

A Stereovision-Based Lane Detector for Marked and Non-Marked Urban

Roads

Radu Danescu, Sergiu Nedevschi, Thanh-Binh To

Technical University of Cluj Napoca, Volkswagen AG Wolfsburg

Radu.Danescu@cs.utcluj.ro, Sergiu.Nedevschi@cs.utcluj.ro, thanh-binh.to@volkswagen.de

Abstract

This paper presents a lane detection system that

combines stereovision-specific techniques with

grayscale image processing for maximizing the

robustness and applicability against the difficult

conditions found on the urban roads, marked or non

marked. The lane marking features are extracting

using a fast and robust dark-light-dark transition

detector that’s aware of the perspective effect. The

clothoid lane model is matched to the extracted

features using line segment fitting for two distance

intervals, under special constraints that ensure

correctness. Freeform lane border detection,

independent of the geometry constraints, driven by

lane marking features only, is used to solve the

situations not suited for clothoid representation.

Intensive validation techniques are used for tracking

initialization, and for monitoring of the noise level on

the road, in order to avoid false positives. The results

of each detection method are fused together in a

Kalman filter based framework.

1. Introduction

Driving assistance systems are already beginning to

emerge as commercial products, as they have reached

the acceptable reliability for highway operation. The

urban scenario, however, requires additional research,

as it presents a whole new range of problems. One of

the earliest sensorial systems for urban driving

assistance is described briefly in [2]. Since then, the

advancements in computer hardware and image

processing algorithms have enabled the scientific

community to make significant progress towards robust

and accurate vision sensors for the urban driving

environment.

The urban lane detection work of our team benefited

from the experience gathered in the framework of the

past research projects. This work was aimed at

designing a driving assistance sensor based on stereo

grayscale cameras, for the highway and extra urban

environment, able to detect the road geometry and the

obstacle position, size and speed, using edge-based,

general geometry, software stereo reconstruction. The

lane detection algorithm is described in [3] and the

whole system architecture is presented in [4].

Our research in urban stereo began with the aim of

designing a robust, real-time sensor for the road and

relevant object detection in the urban environment. The

prerequisites have changed: the stereo processing is

now done by a specialized hardware board, which

means some more time is available for the high-level

algorithms such as lane detection. It also means that we

have more 3D points (the information is now dense,

instead of edge only); on the other hand, there are more

such high-level processing modules, targeted for

various relevant aspects of the urban street: oriented

object tracking, pedestrian recognition, pedestrian

crossing detection, barrier detection, and so on.

The lane detection subsystem is little influenced by

the new stereo system, as the lane can be estimated

only by edges. On the other hand, we had to meet a

new set of requirements: detection in crowded traffic,

with limited visibility of the lane delimiters; detection

of non-standard lane geometries; detection of higher

curvature roads; discrimination of the lane delimiters in

situations when the roads were full of false edge

information, and handling the situations where only one

lane delimiter is visible.

In order to meet the requirements, a complete system

overhaul was needed. The lane detection system was

completely redesigned, from the feature extraction

algorithm to model matching and state update. The

following chapters describe all these phases, and the

way they are combined into a robust, real-time lane

detector for the urban environment.

2. Lane detection system architecture

The urban lane detection system is organized as an

integrator of multiple sensors. Instead of having

multiple physical sensors, we have multiple detection

stages, which all deliver results that will be used to

update the lane model state parameters. The cycle

begins with the prediction, and continues with all the

detection algorithms, until the final update. When one

algorithm updates the lane state, the resulted estimation

becomes the prediction for the next stage. In this way,

we can insert any number of algorithms into the

processing chain, or we can temporary disable some of

them, for testing or speedup purposes.

Figure 1 shows the organization of the lane detection

system, the main processing modules and the

relationships between them. In what follows, we give a

brief description for each module, and then, in the next

chapters, the most important ones will be described in

detail.

Figure 1. Lane detection system architecture

Prediction – This step applies the equations of state

transition to the previous frame’s estimation of the lane

parameters, using the motion parameters of the ego

vehicle (speed and curvature) and timestamp read from

the CAN bus. The predicted state vector, along with its

prediction covariance matrix, will be used in the

detection phase to delimit search intervals, and in the

update phase to filter the detection results.

Vertical Profile Detection – The detection of the

pitch angle and of the vertical curvature is done using

the same stereovision-based algorithm that we have

used for the highway scenario [3], adjusted for the

distance range of the urban traffic. This step will mark

each edge point that has 3D information associated to it

as either “road point” or “above road point”. The road

points are of interest in lane detection, the others are

used for the obstacle detection routines.

Lane Marking Point Extraction – Together with

edge detection, stereo reconstruction and road/above

road labeling done by the vertical profile detection, the

lane marking point extraction (classification) algorithm

is part of the feature extraction methodology for urban

lane estimation. This algorithm detects lane markings

as pairs of 3D road points of similar in value but

opposing in sign gradients, placed at the proper

distance. This step is independent of the prediction, as

it has to have universal, model-free application.

Near Range Linear Detection – The core of the

model-based lane estimation process is the linear

model matching. This algorithm fits two line segments

(for the left and right lane border) to the perspective-

projected road points, under several constraints that

will ensure that these two segments are very likely to

be the 2D projection of a section of the lane. First the

linear matching is attempted to a range segment close

to the ego vehicle, to ensure a minimum detection in

restricted visibility conditions.

Far Range Linear Detection – If the near range

linear model matching succeeds, the same algorithm is

run for the next road section, in order to refine the

estimation of curved roads. The far range linear

detection is not attempted if in this range we have

obstacles on the lane.

Free Form Left Border / Right Border Detection –

These routines are independent of the model-based

prediction and of the linear model matching algorithms,

but they rely heavily on the lane marking extraction

results. Each lane border is estimated independently as

a chain of 3D points. The results of these routines are

used for updating the lane model parameters, but they

can be used also as standalone output.

Update – Each of the detection algorithms will

update the lane model parameter vector and its

associated covariance matrix, by means of Kalman

filters. The result of one update will become the

prediction for the next detection algorithm, and the

result of the final update will become the final output

of the system.

3. Extraction of lane features

The highway scenario allows, in same cases, to

perform decent lane detection using the most basic type

of features, the edges. This is because the constraints of

the lane model ensure the rejection of the noise

features, while keeping the good ones. Another

advantage of the highway scenario is that the obstacle-

free look-ahead distance is usually high, and therefore

the chances of getting the right features in the lane

model matching process are also high.

These premises are not valid for the urban scenario.

The urban scenario is, above all, complex. We may

encounter highway-like portions of road, but we may

also encounter situations where the free look-ahead

distance is very small, where the obstacles are all over

the place, where roads have complex textures that

produces edges, and so on. Moreover, the lane may not

always suit the model, no matter how complex this

model is.

In our previous work [3], we have selected as

features the edges that had a corresponding 3D height

value compatible to the road surface. Thus, the feature

detector was in fact the vertical profile detection

algorithm, which allowed us to select the road edges.

For the urban application, we need to classify these

edges further, to extract the lane delimiting markings.

An edge belonging to a lane marking will have priority

in model matching, while the non-marking edges are

useful when markings are not available.

The lane marking is detected using the classical

Dark-Light-Dark (DLD) transition principle, which, in

gradient terms, is seen as a pair of gradients of similar

magnitude but opposable sign. A simple search for

gradient pairs has, however, several drawbacks: the

level of detail of the road surface decreases with the

distance, and the distance between opposing gradients

is also variable, both problems being caused by the

perspective effect. We would like to filter out the noise

in the near range of the road without destroying the

edges in the farther range, and we would also like to

have a range of acceptable distances between gradient

pairs.

The first issue is solved using a variable width filter

for computing the horizontal gradient, and the second

by using a variable width interval for searching the

gradient pairs. The width of the filter and the width of

the search interval are computed from the 3D width of

the lane markings (a possible range of widths) and the

camera parameters, which enable us to compute

beforehand the effect of the perspective.

The value of the horizontal gradient of a point of

coordinates (x, y) is given by equation (1):

)(

2

),(),(

),(11

yKernelSizeD

D

yiIyiI

yxG

Dx

xi

Dx

xi

N

=

−

=

∑∑
−

−=

+

+=
 (1)

Applying the above formula directly is

computationally expensive, as D’s value may even go

beyond 20, for the lowest image lines. However, we

can observer that the formula for the gradient of a point

differs very little from the formula for the gradient of

its previous neighbor. In order to take advantage of

that, we have to defer the division by 2D to the end of

the image line. Let’s denote the un-normalized gradient

by GU:

∑∑
−

−=

+

+=

−=
Dx

xi

Dx

xi

U yiIyiIyxG
11

),(),(),((2)

GU can be computed using a recurrent equation:

),1(),1(),(

),(),1(),(

yxIyDxIyxI

yDxIyxGyxG UU

−−−−+

−++−=
 (3)

Normalization takes place at the end of each line:

D

yxG
yxG U

N
2

),(
),(= (4)

Figure 2. Original grayscale image (left) and the result of

applying the adaptive horizontal gradient filter (right)

The next step is to eliminate the intermediate values,

leaving only the points of minimum and of maximum

gradient. A point of maximum and a point of minimum

form together a DLD pair if the distance between them

falls inside an acceptable range and the absolute values

of the gradients are similar.

Figure 3. Non-maxima/minima suppression (left) and

pairing (right)

The final step is to eliminate the DLD pair edges that

do not belong to the road surface, using the 3D

information provided by stereovision.

Figure 4. Extracted lane marking edges

4. Linear model matching

In a sufficiently short distance range, the lane

geometry can be approximated by a linear (rectangular)

segment, described by angle, offset and width. The

boundaries of this region are two straight, parallel lines,

which maintain their linear property when projected in

the image space. The resulted image lines can be

detected using standard edge-based line extraction

techniques, and they will have to obey several

constraints so that they can be regarded as the

projection of a 3D lane. These constraints are the

following: the lines have to be parallel in 3D (which, in

2D, translates by the fact that they have to intersect at

the vanishing line), they have to form a lane of a certain

width (not too wide, not too narrow), and this lane must

not exclude the ego vehicle (we have to be inside it).

These constraints are not only used as an accept/reject

system, but they are also a measure of the quality of the

possible lane, which allows the selection of the best of

all possible candidates.

After the vertical profile is detected, we transform

the state prediction))(),((kk PX into measurement

prediction,))(),((kk DD CX , using the state-to-image

space representation mapping that we have employed

in the past for the highway lane detection, method

described in [3]. The vector XD has the form XD=(x1L,

x2L,…xnL, x1R, x2R,…xnR), containing the horizontal

image coordinates (x coordinates) of the left and right

lane borders, for known y coordinates yi. The y

coordinates are in a 1:1 correspondence to a series of Z

coordinates, projected using the equations of the

vertical road profile.

For the linear lane detection, we require only two

consecutive x coordinates of the lane model image

space prediction for each side (a single segment).

Figure 5. Search areas for linear detection, and the lane

delimiting feature points

The primitives for the linear lane model-matching

algorithm are the lines, and therefore we need a method

that will extract the lines from the road points. The

classical method for line extraction is the Hough

transform. The standard Hough transform uses a

parametrical representation of the line, in the form of a

distance ρ from a point of origin, and an angle of

orientation θ. For our convenience, we use a modified

version of HT, where the line is defined by the x

coordinates of the intersections with the top and the

bottom limit of the search area: Line(i) = {xtop(i),

xbottom(i)}.

For each xbottom, each of the edge points is taken

into consideration and the xtop coordinate is computed.

A histogram is incremented at position xtop, using a

weight given by the edge point’s class (if it is a lane

marking, the weight is higher). For each xbottom, the

value of xtop corresponding to the highest histogram

value is kept, and the others are discarded.

Figure 6. Extracting the lines using a modified version of

Hough Transform

What we have so far is a number of n lines for the

left side, and a number of n lines for the right side,

which results in a n x n search space for the best left-

right pair. If we had allowed the set of lines to be

represented as a 2D Hough space, we would have now

to search a n
4
 space!

The pair search algorithm is the following:

MaxWeight = 0

For each line LL of the left set

 For each line LR of the right set

 If Not Valid (LL) continue

 If Not Valid (LR) continue

 If Not ValidPair (LL, LR) continue

 Weight = ComputeWeight (LL, LR)

 If (Weight > MaxWeight)

 MaxWeight = Weight

 BestPair = (LL, LR)

If MaxWeight > 0 return BestPair

Individual line validation: An individual line can be

validated only based on the number of its points. If a

line has too few points, it is discarded.

Line pair validation: a line pair is valid if it fulfills

three conditions:

1. The lane formed by the two lines has an

acceptable width

2. The lane formed by the two lines contains the

ego vehicle

3. The two lines correspond to parallel 3D lines

The first two conditions are verified using the

xbottom value of the two lines, as it is not hard to find a

1:1 mapping between the 3D lateral position and the

bottom x value (under a reasonable error tolerance, as

this is only a validation, not a precise measurement,

which will be done later). The third condition,

translated in 2D, means that the two lines must intersect

at the horizon line – which, knowing the pitch angle, is

not difficult to compute.

Figure 7. The left and the right line must intersect at the

horizon line

Computation of the line pair weight: the best left-

right line pair is selected based on a composite weight:

LateralWidthEdge WWWWeight ⋅⋅= (5)

WEdge is proportional with the number of edge points

belonging to both lines. WWidth is maximal for the

standard width of 3.5 m, and decreases towards zero as

we approach the limits of the acceptable width. WLateral

is maximal if the lane is centered, and decreases to zero

as the ego vehicle approaches the lane boundaries.

Figure 8. Linear lane detection result

If the pair detection has failed (no valid pair has

been detected), partial detection is attempted. This

method uses the prediction of one of the lane delimiters

as a pair for the other, whose detection is attempted.

The results of the linear lane detection are used to

update the 3D lane model state parameters directly

through the Extended Kalman filter, without a prior

transformation to the 3D space. The measurement

vector is composed of the xbottom and xtop values for

the left and for the right lines if both are detected, or

for a single side otherwise.

The linear detection is applied twice: for the near

and for a far range. The near range results will update

the lane state; then a new search area will be generated

for the far range, and the linear detection algorithm is

applied again, followed by a new update. In this way

we are able to estimate curves faster than with a single

linear detection.

5. Freeform Lane Detection

Sometimes the clothoid model-based lane detection

is not accurate enough to describe reality. This is true

especially for the urban scenarios, due to the ad-hoc

design of the roads. For these scenarios, we need to

find a less restrictive solution, while also maintaining

the robustness. The benefits of using the clothoid

model are undisputed: small set of parameters, simple

and realistic motion model for tracking, geometry

constraints that ensured robustness even on noisy

roads, and the ability to function in the absence of lane

markings. It is not easy to discard all these advantages,

and still maintain a reasonable robustness, and

therefore compromise has to be made. We have

decided to rely on the lane markings alone for the

freeform border detection, because, in the absence of a

guiding model, we have to be pickier about the features

we use.

Figure 9. Bird-eye view of the 3D lane marking points

for a lane not suitable for clothoid modeling

The top view of the lane marking 3D points is

transformed into a binary image. However, fitting a

curve to a binary image is not easy, due to the discrete

nature of the data, which leads to an “all or nothing”

measure of the quality of matching. A solution to

overcome this problem is the Distance Transform - the

distance transformed image has the property that each

pixel has a value proportional to the distance between

its coordinates and the coordinates of the nearest edge

point.

Figure 10. The binary image generated by the top view of
the marking points is subjected to Distance Transform

The freeform lane is represented as a Catmull-Rom

spline. The Catmull-Rom spline [1] has been used for

lane detection before, as described in [5], where the

detection was done in the perspective image space.

This type of curve is a smooth interpolator of a set of

control points Pi, having the supplementary property

that the tangent to the curve in the control point Pi is

parallel to the line formed by the control points Pi-1 and

Pi+1. One other convenient property is that this type of

curve actually passes through the control points,

making it very easy to handle, and very useful for

drawing complex curves from a limited set of control

points.

Our spline is based on a set of four control points.

The vertical coordinate of these points is fixed, leaving

the horizontal coordinates to be searched for – this

results in a four-dimensional search space. Figure 11

depicts the search problem. The distance between the

curve and the image data is computed using a subset of

the curve points – the control points and six

intermediate points.

Figure 11. The search problem for freeform detection: 1 -

The search space for one of the control points. The y
coordinate is fixed; 2 - A control point instance

(hypothesis); 3- The Catmull-Rom spline generated by the
control points hypotheses in the current iteration; 4 - The

intermediate points, which, together with the control
points, are used for evaluating the distance between the

curve and the image

The search for the best delimiter is performed using

simulated annealing. The initial position o the curve is

in the center of the image, and the random factor of SA

is biased towards left or right, depending on which

delimiter we want to detect. The final result is

converted back into the 3D space, and is represented as

a chain of 3D points for each lane delimiter.

Figure 12. Top view of the 3D polylines representing

the lane borders

Besides delivering them as polylines to a driving

assistance application, we use the results of freeform

detection for updating the clothoid-based state, through

the Kalman filter. The measurement vector has the

form []T

nXXX ,...,, 21=Y , a series of X coordinates

for given distance coordinates Z.

6. Decreasing the number of false

positives

Lane tracking is especially vulnerable in the

initialization phase. The search space is very broad,

and therefore a lot of false features can be regarded as

road delimiting features. This is not the worse problem,

however, as the first detected result is not validated for

output. The problem is that the first detection result

will define the search regions for the next detection. If

these regions are erroneous, the next frames will also

lead to false results, either positive or negative, but

never correct. Such a case is presented in the following

figure; the road surface is full of edges, and therefore a

random positive result may appear.

Figure 12. Initializing the tracking without care can lead to

severe false positives

The idea for correction is the following: if there are a

lot of road features, but they do not define a truly valid

road, successive detections started from the zero-time

condition (with full search region) will provide

different results. If a lane is present, the results will be

similar, and tracking can begin.

The tracking initialization system is implemented as

a ring buffer of size N. The system requires N

consecutive short range linear lane detections of both

sides of the lane. If a failure occurs before this count is

reached, everything is reset. If the count is reached, the

differences between lane parameters of consecutive

results are compared, and the maximum difference is

evaluated against a threshold. If the values are below

the chosen thresholds, the tracking is initialized, and

we operate in tracking mode (the search regions are

decreased in size, the results are filtered, etc).

The number N must be adequate to the scenario. If

we are on a highway and travel at high speeds, the

scene may change too fast, and we won’t have the time

to analyze a lot of frames before tracking initialization

(we may never reach tracking state). We choose N by

looking at the speed of our vehicle (read from CAN), in

the following way:

This method of tracking initialization has proven

successful in eliminating the vast majority of false

positives, while having a very low impact on the cases

of correct detection (a delay in lane output since the

system starts or since the scene changes severely is the

most frequent problem). However, this solution is

useless in the situation when the lane tracking is

already initialized in good (or acceptable) conditions,

but somehow the scene changes into a very edge-rich,

noisy image.

The following image shows a situation when the lane

is correctly tracked, even in the presence of severe

noise, as it was initialized earlier.

Figure 13. Lane correctly tracked, before the noisy zone

The situation soon changes for the worst. The noisy

features in the image increase and the valuable features

are all nearly extinct. Lacking clear data, the lane

model is matched to the wrong features, causing false

results, as shown in the next picture.

Figure 14. False results caused by multiple noise edges,

after the tracking has been initialized

In order to solve this problem, we have to monitor

the edge density of the road. If the edge density of the

surface between the (predicted) lane borders is

comparable or greater than the edge density around the

borders, then we have a dangerous situation.

In order to monitor the edge density, we build a

polar histogram, which counts the road edge points

along rays that pass through a pole which is the

predicted vanishing point (fig. 15).

Then, we look for histogram maxima in three regions

of equal angular size: around the left delimiter, around

the right delimiter, and between delimiters.

Figure 15. Polar histograms to check the edge density.

Top – the shape of a histogram for a clean road. Bottom –
the shape of a histogram for a noisy road

If the road is clean, the value of the middle

maximum should be significantly lower than the value

of the left or of the right maxima. Our condition is that

the value of the middle maximum should be at least

four times lower than the side maxima, if the road is to

be looked at as clean.

Fig. 16. Comparison between regional maxima: Top –

clean road, the middle maximum is much lower than

either side maximum. Bottom – the middle maximum is

almost equal to the side maxima.

If, according to the test described above, the road is

not clean, we have to impose additional constraints to

lane detection. The constraints are applied selectively,

to the border that fails the test (left, right or both), and

consist of eliminating the non-marking edges from the

model matching data set. In this way, if we have a very

noisy road that has some visible lane markings, lane

detection will be performed on those markings, thus

leading to good results, or, if there are no markings, or

they are not detected by us, the lane will not be

detected at all. In both situations we avoid delivering a

false result. Thus, we enforce a “lane marking only”

policy for the noisy roads, while allowing a simple

edge-based detection for cleaner roads that have partial

or non-existent lane markings.

Figure 17 shows the results of applying the edge

density test and remedy for the situation of figure 14,

but this time the result is no longer affected by the high

density of the noise.

Figure 17. Using the region edge density test, the lane

detection results remain correct.

7. Results

The urban lane detection system was tested in

multiple real-life traffic scenarios, which covered the

following difficulty factors: heavy vehicle traffic,

incomplete lane delimitation – permanent or temporary

absence of one delimiter, high curvatures, complex lane

geometries or widths, bad visibility of lane delimiters,

noise features on the road which can be mistaken for

lane delimiters, bad general visibility conditions.

Thanks to the integration of lane detection techniques

the system was able to robustly solve the vast majority

of situations, while maintaining a real-time behavior –

lane detection processing time takes less than 30 ms on

a standard P4.

Figure 18. Lane detection results

8. References

[1] E. Catmull, R. Rom, “A Class of Local Interpolating

Splines”, in Computer Aided Geometric Design,

Academic Press, 1974, ISBN 0120790505

[2] U. Franke, D. Gavrila, S. Goerzig, F. Lindner, F.

Paetzold, C. Woehler, “Autonomous Driving

approaches Downtown”, IEEE Intelligent Systems,

1999

[3] S. Nedevschi, R. Danescu, T. Marita, F. Oniga, C.

Pocol, S. Sobol, T. Graf, R. Schmidt, “Driving

Environment Perception Using Stereovision”,

Procedeeings of IEEE Intelligent Vehicles Symposium,

(IV2005), June 2005, Las Vegas, USA, pp.331-336.

[4] S. Nedevschi, R.Schmidt, T. Graf, R. Danescu, D.

Frentiu, T. Marita, F. Oniga, C. Pocol, “3D Lane

Detection System Based on Stereovision”, IEEE

Intelligent Transportation Systems Conference (ITSC),

2004, Washington, USA

[5] Y. Wang et al., “Lane detection using spline model”,

Pattern Recognition Letters, 2000

