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Abstract

This paper presents some of the issues related to the use
of multi-core architectures for real-time systems, in partic-
ular for real-time Java. Currently, the Real-Time Specifica-
tion for Java (RTSJ) does not account for aspects of paral-
lel computing, but the widespread use of multi-core archi-
tectures advocates for the need of a change in this regard.
Some of these aspects relate closely to architectural features
that need to be properly exported to the application level.
We discuss the impact of multi-core processors, both sym-
metric and asymmetric, on process/thread scheduling. We
also analyze the changes needed for some of the important
features of RTSJ, such as the priority inversion avoidance,
in the new context of multi-core processing. Also, locking
and fairness issues are discussed with respect to the use of
multi-core processors for real-time Java.

1 Introduction

In the past few years, all of the major processor vendors
adopted multi-core architectures as the main way to im-
prove the processor performance. This architectural choice
is going to impact the way we think programming in the
next decades. Parallel architectures are not new to the com-
puting field and there has been a wealth of research devoted
to them in the past decades. But the main lessons drawn
from this extensive experience are rather advising against
simple solutions like trying to parallelize existing sequen-
tial solutions (one of the main reasons being Amdahl’s law,
even though a more realistic approach given by an equiva-
lent law, Gustafson’s law [14], relaxes a bit the view on the
problem). As soon as true parallelism is at hand in every
single PC shipped out of the factory, most of the algorithms
and mechanisms currently in use in software systems will
have to undergo tremendous changes, many of them will be
completely abandoned and new algorithms, inherently par-
allel, will have to become common place [5].

From a formal point of view, the multi-core architectures
can be thought of as those of Symmetric Multi-Processors
(SMP). For instance, the Intel documentation for develop-
ers [9] does not make any distinction between cores of the

same chip and those of different chips on the same machine
from a programming point of view. Nevertheless, the hard-
ware features of these multi-core processors may be differ-
ent than those of traditional SMPs and, as a result of that,
even if the programming model is the same, there might be
differences in the perceived performance if the inner char-
acteristics of these multi-core processors are not taken into
account.

Up until now, real-time systems have had a separate evo-
lution in the space of processor design, mostly because of
their particular features (need for predictibility, robustness,
etc.). Therefore, the vast majority of real-time systems uses
even today uniprocessor systems, most of which are hav-
ing architectural features that prevent introducing a factor
of hazard in real-time computing (no processor caches, no
out of order execution, etc.). In this context, the use of
parallel computing has not even been considered for real-
time systems until the widespread use of multi-core archi-
tectures became an unavoidable evidence. The current trend
in real-time research tends to shift the computing paradigm
to multi-core processors, but the challenges associated with
this step are manifold.

One particular area that naturally seems to fit with multi-
core processing is the domain of real-time Java, because the
language supports parallelism through threads from its very
inception. It is almost a decade now that Java gained full
acceptance in the real-time world. The restrictions and con-
ditions that have to be met by a real-time Java implemen-
tation are summarized in the Real-Time Specification for
Java (RTSJ) [8]. Several implementations of the specifica-
tion (including commercial ones) are available [2, 12, 19].

In this paper, we discuss some of the issues raised by
the use of multi-core processors for real-time Java. We first
identify the areas of RTSJ that are sensitive to multipro-
cessing and then we elaborate on the issues related to these
areas. There are two main types of problems, some related
to real-time issues and others related to parallelism. They
both influence each other. The real-time problems derive
mostly from the need to ensure the predictibility of these
systems, the feasibility analysis of a given schedule, etc.
on parallel architectures. The parallelism problems con-
cern mostly two areas. One tackles the way the capabili-
ties of the hardware processor are exported to the user level



so that applications can decide best what they can do on
the underlying architecture (for instance, the architecure of
the processor caches, hyperthreading, cores with asymmet-
ric performance, if any, etc.). The second area deals with
the harmonization of the decisions taken a various levels of
complex software systems (for instance, the need for coor-
dination between user-level schedulers and kernel decisons
on synchronization, preemption or blocking).

The rest of this paper is organized as follows. We start
out by presenting the features of RTSJ that we identified
to be sensitive to parallelism (Section 2). Then we discuss
aspects of parallel real-time scheduling with emphasis on
asymmetric processing and co-scheduling (Sections 3 and
4). We then present some of the problems caused by a lack
of coordination between user-level scheduling and kernel
decisions (Section 5). We also discuss an open problem
in parallel real-time systems, namely the need for a proper
solution for priority inversion avoidance on multi-core ar-
chitectures (Section 6). Then, we debate fairness in parallel
real-time systems (Section 7). Finally, we present our plans
for future work (Section 8) and conclude (Section 9).

2 RTSJ features sensitive to parallel comput-
ing

The main features of the Real-Time Specification for
Java [8] that are interesting from a parallel computation
point of view can be grouped into two categories. First,
there are low-level issues that influence the performance
of memory access, single thread running times, event han-
dling. Second, there are high-level issues related to the way
the priority inversion avoidance can be handled in multi-
processors or the way the scheduling of threads and event
handlers (in particular, happenings) is being done.

2.1 Processor features relevant for RTSJ

In the case of memory accesses, if two cores of the same
processor share on-chip caches (either L2 or L3 caches),
then two cooperating Java threads running on these cores
can access some memory faster since they do not have to go
over the system bus on a cache miss that has been already
been solved by the other core. Otherwise, i.e. if the two
cooperating threads run on two different processor chips,
the overhead of memory access depends on the access type.
For instance, a write access can trigger the coherence pro-
tocol between the local caches over the system bus. But
even a simple shared read can influence the overall mem-
ory throughput since it goes over the bus even if one of the
cooperating threads has a local copy of the data (which can-
not be shared because the two cores do not share L2 or L3
caches). As a result of that, this read will have to compete
for the bus with other unrelated reads and the overall mem-
ory throughput will decresase.

In order to take advantage of this kind of information,
some processors have special instructions that expose the
architecture of the hardware caches of the processor. For in-
stance, Intel processors have thecpuidinstruction that helps
find whether the on-chip caches are shard or not [10]. If
RTSJ shifts to multi-core architectures, such aspects can-
not be avoided if performance is at stake and an appropriate
software interface to the hardware needs to be developed.

Other low-level issues that can influence the perfor-
mance of threads and asynchronous event handling refer
to CPU and interrupt affinity. CPU affinity refers to the
binding of a running process/thread to a given core and it is
supported by many popular operating systems (Linux, Win-
dows, etc). The benefits come from the fact that, over the
time, several data of the process/thread may survive in the
local core caches (not only data and instruction caches, but
also things like the TLBs) and thus the running time of the
process/thread gets improved. RTSJ requires support for
CPU affinity [8].

Interrupt affinity refers to the possibility of shielding cer-
tain cores (or processors) from receiving (and handling) in-
terrupts. Several operating systems support interrupt affin-
ity, including general purpose operating systems like Linux.
This is an important aspect for real-time systems as the
predictibility of the computation run on shielded cores is
improved. RTSJ doesn’t currently support interrupt (hap-
pening, in RTSJ terminology) affinity, but there has been
made a proposal to incorporate it into the specification [22].
Both types of affinity are sensitive to parallel computation
if global processor and interrupt scheduling is used.

There are other processor features that can influence
RTSJ or its assumptions. Modern processors chips imple-
ment logical processors that share hardware components of
the same core. This technique is generally known assimul-
taneous multithreading(SMT) orhyperthreading(using In-
tel terminology). Two logical processors of the same core
share the execution engine of the core. The techique aims
at better usage of the processor hardware (the internal re-
sources of the execution engine) but may induce unexpected
behavior in terms of performance. Special instructions help
detect whether hyperthreading is supported or not (again
cpuidin the case of Intel processors [10]). Other special in-
structions are provided to halt or pause a logical processor
[9]. A more detailed discussion on SMT or hyperthread-
ing and their impact on real-time systems can be found in
Section 3.

A very recent trend in processor design uses cores with
different performances on the same processor chip. The
motivation behind this design comes from the need for cost
effective hardware for setups with tens or even hundreds of
cores on a processor chip. This twist in the processor de-
sign leads to asymmetric multi-core processing. Naturally,
the scheduling of processes/threads will be influenced by



such an infrastructure and RTSJ needs to be aware of this
aspects too. The issues related to asymmetric processing
are presented in Section 3.

2.2 RTSJ and system software

One of the problems of operating systems using prior-
ities (and real-time operating systems are no exception to
the rule) appears when a high priority process cannot get a
lock held by a lower priority process, which in turn cannot
run because of its priority. This problem is known as pri-
ority inversion. On uniprocessor systems, two of the most
widely used solutions that avoid priority inversion are pri-
ority inheritance and priority ceiling. RTSJ requires the im-
plementation of priority inheritance [8]. Essentially, this
solution requires to raise the priority of the lower priority
thread to that of the blocked thread as long as it holds the
lock so that the lower priority thread can get the chance to
run and, thus, to set the lock free. The main assumption be-
hind the corectenss of this algorithm is that only one lock
contender runs at a time (an this is true on uniprocessor sys-
tems). However, as it will be presented in Section 6, this
algorithm doesn’t work anymore on multiprocessor archi-
tectures.

Parallelism changes also the classical view on schedul-
ing. On uniprocessor systems, time-sharing can be used
to maximize the throughput of the CPU. This view can be
adopted on multiprocessors as well, with the caveat that
now one needs to ensure also load balancing across the pro-
cessors in the system. However, multiprocessor schedul-
ing supports a different aproach as well, namely one can
schedule cooperating threads simulteneously on a subset
of the processors of the system in order to improve their
performance. RTSJ doesn’t currently support this form of
scheduling which is discussed in Section 4.

Happenings (and event handling in general) are handled
in RTSJ by schedulable entities that are most similar to
threads. In fact, RTSJ implementations like Jamaica VM
[2] use a thread (or a thread per event, if need be) to run
the computation associated with event handlers. If a thread
per event is being used, then maximum of parallelism is at
hand, depending of the scheduling of these threads. The
downsize of using one thread per event is greater resource
consumption. However, if the events are not bound to a sin-
gle thread, a need for load balancing appears, since using
a single thread for handling many events may create a hot
spot in the system. The issue may be further complicated
if happening affinity (see the previous subsection) is being
enforced.

3 Asymmetric processing

The latest trend in processor research targets asymmetric
(or heterogeneous) multi-core architectures, where a pro-

cessor chip may have cores with different performance. All
of the cores of the same processor support the same in-
struction set but their performance may differ as a result of
having different clock speeds or different hardware charac-
teristics (issue width, in-order/out-of-order execution, etc.).
From the user point of view, all these difference sum up to
a difference in perceived performance.

The motivation behind this development can be found in
the endeavor to build processors that support tens and even
hundreds of cores on a single chip, as it is foreseen for the
next decade [17]. Such a development needs cost-effective
solutions that minimize the die area and the power con-
sumption while delivering high performance. It has been
shown that this approach is viable [4, 15, 16].

Asymmetry may arise in symmetric (or homogeneous)
multi-core systems as well. For instance, for fault tolerant
purposes failing cores may be switched off. Even further,
some may regard hyperthreading (or simultaneous multi-
threading, as it is generally known) as a form of asymmetric
processing. Indeed, some processor makers like Intel pro-
vide two logical processors per core that share the execution
engine of the core and its bus interface but have separate lo-
cal APICs (and therefore separate identity). Using logical
processors improves the overall CPU throughput, but may
hinder the individual performance of a given thread of exe-
cution. Indeed, Intel recommendations for system program-
mers point out that there are differences in performance be-
tween a core running logical processors and a core using a
single logical processor because two logical processors of
the same core compete for the hardware resources of the
core [9]. Therefore, when the operating system runs the
idle loop on a logical processor, Intel recommends switch-
ing off that logical processor to improve the performance of
the other logical processor(s) of the core. Also, as a gen-
eral rule of thumb, Intel recommends dispatching threads
of execution first on every core of every processor chip in
the system, and only afterwards start logical processors on
every core, as needed [9].

Given the trends in processor development that target
asymmetric architectures but also things like hyperthread-
ing, one needs to build appropriate asymmetry-aware sched-
ulers. Prototypes for general purpose operating systems like
Linux have been proposed and implemented [17], but the
real-time world still lacks its specific asymmetric schedul-
ing algorithms. The main difficulties stem from the addi-
tional level of impredictibility introduced by the hard-to-
quantify degree of performance asymmetry. Indeed, if one
thinks only to hyperthreading, it is hard to predict with
mathematical precision the performance of two threads of
execution running on logical processors of the same core.
Nevertheless, a smart scheduler may turn off hyperthread-
ing for a while when the CPU throughput is of no concern,
so that the well-known SMP paradigm can function for a



given application. Also, the operation of switching on and
off logical processors has to be taken into account when do-
ing the feasibility analysis.

Asymmetric processing raises problems for real-time
systems also from the point of view of priority inversion
avoidance. If the high priority thread runs on a fast core and
the low-priority thread is bound to a slow core, perhaps due
to affinity reasons, raising the priority of the thread holding
the lock doesn’t suffice. The lower priority threads needs to
be scheduled on a fast processor (perhaps as fast as the pro-
cessor on which the high priority thread is supposed to run)
in order not to penalize too much the waiting high priority
thread. This decision may imply migrating threads between
processors, which is another debatable issue in the case of
real-time systems which, most of the time, prefer to use a
static assignment of processes/threads to processors. Some
real-time systems may not tolerate the overhead of thread
migration.

Enforcing interrupt affinity, another important aspect for
real-time systems, may create problems to an asymmetric-
aware scheduler as well. In general, any operating system
attempts to minimize the interrupt handling latency. A nat-
ural consequence for an asymmetric processing scheduler
using interrupt affinity would be to tie the interrupt han-
dling to fast processors. However, due to the aforemen-
tioned costs in terms of die area and power consumption,
there may not be too many such fast cores. Therefore, high
priority threads that need to run shielded from interrupts
on fast cores may find themselves in competition for these
fast cores with the interrupt handlers. In RTSJ, the happen-
ing affinity lends itself to lazy happening handling solutions
that may avoid this competition for fast cores by postponing
the handling of the happening until the results of the handler
are actually needed (see also Section 7).

4 Co-scheduling

In multiprocessor systems there are two possible types
of scheduling: temporal and spatial scheduling. In tempo-
ral scheduling, one tries to improve the overall throughput
of the processors by keeping all of them busy. In contrast,
spatial scheduling targets the improvement of the perfor-
mance of a given parallel application by simultaneously ex-
ecuting its parallel processes/threads. The idea appeared
in distributed systems where it was called co-scheduling
[20]. Co-scheduling attempted to optimize the execution of
processes that cooperate through messages in a distributed
system. In such a system, two cooperating processes that
need to exchange a single message may experience a heavy
penalty if they are not simultaneously scheduled for execu-
tion. Imagine the following scenario [21]: the first process
gets scheduled and sends the message but the second pro-
cess doesn’t run, so the first process blocks waiting for the

response and releases the processor. After a time slice (usu-
ally 10 ms in modern operating systems) the receiver pro-
cess gets scheduled and replies. However, the initiator of
the message exchange needs to be awaken and after another
time slice it gets the processor and can receive the message.
So the message exchange takes roughly 20 ms, which is
completely unacceptable.

Co-scheduling may be appealing in multi-core real-time
systems as well. For instance, two cooperating periodic
threads may need to be co-scheduled to improve the behav-
ior of the system. Even if feasibility analysis makes sure
that deadlines are met regardless of co-scheduling, the use
of co-scheduling may leave room for the execution of other
threads on the two processors during the current period of
execution, thus helping improve the overall throughput of
the multiprocessor system. However, co-scheduling may
conflict with priority-based scheduling. For instance, if four
threads need to be co-scheduled on a four-processor system
and a fifth independent thread of greater priority is runnable
as well, then the fifth thread will get scheduled and the rest
of the three processors will either stall or execute threads
with lower priority than that of the co-scheduled threads.

This scenario underlines the main assumption behind co-
scheduling: a global scheduler. However, global solutions
are usually performing poorer than the local ones in paral-
lel/distributed systems. So the design of a scheduler imple-
menting co-scheduliong needs to be balanced between the
need to share global knowledge about the scheduled threads
and the overall performance of the solution. For instance,
the Linux SMP kernel runs a scheduler on every processor
(core), which has its own private run queue. However, the
processors exchange scheduling information in order to im-
prove the overall performance of the system (for instance,
the schedulers aim to perform load balancing in order to
keep all of the processors busy [1]).

The advent of asymmetric multi-core processors (see
Section 3) complicates even further the issue of co-
scheduling. The scheduler needs to find a subset of pro-
cessors of ”equal” performance for the set of co-scheduled
threads to avoid potential problems. Imagine the follow-
ing scenario: two co-scheduled threads run on two cores,
one of which is twice as fast as the other one. If the first
thread asks the second thread for a service, it will have to
wait twice as long as it would have had to wait if the cores
would have been equally fast. Since the cooperation is the
main incentive behind co-scheduling, the first thread cannot
block awaiting for the response of the second thread (see
the example at the beginning of this section), instead it will
most probably have to busy-wait until the response arrives.
Busy-waiting in general must be kept short, but in shared
memory multiprocessor systems it is further complicated
by the access contention to the system bus. The penalties
associated with the traditional test-and-set (TAS) method



can be alleviated by using variants of test-and-test-and-set
(TATAS), but nevertheless, the longer the busy-waiting, the
worse the performance. Therefore, a scheduler performing
co-scheduling needs to be aware of the asymmetric perfor-
mance of the processor cores.

Another source of potential problems for co-scheduling
comes from the use of CPU and interrupt affinity (see Sec-
tion 2). Indeed, if a thread (or a bunch of independent
threads) competes with a set of co-scheduled threads for a
given core (or cores), the scheduler has to decide whether
to enforce the CPU affinity or to honor the co-scheduling
contract. Depending on a certain policy and, in the case of
real-time systems, perhaps on the priorities, the scheduler
may not enforce CPU affinity at the cost of losing some
performance. However, when it comes to interrupt affinity,
a real-time system may pay heavier for such a decision if
the interrupt gets handled on another core that presumably
has declined its availability for handling interrupts, or,even
worse, if the handling of the interrupt is delayed just to en-
force the affinity. In RTSJ the situation is a bit easier, in the
sense that interrupts (happenings in RTSJ) are handled by
a schedulable entity, something equivalent to a thread [8].
Therefore, handling happening affinity in RTSJ is somewhat
equivalent to handling CPU affinity (for happening affinity
in RTSJ please see [22]).

Most of the current global-purpose operating systems do
not support co-scheduling. As for real-time operating sys-
tems, they only now get out of the uniprocessor paradigm.
We believe that this area of research should be very inter-
esting for multi-core real-time systems.

5 Coordination between the operating sys-
tem and user-level threads in multi-core
systems

One of the problems traditionally found in parallel sys-
tems using a hierarchy of schedulers is the lack of coordi-
nation between them. The typical example is that of user-
level threads packages that employ a user-space scheduler
(Java is such an example). This scheduler is un-aware of
the decisions taken by the scheduler of the operating sys-
tem when one of the user-level threads executes within the
kernel and fires a decision that conflicts with the expecta-
tions of the user-level scheduler. For instance, if a thread
of a parallel application blocks within the operating system
(either within a system call or because of a page fault), the
operating system suspends the whole process even though
there are other runnable threads within the application.

Notifying the user-level scheduler about the situation
helps, but there are further issues. For instance, if the pre-
empted thread holds a spin-lock, other threads of the ap-
plication trying to get the lock will have to busy-wait and
thus will waste processor time, because until the preempted

thread doesn’t make progress the other threads won’t get
the lock. Lock holder preemption may occur also in a dif-
ferent context. Think of a thread holding a spin-lock whose
time slice ends. If the scheduler preempts the holder of the
lock, other runnable threads trying to aquire the lock will
get scheduled but they will busy-wait in vain until the holder
of the lock gets back a processor (core) to run on.

From these scenarios it can be concluded that lock holder
preemption is especially important for co-scheduled threads
that use spin-locks. If one of the co-scheduled threads grabs
a lock and then blocks within the operating system for some
reason and if the user-level scheduler is not informed about
the blocking, then the other threads busy-wait on the spin-
lock. In an SMP, this can affect the performance of the
whole system, because of the contention for the system bus.
The threads try to aquire the lock writing a memory location
and the coherence protocol is fired up. In the end, noth-
ing happens because the lock is not free. So this is wasted
operation. Moreover, it affects even the processors (cores)
that are not involved in sychronization, because they have to
compete for the bus as well when they access memory and,
thus, their activity is disturbed by the sychronization traffic.

This issue of bus contention in SMPs (and multi-core
processors as well) advocates for cache-aware locking. Es-
sentially, a smart scheduler would have to schedule cooper-
ating threads spinning on the same lock on cores that share
on-chip caches (either L2 or L3 caches). The scheduler can
find out whether the cores share on-chip caches by calling
a special instruction of the processor, if supported (for in-
stance,cpuid in the case of Intel processors [10]). Thus,
when busy-waiting for a lock, the threads do not have to
access the bus.

The lock holder preemption problem is relevant also for
priority inversion avoidance protocols, and thus for real-
time systems as well. If the lower priority thread holding
the lock gets the chance to run as a result of having its pri-
ority raised, but is preempted while trying to finish its task
so that it can release the lock, the higher priority thread re-
mains blocked and pays an unwanted penalty, namely that
incurred by the preemption of the lock holder.

There are several solutions for the lock holder preemp-
tion problem (some of them to be found in [3, 18]). Essen-
tially, all these solutions rely on notifying the upper levels
about the preemption. This notification can be made when
the event occurs or can be sent ahead of time if the system
can establish that preemption will occur in the near future
(for instance, when the time quantum is about to expire).
Depending on the situation, the user-level thread or sched-
uler takes the most appropriate action. For instance, if a
warning is issued about imminent preemption, the thread
being warned may give up the idea of taking a lock be-
fore preemption. A user-level scheduler informed about a
lock holder preemption may choose not to schedule any-



more threads that spin on the same lock.

6 Parallel priority inversion avoidance

The priority inversion problem appears when a runnable
high priority process/thread waiting for a lock cannot pro-
ceed because the lock is held by another, lower priority pro-
cess/thread that doesn’ t get the chance to run because of its
priority level. In uniprocessor systems, the solution is touse
either priority inheritance or priority ceiling [8], but both so-
lutions are hinging on one main assumption: the system has
only one processor and, therefore, only one lock contender
can run at a time.

In an SMP system, this assumption doesn’t hold any-
more and, thus, the aforementioned solutions do not work.
For instance, consider the priority inheritance algorithm.
To solve the priority inversion problem, the lower priority
thread ”inherits” the priority of the higher priority conden-
der of the lock as thus gets the chance to run and to set
the lock free. When releasing the lock, there’s a window of
time when the lock is free and no one can contend for it on a
uniprocessor system. Essentially, this window of time lasts
at least for the duration of the context switch time. How-
ever, on a shared memory multiprocessor system no one
can prevent a process/thread running on another processor
to grab the lock during that window of time, because the
lock is free. If this process/thread has a lower priority than
the processes/threads waiting for the lock to be released,
the priority inversion problem is solved inappropriately for
a real-time system. A lower priority process/thread gets the
lock although higher priority processes/threads are waiting.
Theoretically, starvation is also possible. If every time the
lock is released a new low priority process/thread gets the
lock, then the high priority processes/threads never get the
chance to grab the lock. A similar argument holds for pri-
ority ceiling.

To solve the problem of priority inversion in a shared
memory multiprocessor, one needs to establish an order be-
tween the contenders of the lock. In a real-time system, this
order is given naturally by priorities. For equal priorities, an
additional rule needs to be set to break the ties. Once this
order is globally enforced, the problem can be easily solved
by a synchronization mechanism that does not allow getting
a free lock unless there are no higher order contenders of the
lock.

A first candidate solution for such a synchronization
mechanism is to enhance traditional locking mechanisms
with the ordering rule. For instance, when taking the lock,
the contender can check the queue of the waiting lock con-
tenders and, if there are higher order competitors in the
queue, it blocks putting itself at the right place (according to
its order) in the waiting queue. While simple, this solution
breaks the formal definition of locks (or binary semaphores)

that doesn’t mention anything about checking the queue
of the waiting lock contenders. The locking mechanism
should be independent of the contenders. As soon as the
lock is set free, all of the waiting contenders should be able
to run and to compete for the lock. The locking scheme
should rely only on the atomically accesible variable con-
trolling the lock.

Another possible solution is to use a barrier. All of the
lock contenders should pass a barrier before attempting to
get the lock. Nevertheless, this may lead to performance
penalties, because processors may have to be stalled un-
til the other contenders get the chance to run. Moreover,
even if all the contenders are competing simultaneously for
the lock, global ordering is still needed to make sure that
a lower priority process/thread doesn’t inappropriately get
the lock.

A more proper solution is to use an election algorithm.
Every contender casts a ticket stamped with its priority in an
auction won by the highest ”bidder”. If there are runnable
higher bidders that are not currently running, the lower run-
ning bidder blocks itself waiting for the next auction.

7 Fairness

In general, real-time systems have little to do with fair-
ness for obvious reasons. The task priorities, the scheduling
algorithm and the feasibility analysis leave little room for
complaints about fairness. Nevertheless, real-time systems
are intimately tied to a source of potential unexpected fair-
ness problems: external events signalled through interrupts.
A typical scenario found in general purpose operating sys-
tems for uniproccesors is relevant for real-time systems as
well, as they use more and more networking capabilities.
The scenario refers to the way network interrupts are han-
dled. For every incoming network packet, a hardware inter-
rupt is raised and requires two stages for its handling. First,
a so called hardware interrupt handler (sometimes called
alsoupper half) is run in order to perform the minimal oper-
ations needed to handle the interrupt. Its processing must be
kept as short as possible to avoid increasing interrupt laten-
cies. As soon as there is enough time to finish the handling
of the event, either at the end of the hardware handler or
at a later time, before re-scheduling, a so called software
interrupt handler (orbottom half) gets executed. Here are
taking place the less time-critical operations. The problem
with these two handlers is that they get called in the con-
text of the process that currently runs when the interrupt is
raised. As a result of that, the interrupt processing time is
accounted to that process, which is unfair, because the net-
work packet may be destined for another application. So-
lutions for this problem have been proposed [6, 7] but they
seem to make their way slower into the industry.

For real-time multi-core systems, the situation is com-



plicated by two additional facts. First, if interrupt affinity
is enabled, there’s another stage added to the typical inter-
rupt handling: the interrupt has to be routed to the processor
that will actually handle it. Second, the unexpected behav-
ior of the network has to be taken into account when doing
the feasibility analysis. Even so, the fairness problem stays.
Think about RTSJ in the case of the following scenario. A
set of happenings corresponding to applications with differ-
ent priorities are not bound to a specific thread, instead they
are all run by the same thread. As a result of that, happen-
ings for low priority applications may get executed before
the applications that need their result. Thus, higher priority
applications wait for lower priority computation whose re-
sults are not needed for the moment. This is not only unfair,
but also inapproriate in a real-time system. There is a pro-
posal in JSR 282 [22] to assign priorities to happenings as
well. This decision might help solve the problem.

The above scenario makes the situation worse if happen-
ing affinity (as proposed in [22]) is used. Indeed, if the low
priority happenings target applications that are not running
on the processor the happenings are bound to, the proces-
sor is unfairly used for the needs of low-priority, “remote”
applications.

To avoid these two problems, a possible solution would
be to bundle the happening and the application it addresses
to into a single schedulable object that would handle hap-
penings similar to the way asychronous events are handled
in Unix systems by means of signal handlers. The advan-
tages are manifold. First, one doesn’t need to assign prior-
ities to happenings anymore. Second, the handling of the
happening is directly charged to the application that is the
target of the event. No unfair behavior towards other ap-
plications is possible since the happening is handled by the
application thread during its own running period. Third,
happening affinity cannot unfairly use the processor for “re-
mote” threads, since the handling of the happening is done
by the thread the happening is destined for. Fourth, no addi-
tional resources of the system are needed to handle happen-
ings. Each thread handles its own events, there is no need
for special threads to handle only happenings. Fifth, if the
happening is handled directly by the thread it targets, there’s
an additional bonus for BoundAsyncEventHandlers [2, 8]
that require a separate thread to handle the event. Indeed,
in this special case, handling an event requires an additional
context switch to run the event handler. The proposed so-
lution avoids that additional context switch by handling the
event within the context of the thread that is the target of the
event.

There’s also a drawback to this solution. Happening
affinity ceases to be what it is supposed to be. However,
this is not much of a problem, because in RTSJ happen-
ings are anyway user-level handlers, whereas interrupt affin-
ity concerns mostly the low-level (operating system level)

handlers. And because these user-level handlers are run
by threads, happening affinity becomes a form of proces-
sor affinity. The main challenge of shielding the processor
from unwanted interrupts remains the task of the real-time
operating system.

8 Future work

Our first aim for the upcoming months is to develop a
multi-core aware benchmark for real-time Java. This bench-
mark will help us evaluate both the importance and the im-
pact of the issues discussed in this paper. Currently, there
are just a few real-time Java benchmarks but they are ei-
ther not multiprocessor-aware [11] or not true real-time
benchmarks [13] (the latter doesn’t support NoHeapReal-
timeThreads and AsyncEventHandlers [8]). We plan to ex-
tend one of the existent benchmarks by enhancing it with
the missing features (either in terms of real-time or par-
allelism support) and by adding specific features that will
help us conclude on the issues raised in this paper. We are
looking for a synthetic benchmark but we would like also
to develop a benchmark suite of relevant applications for
real-time Java on multi-core architectures.

Once we have such a benchmark that can clarify the
points in the previous discussions, we will have a tool that
can help us evaluate the performance of a real-time Java
VM running on multi-core processors. Then, we can start
developing specific optimization solutions for the problem-
atic issues.

9 Summary

In this paper, we presented some of the challenges raised
by the use of multi-core architectures for real-time systems,
with special interest for real-time Java. There are two or-
thogonal directions of development. One of them tackles
the problem of dealing with multi-core architectures from
a software point of view. The other one refers to the way
parallelism and real-time issues influence each other in a
software system.

From a software point of view, the multi-core architec-
tures features are interesting in two ways. First, some of the
hardware characteristics of the processors need to be ex-
ported to the software level so that the software can make
optimal use of the hardware facilities. For instance, the soft-
ware needs to be aware of asymmetric cores, hyperthread-
ing (or simultaneous multithreading), the architecture ofthe
on-chip caches, etc. All these aspects influence the optimal-
ity of the software run on multi-core processors, sometimes
regardless whether the software is single- or multithreaded.
The main areas sensitive to these aspects are scheduling,
synchronization and fairness. Second, one needs to har-
monize the operation the various software components of
a real-time system. For instance, user-level schedulers



need to be informed about operating systems decisions on
scheduling, blocking and sychronization for a more optimal
use of the system resources.

Using parallelism in real-time systems complicates them
in many ways. For instance, the predictibility of real-time
systems is endangered because of the use of logical pro-
cessors (SMT or hyperthreading), asymmetric scheduling,
cache-aware scheduling, etc. Important issues for real-time
systems such as priority inversion avoidance and interrupt
affinity need to be revisited in the context of parallel com-
puting as well. Perhaps other ways of scheduling such as
co-scheduling need to make their way as well within the
real-time world. We believe that all these issues will spark
a good deal of interesting research in the years to come.
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