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Abstract 

 
This paper presents a high accuracy stereovision 

sensor for 3D lane and obstacle detection in traffic 
environments. Stereovision allows the elimination of 
the common assumptions used in most monocular 
systems: flat road, constant pitch angle or absence of 
roll angle. The accuracy of the 3D reconstruction is 
comparable with that of active sensors as radar, laser 
scanner or LADAR, while the quality of the detected 
information in terms of volume and meaning is much 
higher. However the stereovision sensor output can be 
used in a sensor-fusion system in conjunction with 
other sensors in order to obtain a more robust and 
complete description of the traffic environment. 
Possible applications of the developed stereovision 
sensor are the implementation of some driving 
assistance functions as lane keeping and lane 
changing assistance, frontal collision avoidance, 
pedestrian collision avoidance, stop and go, 
intersections assistance, ACC (Automatic Cruise 
Control) for highway and urban scenarios. 
 
 
1. Introduction 
 
 From highway to urban traffic scenarios, the aim of 
a driving assistance system is to improve the safety of 
driving, and also to relieve the driver from repetitive 
and annoying tasks. Having a good description of the 
traffic environment is essential for any driving 
assistance system. There are two main classes of 
objects describing the driving environment: the lane 
(driving corridor) and obstacles. 
 The most common approach to obstacle detection is 
using active sensors such as lasers, ladars, or 
millimeter-wave radars. Their main advantage is that 
they can measure certain quantities (e.g., distance) 

directly requiring limited computing resources. But 
active sensors have also some drawbacks, such as low 
spatial resolution, and slow scanning speed. Moreover, 
when a large number of vehicles are moving 
simultaneously in the same direction, interference 
among sensors of the same type can occur [1].  
 Optical sensors, such as normal cameras, are 
usually referred to as passive sensors because they 
acquire data in a non-intrusive way. They are low cost 
sensors but do not perform direct measurements as the 
active ones. The measurement is done indirectly from 
the 2D image features and this process could be time 
consuming and its accuracy depends on the vision 
system setup. However, the use of a high resolution, 
high accuracy stereovision algorithm provides 
comparable results in 3D estimation, while delivering a 
larger amount of data [2].  
 Obstacle detection through image processing has 
followed two main trends: single-camera based 
detection and two (or more) camera based detection 
(stereovision based detection). The monocular 
approaches are using techniques such as object model 
fitting [3], color or texture segmentation [4], [5], 
symmetry axes [6] etc. The estimation of 3D 
characteristics is usually performed through a 
combination of knowledge about the objects (such as 
size), assumptions about the characteristics of the road 
(such as flat road assumption) and knowledge about the 
camera parameters available through calibration. The 
stereovision-based approaches have the advantage of 
directly measuring the 3D coordinates of an image 
feature [7], [8]. The main constraints concerning 
stereovision applications are to minimize the 
calibration and stereo-matching errors in order to 
increase the measurements accuracy and to reduce the 
complexity of stereo-correlation process for real time 
capabilities.  
 Lane detection has been for quite a long time the 
monopoly of the monocular image processing 



techniques. Monochrome images tend to be preferred 
over color, due to better resolution and reduced data 
load. Lane detection methods become in this case a 
problem of fitting a certain 2D model to the image 
data. The 2D model can be a projection of a 3D road 
model (a clothoid curve is the most commonly used 3D 
model) in the image plane [9],  usually the projection 
of a flat road of constant curvature, or it can be any 
mathematical model which can be matched under some 
robustness constraints, such as splines or snakes [10]. 
Some methods try to transform the 2D image into a 
surrogate 3D space by using inverse perspective 
mappings, under certain assumptions [11]. Sometimes 
the model itself is not explicitly stated, but it is implied 
by some assumptions that the algorithm takes (for 
instance, parallel lines). All the monocular lane 
detection methods suffer from their connection to a 
specific assumption (flat road, constant curvature, etc 
 In this paper we present a method for a full edge-
based 3D reconstruction of the driving environment of 
a moving vehicle using stereovision. The stereovision 
algorithm allows the elimination of the assumptions of 
flat road, constant pitch angle or absence of roll angle. 
The lane is modeled as a 3D surface, defined by the 
vertical and horizontal clothoid curves, the lane width 
and the roll angle. The detection of the vertical profile 
is based on stereovision [2]. The horizontal profile 
detection is performed in the image space by a classical 
technique, but an ingenious method of switching 
between the 3D space and the 2D space is introduced 
[12], so that 3D lane parameters can be extracted from 
a single frame with good accuracy. 
 The availability of 3D information allows the 
separation between the road and the obstacle features. 
The list of obtained 3D points above the detected 3D 
road surface is grouped into objects based solely on 
density and vicinity criteria. To overcome the 
sparseness of the 3D points with the distance a 
compressed 3D space (with the depth) was introduced. 
In this way, the system detects obstacles of all types, 
outputting them as a list of cuboids having 3D positions 
and sizes, without having to make any assumption 
about their type [13]. Subsequent classification 
techniques can be employed for discrimination, if 
needed. The detected objects are then tracked using a 
multiple object tracking algorithm, which refines the 
grouping and positioning, and detects the speed. 
 
2. Sensor and environment model 
 
 The stereovision sensor consists in two cameras 
mounted on a rigid rig. The position and orientation of 
the cameras’ are completely determined by the 

translation vectors TL and TR, and the rotation matrices 
RL and RR. The ego-car coordinate system has its 
origin on the ground in the front of the car, and its Z 
axis points in our direction of travel (Figure 1). 
 

 
 

Figure 1. The stereovision sensor and the car coordinate 
systems 

 
 All 3D entities (points, objects) are expressed in the 
ego-car coordinate system, which is depicted in Figure 
1. The detected objects are represented as cuboids, 
having position, size and velocity, as in Figure 2.  The 
position (X, Y, Z) and velocity (vX and vZ) are 
expressed for the central lower point C of the object’s 
back face. 
 The lane is modeled as a 3D surface, defined by the 
vertical and horizontal clothoid curves (Figure 2). Lane 
detection is regarded as the continuous estimation of 
the following parameters [14]: 

− W – the width of the lane 
− ch,0 – horizontal curvature of the lane 
− ch,1 – variation of the horizontal curvature of the 

lane 
− cv,0 – vertical curvature of the lane 
− Xcw – the lateral displacement of the ego-car 

coordinate system from the lane reference 
system (lane center) 

− α, γ, ψ are the pitch, roll and yaw angles of the 
car (the rotation angles between the car 
reference system and the world reference 
system). 

 
 

 
 

Figure 2. The environment model 
 

 These parameters describe the lane position and 
geometry through the following equations: 
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 Equation (1) describes the horizontal profile - the 
variation of the lateral position (X) of the center of the 
lane with the distance Z. Equations (2) and (3) are 
expressing the lateral positions of the lane borders. 
Equation (4) describes the vertical position for any 
point on the road. The first two terms compose what 
we’ll call the vertical profile, while the last term is due 
to the roll angle. All coordinates are given with respect 
to the car coordinate system, which is placed on the 
ground in the front center point of the ego vehicle. 
 Additional information is used from standard 
sensors of the ego-car: ego-car speed, yaw rate or 
steering wheel angle. 
 
3. Environment perception 
 
3.1. Camera calibration and 3D reconstruction 
 
 In order to reconstruct and measure the 3D 
environment, the cameras must be calibrated. The 
calibration process estimates the camera’s intrinsic 
parameters (which are related to its internal optical and 
geometrical characteristics) and extrinsic ones (which 
are related to the 3D position and orientation of the 
camera relative the car coordinate system – Fig. 1). The 
intrinsic parameters are the focal length and the 
principal point coordinates and are estimated using the 
Bouguet algorithm [15] by minimizing the projection 
errors from multiple views of a set of control points 
placed on a coplanar calibration object with known 
geometry.  
 The extrinsic parameters (translation vectors TL and 
TR and the rotation matrices RL and RR - figure 1) are 
determined during an off-line calibration procedure and 
are remaining unchanged during exploitation. The 
calibration process minimizing the projection errors of 
a set of control points placed in a calibration field with 
sizes comparable with the detection range [16]. The 
extrinsic parameters calibration method assures not 
only very accurate absolute extrinsic parameters of 
each camera individually but also very accurate relative 
parameters of the cameras’ inside the stereo-rig, which 

allows a precise estimation of the epipolar lines (near 0 
pixel drift).  

 The stereo reconstruction algorithm used is mainly 
based on the classical stereovision principles available 
in the existing literature [17]. Constraints, concerning 
real-time response of the system and high confidence of 
the reconstructed points, were supplementary used 
[2],[13]: 
- Exclusion from the correlation process of non-

structured areas as road granule-like textures and 
off-road vegetation texture, which are hard to 
correlate and time consuming for disambiguation. 

- Use of only edge features to reduce the search space 
in the correlation process. 

- Use of area based correlation by searching along the 
epipolar lines computed from the general stereo-
geometry using parallel processing features of the 
processor. 

- Use of disambiguation techniques to obtain a low 
rate of false correlations. 

- Sub-pixel disparity computation by fitting a 
parabola to the correlation function. 

 After finding correspondences, each left-right pair 
of edge points is mapped into a unique 3D point. Two 
3D projection rays are traced, using the camera 
geometry, one for each point of the pair. The 3D point 
can be computed as the intersection of the two 
projection rays. Due to calibration parameters 
uncertainties and discrete image nature, the rays will 
not intersect most of the time. The 3D point is 
computed as the point of minimum distance from both 
rays [17] in least squares fashion. 
  
3.2. Lane detection 
 
 Lane detection is integrated into a tracking process. 
The current lane parameters (described in chapter 2) 
are predicted using the past parameters and the vehicle 
dynamics, and this prediction provides search regions 
for the current detection (Figure 3).  

 

 
Figure 3. Lane prediction in the image space 

 



 The detection starts with estimation of the vertical 
profile (pitch angle and vertical curvature), using the 
stereo-provided 3D information. The side view of the 
set of 3D points is taken into consideration (Figure 4). 
From all the 3D points only the ones that project inside 
the predicted search regions (Figure 3) are processed. 
The pitch angle is extracted using a method similar to 
the Hough transform applied on the lateral projection 
of the 3D points in the near range of 0-20 m (in which 
we approximate the road flat) [12]. After detecting the 
pitch angle, detection of the vertical curvature follows 
the same pattern. The pitch angle is considered known, 
and then a curvature histogram is built, for each 
possible curvature, but this time only the more distant 
3D points are used. 

 

 
Figure 4. Side view of the reconstructed 3D points inside the 

predicted search region 
 

 Afterwards the horizontal profile is detected using a 
model-matching technique in the image space, and 
using the knowledge of the already detected vertical 
profile. The 3D parameters of the horizontal profile are 
extracted by solving the perspective projection 
equation. The roll angle is detected last, by checking 
the difference in height coordinates of the 3D points 
neighboring the left and right lane border. The 
detection results are used to update the lane state 
through the equations of the Kalman filter [12]. 
 
3.3. Object detection 
 
 The object detection process consists primarily in a 
labeling/grouping of the reconstructed 3D points by 
density and vicinity criteria. The Lane Detection 
module provides a pre-classification of the 
reconstructed 3D points. The vertical and frontal lane 
profiles can be used to obtain a separation of the 3D 
points into three important classes: road points, points 
above the road and points below the road.  
 For that purpose, an expected YE coordinate of each 
3D point is computed using the vertical profile (4) and 
taking into consideration the roll of the road: 
 

γ)( ccE XXYY −+=        (5) 

where:  

YC – is the vertical coordinate of the lane center, 
computed from (4); 
XC – is lateral coordinate of the lane center, 
computed from (1). 
 

 The points in a limit of 20 cm around this expected 
Y are considered as road points. The ones above are 
taken for object grouping, and the ones below are 
rejected. Are also rejected the points that are outside a 
predefined Space Of Interest (SOI) which limits also 
the object labeling in depth and lateral displacement. 

 The remaining 3D points labeled for object 
grouping are first projected on a top view plane (XZ). 
The top view space is compressed with the distance in 
order to obtain a constant point density with any 
distance [13]. Afterwards, adjacent points of the top-
view histogram of the compressed coordinates (Figure 
5) are connected and finally the objects segmentation is 
refined on vertical direction (Y).  
 Object tracking is used in order to obtain more 
stable results, and also to estimate the velocity of an 
object along the X, Y and Z axes [2], [13].  

 

 
Figure 5. Top-view histogram of the compressed coordinates 

(lower part) and the segmented objects (upper part) 
 
4. Applications for driving assistance 
 
4.1. Lane detection 
 
 Lane detection can be performed in various 
scenarios and conditions. On highways the model can 
be easily extended to detect also the side lanes (Figure 
6). On country roads it performs well even in the 
absence of painted lane delimiters (Figure 7).   
 In Figure 8 are presented the results of lane 
detection on a road with high vertical curvature while 
in Figure 9 are presented the results of the lane 



detection on a road with high horizontal curvature and 
shaded lane markers. 
 

 
Figure 6. Current lane, side-lanes and very far obstacles 

detected on highways 
 

 
Figure 7. Current lane, opposite lane and far obstacles 

detected on partially marked country roads 
 

 
Figure 8. Results of lane detection on non-flat roads with 

vertical curvature 

 
Figure 9. Results of lane detection on roads with high 

horizontal curvature and shaded lane markers 
 
4.2. Driving area detection 
 
 Having the 3D lane surface detected, and taking the 
advantages of the stereovision to detect the elevated 
continuous structures as fences and poles (Figure 10) 
or construction area delimiters (Figure 11) the so called 
driving area [2] can be detected. 
 

 
Figure 10. Highway scenario with lane and driving area 

delimiters (poles and fences) detected 
 

 
Figure 11. Urban scenario with construction area: lane and 

construction area delimiters are detected 
 
 



4.3. Obstacle detection 
 
 The system can be used to detect any kind of static 
and/or moving obstacles identifiable trough 3D stereo-
reconstruction. An obstacle can be considered any 
object which can interfere with the ego vehicle’s 
trajectory. This can be a proceeding vehicle moving on 
the current or side lanes (Figures 6, 7 and 13), 
stationary vehicles parked on the road side (Figure 12), 
driving area delimiters as poles (Figure 10) or other 
traffic participants as pedestrians or bikers (Figures 12 
and 13). Also traffic signs which are inside the SOI can 
be detected as 3D objects (Figure 13). 
 

 
Figure 12. Obstacles detection in urban scenarios (I) 

 

 
Figure 13. Obstacles detection in urban scenarios (II) 

 
5. Results 

 
 The developed applications were deployed on a 
standard 2.8 GHz Pentium® IV personal computer, and 
the average processing cycle takes up to 100 ms on 688 
x 515 resolution grayscale images, securing a 10 fps 
detection rate. This makes the system suitable for real-
time applications. Tests covered as much traffic 
conditions as possible, from highways to country roads 
(Figures 6-13). 
 The lane detection algorithm works with almost any 
kind of lane delimiters, provided that they obey the 
clothoid constraints and there are not too many noisy 

road features (a constraint usually fulfilled by most of 
the roads). The lane was detected even in the presence 
of high vertical or horizontal curvatures, or in the 
presence of obstacles on the current lane. 
 In all situations the obstacles were reliably detected 
and tracked, and their position, size and velocity 
measured. The detection has proven to have a 
maximum reliable working range of about 100 m, with 
maximum measurement errors of 5% in depth. The 
edge performance of the tracking algorithm was tested 
for ego-car speeds up to 150 km/h and relative 
incoming traffic speeds up to 250km/h.  
 
6. Conclusions 
 
 In the current paper a stereovision sensor able to 
reconstruct the driving environment was presented. The 
developed algorithms are implementing two 
fundamental applications for any driving assistance 
system: lane detection and obstacle detection. 
 The presented lane detection method combines 
several detection and tracking techniques and enhances 
them for a more accurate and general lane model 
matching. The lane is represented as a 3D surface, and 
the assumptions of flat road and zero pitch and roll 
angles are eliminated due to the availability of the 3D 
information. This technique can be easily scaled up to 
another lane model, due to the generality of the model 
generation, matching and of the 3D parameters 
reconstruction method. 
 The developed obstacle detection method works on 
the 3D points corresponding to the object edges, in a 
large variety of traffic scenarios, and under real-time 
constraints. Because the vertical profile of the road is 
detected by the lane detection module a correct road-
obstacle separation is possible for non-flat road 
environments. This way the grouping of the 3D points 
in relevant objects was greatly improved, and the 
objects 3D positioning accuracy was increased. The 
functions of the object detection module can be greatly 
extended in the future. Because any type of object is 
detected this algorithm can form the basis for any type 
of specific object detection system, such as vehicle 
detection, pedestrian detection, or even traffic sign 
detection. The classification routines can be performed 
directly on our detected objects, with the advantage of 
reduced search space and additional helpful 
information such as distance, size and speed,  
 The stereovision sensor output consists in the lane 
parameters and a list of the detected objects/obstacles 
in the format specified in chapter 2.  This output can be 
used in a sensor-fusion system, which is a world 
description estimator integrating the information from 



multiple heterogeneous sensors (vision, radar, range 
laser, ladar) into a unique model that is tracked over 
time.  This way the week points of one sensor’s can be 
compensated with the strong points off others obtaining 
a more robust, accurate and complete description of the 
driving environment. 
 Further researches will be focused on the 
implementation of driving assistance functions based 
on the presented applications, as: lane keeping and lane 
changing assistance, frontal collision avoidance, 
pedestrian collision avoidance, intersections assistance, 
ACC (Automatic Cruise Control) for highway and 
urban scenarios etc. 
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