driving 

assistance is described briefly in [2]. Since then, the 

advancements in computer hardware and image 

processing algorithms have enabled the scientific 

community to make significant progress towards robust 

and accurate vision sensors for the urban driving 

environment. 

The urban lane detection work of our team benefited 

from the experience gathered in the framework of the 

past research projects. This work was aimed at 

designing a driving assistance sensor based on stereo 

grayscale cameras, for the highway and extra urban 

environment, able to detect the road geometry and the 

obstacle position, size and speed, using edge-based, 

general geometry, software stereo reconstruction. The 

lane detection algorithm is described in [3] and the 

whole system architecture is presented in [4]. 

Our research in urban stereo began with the aim of 

designing a robust, real-time sensor for the road and 

relevant object detection in the urban environment. The 

prerequisites have changed: the stereo processing is 

now done by a specialized hardware board, which 

means some more time is available for the high-level 

algorithms such as lane detection. It also means that we 

have more 3D points (the information is now dense, 

instead of edge only); on the other hand, there are more 

such high-level processing modules, targeted for 

various relevant aspects of the urban street: oriented 

object tracking, pedestrian recognition, pedestrian 

crossing detection, barrier detection, and so on.  

The lane detection subsystem is little influenced by 

the new stereo system, as the lane can be estimated 

only by edges. On the other hand, we had to meet a 

new set of requirements: detection in crowded traffic, 

with limited visibility of the lane delimiters; detection 

of non-standard lane geometries; detection of higher 

curvature roads; discrimination of the lane delimiters in 

situations when the roads were full of false edge 

information, and handling the situations where only one 

lane delimiter is visible. 



  

In order to meet the requirements, a complete system 

overhaul was needed. The lane detection system was 

completely redesigned, from the feature extraction 

algorithm to model matching and state update. The 

following chapters describe all these phases, and the 

way they are combined into a robust, real-time lane 

detector for the urban environment.  

2. Lane detection system architecture 

 

The urban lane detection system is organized as an 

integrator of multiple sensors. Instead of having 

multiple physical sensors, we have multiple detection 

stages, which all deliver results that will be used to 

update the lane model state parameters. The cycle 

begins with the prediction, and continues with all the 

detection algorithms, until the final update. When one 

algorithm updates the lane state, the resulted estimation 

becomes the prediction for the next stage. In this way, 

we can insert any number of algorithms into the 

processing chain, or we can temporary disable some of 

them, for testing or speedup purposes. 

Figure 1 shows the organization of the lane detection 

system, the main processing modules and the 

relationships between them. In what follows, we give a 

brief description for each module, and then, in the next 

chapters, the most important ones will be described in 

detail. 

 
Figure 1. Lane detection system architecture 

 

Prediction – This step applies the equations of state 

transition to the previous frame’s estimation of the lane 

parameters, using the motion parameters of the ego 

vehicle (speed and curvature) and timestamp read from 

the CAN bus. The predicted state vector, along with its 

prediction covariance matrix, will be used in the 

detection phase to delimit search intervals, and in the 

update phase to filter the detection results. 

Vertical Profile Detection – The detection of the 

pitch angle and of the vertical curvature is done using 

the same stereovision-based algorithm that we have 

used for the highway scenario [3], adjusted for the 

distance range of the urban traffic. This step will mark 

each edge point that has 3D information associated to it 

as either “road point” or “above road point”. The road 

points are of interest in lane detection, the others are 

used for the obstacle detection routines. 

Lane Marking Point Extraction – Together with 

edge detection, stereo reconstruction and road/above 

road labeling done by the vertical profile detection, the 

lane marking point extraction (classification) algorithm 

is part of the feature extraction methodology for urban 

lane estimation. This algorithm detects lane markings 

as pairs of 3D road points of similar in value but 

opposing in sign gradients, placed at the proper 

distance. This step is independent of the prediction, as 

it has to have universal, model-free application.  

Near Range Linear Detection – The core of the 

model-based lane estimation process is the linear 

model matching. This algorithm fits two line segments 

(for the left and right lane border) to the perspective-

projected road points, under several constraints that 

will ensure that these two segments are very likely to 

be the 2D projection of a section of the lane. First the 

linear matching is attempted to a range segment close 

to the ego vehicle, to ensure a minimum detection in 

restricted visibility conditions. 

Far Range Linear Detection – If the near range 

linear model matching succeeds, the same algorithm is 

run for the next road section, in order to refine the 

estimation of curved roads. The far range linear 

detection is not attempted if in this range we have 

obstacles on the lane. 

Free Form Left Border / Right Border Detection – 

These routines are independent of the model-based 

prediction and of the linear model matching algorithms, 

but they rely heavily on the lane marking extraction 

results. Each lane border is estimated independently as 

a chain of 3D points. The results of these routines are 

used for updating the lane model parameters, but they 

can be used also as standalone output. 

Update – Each of the detection algorithms will 

update the lane model parameter vector and its 

associated covariance matrix, by means of Kalman 

filters. The result of one update will become the 



  

prediction for the next detection algorithm, and the 

result of the final update will become the final output 

of the system. 

3. Extraction of lane features 

 

The highway scenario allows, in same cases, to 

perform decent lane detection using the most basic type 

of features, the edges. This is because the constraints of 

the lane model ensure the rejection of the noise 

features, while keeping the good ones. Another 

advantage of the highway scenario is that the obstacle-

free look-ahead distance is usually high, and therefore 

the chances of getting the right features in the lane 

model matching process are also high. 

These premises are not valid for the urban scenario. 

The urban scenario is, above all, complex. We may 

encounter highway-like portions of road, but we may 

also encounter situations where the free look-ahead 

distance is very small, where the obstacles are all over 

the place, where roads have complex textures that 

produces edges, and so on. Moreover, the lane may not 

always suit the model, no matter how complex this 

model is. 

In our previous work [3], we have selected as 

features the edges that had a corresponding 3D height 

value compatible to the road surface. Thus, the feature 

detector was in fact the vertical profile detection 

algorithm, which allowed us to select the road edges. 

For the urban application, we need to classify these 

edges further, to extract the lane delimiting markings. 

An edge belonging to a lane marking will have priority 

in model matching, while the non-marking edges are 

useful when markings are not available. 

The lane marking is detected using the classical 

Dark-Light-Dark (DLD) transition principle, which, in 

gradient terms, is seen as a pair of gradients of similar 

magnitude but opposable sign. A simple search for 

gradient pairs has, however, several drawbacks: the 

level of detail of the road surface decreases with the 

distance, and the distance between opposing gradients 

is also variable, both problems being caused by the 

perspective effect. We would like to filter out the noise 

in the near range of the road without destroying the 

edges in the farther range, and we would also like to 

have a range of acceptable distances between gradient 

pairs. 

The first issue is solved using a variable width filter 

for computing the horizontal gradient, and the second 

by using a variable width interval for searching the 

gradient pairs. The width of the filter and the width of 

the search interval are computed from the 3D width of 

the lane markings (a possible range of widths) and the 

camera parameters, which enable us to compute 

beforehand the effect of the perspective.  

The value of the horizontal gradient of a point of 

coordinates (x, y) is given by equation (1): 
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Applying the above formula directly is 

computationally expensive, as D’s value may even go 

beyond 20, for the lowest image lines. However, we 

can observer that the formula for the gradient of a point 

differs very little from the formula for the gradient of 

its previous neighbor. In order to take advantage of 

that, we have to defer the division by 2D to the end of 

the image line. Let’s denote the un-normalized gradient 

by GU: 
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GU can be computed using a recurrent equation: 
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Normalization takes place at the end of each line: 
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Figure 2. Original grayscale image (left) and the result of 

applying the adaptive horizontal gradient filter (right) 
 

The next step is to eliminate the intermediate values, 

leaving only the points of minimum and of maximum 



  

gradient. A point of maximum and a point of minimum 

form together a DLD pair if the distance between them 

falls inside an acceptable range and the absolute values 

of the gradients are similar. 

 

 
Figure 3. Non-maxima/minima suppression (left) and 

pairing (right) 

 

The final step is to eliminate the DLD pair edges that 

do not belong to the road surface, using the 3D 

information provided by stereovision. 

 
Figure 4. Extracted lane marking edges 

4. Linear model matching 

 

In a sufficiently short distance range, the lane 

geometry can be approximated by a linear (rectangular) 

segment, described by angle, offset and width. The 

boundaries of this region are two straight, parallel lines, 

which maintain their linear property when projected in 

the image space. The resulted image lines can be 

detected using standard edge-based line extraction 

techniques, and they will have to obey several 

constraints so that they can be regarded as the 

projection of a 3D lane. These constraints are the 

following: the lines have to be parallel in 3D (which, in 

2D, translates by the fact that they have to intersect at 

the vanishing line), they have to form a lane of a certain 

width (not too wide, not too narrow), and this lane must 

not exclude the ego vehicle (we have to be inside it). 

These constraints are not only used as an accept/reject 

system, but they are also a measure of the quality of the 

possible lane, which allows the selection of the best of 

all possible candidates. 

After the vertical profile is detected, we transform 

the state prediction ))(),(( kk PX into measurement 

prediction, ))(),(( kk DD CX , using the state-to-image 

space representation mapping that we have employed 

in the past for the highway lane detection, method 

described in [3]. The vector XD has the form XD=(x1L, 

x2L,…xnL, x1R, x2R,…xnR), containing the horizontal 

image coordinates (x coordinates) of the left and right 

lane borders, for known y coordinates yi. The y 

coordinates are in a 1:1 correspondence to a series of Z 

coordinates, projected using the equations of the 

vertical road profile. 

For the linear lane detection, we require only two 

consecutive x coordinates of the lane model image 

space prediction for each side (a single segment). 

 

 
Figure 5. Search areas for linear detection, and the lane 

delimiting feature points 

 

The primitives for the linear lane model-matching 

algorithm are the lines, and therefore we need a method 

that will extract the lines from the road points. The 

classical method for line extraction is the Hough 

transform. The standard Hough transform uses a 

parametrical representation of the line, in the form of a 

distance ρ from a point of origin, and an angle of 

orientation θ. For our convenience, we use a modified 

version of HT, where the line is defined by the x 

coordinates of the intersections with the top and the 

bottom limit of the search area: Line(i) = {xtop(i), 

xbottom(i)}. 

For each xbottom, each of the edge points is taken 

into consideration and the xtop coordinate is computed. 

A histogram is incremented at position xtop, using a 

weight given by the edge point’s class (if it is a lane 

marking, the weight is higher). For each xbottom, the 

value of xtop corresponding to the highest histogram 

value is kept, and the others are discarded. 

Figure 6. Extracting the lines using a modified version of 

Hough Transform 



  

 

What we have so far is a number of n lines for the 

left side, and a number of n lines for the right side, 

which results in a n x n search space for the best left-

right pair. If we had allowed the set of lines to be 

represented as a 2D Hough space, we would have now 

to search a n
4
 space! 

The pair search algorithm is the following: 

 

MaxWeight = 0 

For each line LL of the left set 

 For each line LR of the right set 

  If Not Valid (LL) continue 

  If Not Valid (LR) continue 

  If Not ValidPair (LL, LR) continue 

  Weight = ComputeWeight (LL, LR) 

  If (Weight > MaxWeight) 

  MaxWeight = Weight 

  BestPair = (LL, LR) 

If MaxWeight > 0 return BestPair 

 

Individual line validation: An individual line can be 

validated only based on the number of its points. If a 

line has too few points, it is discarded. 

Line pair validation: a line pair is valid if it fulfills 

three conditions:  

1. The lane formed by the two lines has an 

acceptable width 

2. The lane formed by the two lines contains the 

ego vehicle 

3. The two lines correspond to parallel 3D lines 

The first two conditions are verified using the 

xbottom value of the two lines, as it is not hard to find a 

1:1 mapping between the 3D lateral position and the 

bottom x value (under a reasonable error tolerance, as 

this is only a validation, not a precise measurement, 

which will be done later). The third condition, 

translated in 2D, means that the two lines must intersect 

at the horizon line – which, knowing the pitch angle, is 

not difficult to compute. 

 
Figure 7. The left and the right line must intersect at the 

horizon line 

 

Computation of the line pair weight: the best left-

right line pair is selected based on a composite weight: 

 
LateralWidthEdge WWWWeight ⋅⋅=      (5) 

 

WEdge is proportional with the number of edge points 

belonging to both lines. WWidth is maximal for the 

standard width of 3.5 m, and decreases towards zero as 

we approach the limits of the acceptable width. WLateral 

is maximal if the lane is centered, and decreases to zero 

as the ego vehicle approaches the lane boundaries. 

 
Figure 8. Linear lane detection result 

 

If the pair detection has failed (no valid pair has 

been detected), partial detection is attempted. This 

method uses the prediction of one of the lane delimiters 

as a pair for the other, whose detection is attempted. 

The results of the linear lane detection are used to 

update the 3D lane model state parameters directly 

through the Extended Kalman filter, without a prior 

transformation to the 3D space. The measurement 

vector is composed of the xbottom and xtop values for 

the left and for the right lines if both are detected, or 

for a single side otherwise. 

The linear detection is applied twice: for the near 

and for a far range. The near range results will update 

the lane state; then a new search area will be generated 

for the far range, and the linear detection algorithm is 

applied again, followed by a new update. In this way 

we are able to estimate curves faster than with a single 

linear detection. 

5. Freeform Lane Detection 

 

Sometimes the clothoid model-based lane detection 

is not accurate enough to describe reality. This is true 

especially for the urban scenarios, due to the ad-hoc 

design of the roads. For these scenarios, we need to 

find a less restrictive solution, while also maintaining 

the robustness. The benefits of using the clothoid 

model are undisputed: small set of parameters, simple 

and realistic motion model for tracking, geometry 



  

constraints that ensured robustness even on noisy 

roads, and the ability to function in the absence of lane 

markings. It is not easy to discard all these advantages, 

and still maintain a reasonable robustness, and 

therefore compromise has to be made. We have 

decided to rely on the lane markings alone for the 

freeform border detection, because, in the absence of a 

guiding model, we have to be pickier about the features 

we use. 

 
Figure 9. Bird-eye view of the 3D lane marking points 

for a lane not suitable for clothoid modeling 

 

The top view of the lane marking 3D points is 

transformed into a binary image. However, fitting a 

curve to a binary image is not easy, due to the discrete 

nature of the data, which leads to an “all or nothing” 

measure of the quality of matching. A solution to 

overcome this problem is the Distance Transform - the 

distance transformed image has the property that each 

pixel has a value proportional to the distance between 

its coordinates and the coordinates of the nearest edge 

point. 

 
Figure 10. The binary image generated by the top view of 
the marking points is subjected to Distance Transform 

 

The freeform lane is represented as a Catmull-Rom 

spline. The Catmull-Rom spline [1] has been used for 

lane detection before, as described in [5], where the 

detection was done in the perspective image space. 

This type of curve is a smooth interpolator of a set of 

control points Pi, having the supplementary property 

that the tangent to the curve in the control point Pi is 

parallel to the line formed by the control points Pi-1 and 

Pi+1. One other convenient property is that this type of 

curve actually passes through the control points, 

making it very easy to handle, and very useful for 

drawing complex curves from a limited set of control 

points. 

Our spline is based on a set of four control points. 

The vertical coordinate of these points is fixed, leaving 

the horizontal coordinates to be searched for – this 

results in a four-dimensional search space. Figure 11 

depicts the search problem. The distance between the 

curve and the image data is computed using a subset of 

the curve points – the control points and six 

intermediate points. 

 
Figure 11. The search problem for freeform detection: 1 - 

The search space for one of the control points. The y 
coordinate is fixed; 2 - A control point instance 

(hypothesis); 3- The Catmull-Rom spline generated by the 
control points hypotheses in the current iteration; 4 - The 

intermediate points, which, together with the control 
points, are used for evaluating the distance between the 

curve and the image 

 

The search for the best delimiter is performed using 

simulated annealing. The initial position o the curve is 

in the center of the image, and the random factor of SA 

is biased towards left or right, depending on which 

delimiter we want to detect. The final result is 

converted back into the 3D space, and is represented as 

a chain of 3D points for each lane delimiter. 

 
Figure 12. Top view of the 3D polylines representing 

the lane borders 

 

Besides delivering them as polylines to a driving 

assistance application, we use the results of freeform 

detection for updating the clothoid-based state, through 

the Kalman filter. The measurement vector has the 

form [ ]T

nXXX ,...,, 21=Y , a series of X coordinates 

for given distance coordinates Z. 

6. Decreasing the number of false 

positives 

 

Lane tracking is especially vulnerable in the 



  

initialization phase. The search space is very broad, 

and therefore a lot of false features can be regarded as 

road delimiting features. This is not the worse problem, 

however, as the first detected result is not validated for 

output. The problem is that the first detection result 

will define the search regions for the next detection. If 

these regions are erroneous, the next frames will also 

lead to false results, either positive or negative, but 

never correct. Such a case is presented in the following 

figure; the road surface is full of edges, and therefore a 

random positive result may appear. 

 
Figure 12. Initializing the tracking without care can lead to 

severe false positives 

The idea for correction is the following: if there are a 

lot of road features, but they do not define a truly valid 

road, successive detections started from the zero-time 

condition (with full search region) will provide 

different results. If a lane is present, the results will be 

similar, and tracking can begin. 

The tracking initialization system is implemented as 

a ring buffer of size N. The system requires N 

consecutive short range linear lane detections of both 

sides of the lane. If a failure occurs before this count is 

reached, everything is reset. If the count is reached, the 

differences between lane parameters of consecutive 

results are compared, and the maximum difference is 

evaluated against a threshold. If the values are below 

the chosen thresholds, the tracking is initialized, and 

we operate in tracking mode (the search regions are 

decreased in size, the results are filtered, etc). 

The number N must be adequate to the scenario. If 

we are on a highway and travel at high speeds, the 

scene may change too fast, and we won’t have the time 

to analyze a lot of frames before tracking initialization 

(we may never reach tracking state). We choose N by 

looking at the speed of our vehicle (read from CAN), in 

the following way: 

 
This method of tracking initialization has proven 

successful in eliminating the vast majority of false 

positives, while having a very low impact on the cases 

of correct detection (a delay in lane output since the 

system starts or since the scene changes severely is the 

most frequent problem). However, this solution is 

useless in the situation when the lane tracking is 

already initialized in good (or acceptable) conditions, 

but somehow the scene changes into a very edge-rich, 

noisy image. 

The following image shows a situation when the lane 

is correctly tracked, even in the presence of severe 

noise, as it was initialized earlier. 

 
Figure 13. Lane correctly tracked, before the noisy zone 

 

The situation soon changes for the worst. The noisy 

features in the image increase and the valuable features 

are all nearly extinct. Lacking clear data, the lane 

model is matched to the wrong features, causing false 

results, as shown in the next picture. 

 
Figure 14. False results caused by multiple noise edges, 

after the tracking has been initialized 

 

In order to solve this problem, we have to monitor 

the edge density of the road. If the edge density of the 

surface between the (predicted) lane borders is 

comparable or greater than the edge density around the 

borders, then we have a dangerous situation.  

In order to monitor the edge density, we build a 

polar histogram, which counts the road edge points 

along rays that pass through a pole which is the 

predicted vanishing point (fig. 15). 

Then, we look for histogram maxima in three regions 

of equal angular size: around the left delimiter, around 

the right delimiter, and between delimiters.  

 
Figure 15. Polar histograms to check the edge density. 

Top – the shape of a histogram for a clean road. Bottom – 
the shape of a histogram for a noisy road 



  

If the road is clean, the value of the middle 

maximum should be significantly lower than the value 

of the left or of the right maxima. Our condition is that 

the value of the middle maximum should be at least 

four times lower than the side maxima, if the road is to 

be looked at as clean. 

 
Fig. 16. Comparison between regional maxima: Top – 

clean road, the middle maximum is much lower than 

either side maximum. Bottom – the middle maximum is 

almost equal to the side maxima. 

 

If, according to the test described above, the road is 

not clean, we have to impose additional constraints to 

lane detection. The constraints are applied selectively, 

to the border that fails the test (left, right or both), and 

consist of eliminating the non-marking edges from the 

model matching data set. In this way, if we have a very 

noisy road that has some visible lane markings, lane 

detection will be performed on those markings, thus 

leading to good results, or, if there are no markings, or 

they are not detected by us, the lane will not be 

detected at all. In both situations we avoid delivering a 

false result. Thus, we enforce a “lane marking only” 

policy for the noisy roads, while allowing a simple 

edge-based detection for cleaner roads that have partial 

or non-existent lane markings. 

Figure 17 shows the results of applying the edge 

density test and remedy for the situation of figure 14, 

but this time the result is no longer affected by the high 

density of the noise. 

 
Figure 17. Using the region edge density test, the lane 

detection results remain correct. 

7. Results 

 

The urban lane detection system was tested in 

multiple real-life traffic scenarios, which covered the 

following difficulty factors: heavy vehicle traffic, 

incomplete lane delimitation – permanent or temporary 

absence of one delimiter, high curvatures, complex lane 

geometries or widths, bad visibility of lane delimiters, 

noise features on the road which can be mistaken for 

lane delimiters, bad general visibility conditions. 

Thanks to the integration of lane detection techniques 

the system was able to robustly solve the vast majority 

of situations, while maintaining a real-time behavior – 

lane detection processing time takes less than 30 ms on 

a standard P4. 

 

 
Figure 18. Lane detection results 
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