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Abstract—Although stereo systems built up of 
omnidirectional cameras offer the possibility of providing 
information for a 360 grade field of view, the research in the field 
is still in an early stage compared to perspective systems. We 
provide in this study an extensive overview on existing techniques 
for  camera calibration, stereo rectification, stereo matching 
methods and 3D depth reconstruction on omnidirectional images. 
A comparison of methods, together with a few ideas of 
improvement is presented, establishing an equivalency, and 
transformation between an omnidirectional and a perspective 
vision system. 

Keywords—omnidirectional vision; stereo vision; camera 
calibration; image rectification; stereo reconstruction. 

 

I.  INTRODUCTION  

Omnidirectional cameras are built either as a combination 
of a camera-mirror system, or as a combination of multiple 
cameras, to capture a scene with a field of view of 180 degrees 
or greater in the horizontal plane. For our system we chose a 
hyperbolic camera-mirror setup in a stereo configuration that 
provides an omnidirectional field of view of 360 degrees 
horizontally and 75 degrees in the vertical plane, with a single 
effective viewpoint. The motivation behind choosing 
omnidirectional cameras versus perspective ones lies mainly in 
the existence of a wider field of view, a property that 
perspective cameras can only approximate using complex 
stitching algorithms, with obvious errors in case of repetitive 
patterns, or a scene lacking in prominent features.  

The main areas where omnidirectional systems can offer a 
significant advantage include: robot vision – by providing the 
possibility of seeing all-around and thus helping significantly 
in collision avoidance and fast object detection; large scale 
video surveillance – increasing the coverage of the surveillance 
area, reducing the number of images, therefore making 
movement detection and identification much easier with 
automated tools as well as manually; assisted driving and 
navigation – by eliminating black spots not covered by 
perspective imaging; map building and mosaicking – by 
reducing the number of necessary stitches and increasing 
coverage. 

The increasing interest in omnidirectional cameras, their 
spreading employment in security systems and the growing 
number of publications on the subject all indicate that it is a 
promising branch of the field of computer vision with a 
potential need for extended research. 

In our research we wish to cover all the necessary stages to 
obtain a high-performance stereo vision system with two 
catadioptric cameras, with hyperbolic mirrors. The main steps 
of developing such a system include finding the best projection 
model for a catadioptric camera, calibration of a single-camera 
system, stereo calibration of two omnidirectional cameras in a 
fixed configuration, omnidirectional image unwrapping and 
rectification, choosing an appropriate stereo-matching 
algorithm and finally reconstruction of 3D points from the  two 
calibrated and rectified views. 

In chapters II-V we present the theoretical background of 
our work, including the state-of-the-art of the domain 
completed with a few of our own suggestions and divided by 
development steps: calibration, image unwrapping, 
rectification respectively stereo matching and reconstruction.  

In chapter VI we present our experimental results, in 
comparison to existing ones, and we draw our conclusions in 
chapter VII. 

II. PROJECTION MODELS AND CALIBRATION 

A. Projection Models 

Several approaches exist for establishing the relation 
between 3D and image coordinates for omnidirectional 
cameras with hyperbolic mirrors. Each of them basically 
consists in a coordinate transform based on the mirror 
parameters, followed by the perspective projection of the 
corresponding camera.  

The direct approach presented in [17] and [18] first 
computes the intersection of the incoming ray with the mirror 
surface, subsequently using a perspective projection matrix to 
determine the corresponding image point. 

The Unified Projection Model for central catadioptric 
cameras, described in [7] is based on the same idea of 
computing the point of intersection, but uses a different 
parameterization, obtaining the final projection equation: 
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Where P = (X,Y,Z) is a 3D point, p = (u,v) is an image 
point, d and p are the mirror parameters, d being the distance 
between the two foci of the hyperbola,  4p the latus rectum, and 

222 ZYXr ++= . A slightly modified version of this model, 
taking into account skew and distortion of the lenses, is used in 
[1], here the projection process is split into three steps:  

1. Projection onto the normalized image plane: 
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2. Application of radial and tangential distortion: 
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where:
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3. A pinhole projection: 

)'',''''(),( yyxx cycyxvu +++= γαγ  (4) 

The inverse transformation is then obtained applying the 
inverse of each step in reversed order. 

A general model, applicable for multiple types of 
catadioptric sensors is presented in [5], and extended in [6]. 
Instead of using the concrete equation of the mirror transform, 
these papers present an approach, where the relation between a 
3D space point and a point in the sensor plane is approximated 
by a Taylor polynomial expressed in the form: 
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This polynomial includes the mirror transformations, and 
any distortions induced. A pixel in the omnidirectional image 
and a point in the sensor plane are related by an affine 
transformation: 

tA += TT vuyx ),()'',''( . (6) 

The affine transformation accounts for the small 
misalignments between the axes, and the information loss due 
to the digitizing process. 

B. Single Camera Calibration 

Since previous calibration procedures yielded similar 
results for the models presented in [7] and [6] we decided to 
employ both of them to choose the optimal one for our case. 

The calibration can be done with the help of planar 
chessboard grids of known geometry placed at various 
distances and angles from the camera. The corners of each cell 
of the chessboard are extracted with sub-pixel accuracy; the 
parameters of the corresponding model are then estimated from 
the corner points in the training set. 

For the first model, corresponding to equations (2),(3) and 
(4), the parameters estimated are the extrinsic parameters for 
each chessboard view (4 parameters for the rotation 
represented by quaternions, and 3 parameters for the 

translation: { }3214321 ,,,,,, iiiiiii tttqqqq , the mirror parameter �, the 
distortion coefficients { }54321 ,,,, kkkkk , and the pinhole 
parameters { }2121 ,,,, ccγγα , giving 7k+11 parameters, where k is 
the number of planar grids. After choosing the initial values of 
the parameters carefully, Mei [3] uses the Levenberg-
Marquardt approach for nonlinear optimization of the 
parameter values. 

The second calibration method developed by Scaramuzza, 
described in [16] uses the projection model given by equations 
(5) and (6). The parameters to estimate are the extrinsic 
parameters (7 for each chessboard view), the coefficients of the 
polynomial f, and the elements of the affine transformation 

{c,d,e}, where 
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The algorithm proposed by the authors of [16] for finding 
these values includes a rough initial estimate for the intrinsic 
parameters, an iterative linear estimation of the extrinsic and 
intrinsic parameters successively, and a final nonlinear 
refinement over all parameters.  

C. Stereo configurations and calibration 
Two basic configurations of the cameras were considered: a 

vertical and a horizontal placement (Fig.1). The horizontal 
placement is more suitable for installment on a moving 
platform (for example on a car), but makes the rectification 
process more difficult, in the sense that the epipolar curve of a 
point in the first image is not an epipolar line but an ellipse on 
the surface of the cylinder. 

In the case of a vertical configuration a point corresponds to 
a degenerated ellipse, which in case of proper alignment 
appears as a straight line on the second image. The advantages 
of this method, which are clearly reflected by the experimental 
data are a higher precision in rectification and a smaller stereo 
reprojection error, the main disadvantage being the difficulty of 
developing a practical system due to space limitations. 

We employed two different stereo calibration methods: 
computation of the relative rotation and translation between the 
two cameras and the absolute parameters in the world 
coordinate frame.  
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Fig. 1. Horizontal (left) and vertical (right) camera configurations 

1) Computation of relative parameters 

This method computes the relative position of the two 
cameras, and was mainly used to evaluate the quality of the 
calibration, measuring the symmetric reprojection error in both 
images. 

Here we use as input the same set of corner points extracted 
from both images, and the extrinsic parameters estimated from 
the calibration of each individual camera. The scaling 
parameter for a given point is estimated by knowing the exact 
distance between neighboring corners of the chessboard. The 
method is mainly based on a least squares minimization. 

Assuming that the two cameras are related by a rotation and 
a translation, one can write: 

21 XtRX =+  (7) 

where X1 represents the coordinates of a fixed point in the 
frame of the first camera, and X2 in the frame of the second. 

The set of corner coordinates estimated at the individual 
calibration phase gives us a set of points which will be the 
coefficients of the over determined system of equations. 

The solution in least squares sense is[2]:  

[ ] ( ) [ ] ν3,1,2n1,12
T

�x,IxAxAAtR ∈=××=
−

,
1  (8) 

where n is the number of corners extracted. 

Since in this phase we treat each parameter of the rotation 
individually, the result does not always possess the properties 
of a true rotation matrix, since the training data is not 
completely free of errors. We surpassed this problem by using 
the polar decomposition of the matrix, and re-computing the 
translation by taking the mean of the difference between the 
coordinates in the second camera frame and the rotated 
coordinates in the first frame, providing thus the true rotation 
closest to our solution in the least squares sense. 

Since some of the points are extracted with smaller 
precision, and some of the extrinsic parameters are estimated 
erroneously we use a RANSAC-type method to robustly 
estimate the rotation and the translation, computing the result 
for several subsets of points and  choosing the set of points for 
training which gives the maximum number of inliers for a 
given error threshold. The threshold and the size of the training 
set are established experimentally. 

2) Computing the absolute rotation and translation 

This method is described in detail for perspective cameras 
in [19].  In this case we take a world coordinate system 
centered in a fixed point at the base of our stereo camera 
system, and measure the absolute distance on the three main 
axes to targets in the shape of an “X”. We use the two 
equations: 
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where X1 and X2 are the coordinates of the target centers 
(extracted with sub-pixel accuracy), reprojected into space, and 
�1 and �2 are unknown scale factors. Since there are three 
elementary equations for each vector equation, we can 
eliminate the scale factor leaving two equations for each target 
center, and each camera. The rotation and translation 
parameters will then be estimated using these two equations for 
each target, together with the constraints of the rotation matrix 
individually for each camera. The optimal parameters are 
found using a Gauss-Newton minimization over all equations. 

After finding the absolute rotation and translation, the 
relative position of the two cameras can be described as: 

)t(tRtRRR 21
1

21
1
2 −== −− and  (10) 

3) The role of parameters in  3D reconstruction 

After computing the absolute rotation and translation for 
both cameras, we can estimate the coordinates of any point 
with known pixel coordinates in the two images in the world 
coordinate frame, a procedure also known as triangulation. We 
employed two triangulation methods and compare their results. 
The first is the basic linear triangulation algorithm presented in 
[8], and the second the optimal triangulation method described 
in [12]. They are presented in detail in Chapter V. 

III. IMAGE UNWRAPPING 

Since we desire to use algorithms developed for perspective 
cameras in the future, without significant modifications, a 
necessary step is transforming the omnidirectional image into 
an equivalent panoramic image (unwrapping).  

Two approaches were considered for unwrapping: the first 
method uses a simple circle to rectangle mapping, where a 
column on the rectangle will correspond to a radial line in the 
omnidirectional image, and each row to a concentric circle. 
Although this method is relatively fast, it doesn’t take into 
account the distortions introduced by the mirror. The second 
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method uses the equation of the mirror to reproject the images 
into the 3D space centered in the camera, on the surface of a 
cylinder. Since reprojecting the whole image is 
computationally slow, saving the whole mapping into memory 
is advised. This method is presented and optimized for memory 
efficiency using the eight-way symmetry of images in [11]. 

Regarding rectification, several methods were considered. 
Since we use the unwrapped panoramic images, rectification 
methods for perspective images are suitable. 

We propose the idea of transforming not only the image, 
but also the projection equations onto their perspective 
equivalent, to avoid working with the nonlinear projection 
model of the omnidirectional camera. When using the cuboid 
reprojection of an omnidirectional image, we create four 
imaginary projection planes, or perspective sensor planes, onto 
which the image is projected from every direction. The only 
disadvantage of the method lies in eventual continuity 
problems, coming from parameter estimation errors on the 
borders of the four cameras. Since we know the exact 
correspondence among the border points on each perspective 
image an interpolation method can be used to correct for these 
continuity errors later (which should be only minor if the 
parameters were estimated correctly). Contrary to the case of 
using four physical perspective cameras we obtain in the end a 
continuous surrounding 3D image, without the need of 
stitching and searching for correspondences in two neighboring 
images. Each virtual camera accounts for 90 degrees of the 
viewing plane, and the new projection becomes a simple 
pinhole model. 

For computation of the extrinsic parameters we can 
improve our approximation, if we compute these individually 
for each of the cameras, using only the set of relevant points. 
The clear advantages of this method can be seen now: one of: 
the perspective algorithm for the estimation of the extrinsic 
parameters can be used directly without further 
approximations. 

IV. STEREO RECTIFICATION 

Since in real applications searching for the correspondence 
of a point from the first image through the second image as a 
whole is too expensive, rectification is necessary to align the 
corresponding points on the same row in the case of the 
horizontal alignment, and on the same column in the case of 
the vertical alignment. 

To rectify the images we need to know first their epipolar 
geometry. While in case of perspective cameras, the image of a 
ray emanating from an image point is a line in the 
corresponding image, in case of catadioptric cameras, the 
image becomes a conic. Reprojecting into 3D space, in case of 
a horizontal configuration an epipolar curve will be represented 
by an ellipse on the surface of the cylinder, corresponding to a 
curve on the panoramic image, starting and ending at the same 
height, while for vertically placed cameras we have to deal 
with simple lines.   

Among the most popular rectification methods for 
perspective cameras we can mention the ones presented in [8] 
respectively [11]. They both require knowledge of the 

fundamental matrix F relating x2 and x1, the corresponding 
points from the two views: 

01 =FxxT
2 . (11) 

Similar approaches based on the fundamental matrix, 
applied to panoramic images are tackled in [12] resp [14].  
These are applied directly to the panoramic images, computing 
a homography for each image individually, taking into account 
only the image-point correspondences, independently of the 
computed rotation and translation in world coordinates. We 
measured the rectification error for homographies computed 
for the whole images as well as for homographies computed for 
corresponding parts of the images, reducing the rectification 
error.  

For computing the fundamental matrix we compared 
different methods described in literature [10], including the 
eight-point algorithm, least-squares estimation and RANSAC. 
In each case the coordinates were first normalized. For the 
rectification we used the result obtained with the RANSAC 
algorithm, which provided the best tradeoff between robustness 
and accuracy on the training set. This random sampling 
algorithm works with a threshold error limit imposed on the 
inliers. We establish this limit adaptively by iterating through a 
given range of limits, giving a correct fundamental matrix, and 
a reasonably high number of inliers, and plotting the learning 
curve of rectification error as a function of this threshold. The 
chosen threshold will be the one lying at the point, where the 
second derivative of the learning curve reaches its maximum, 
practically choosing the highest threshold that still provides a 
reasonable error rate. 

Besides the two rectification methods mentioned above we 
conducted experiments with another method described in [4]. 

The second method is specially developed for 
omnidirectional images, and instead of using the classical 
epipolar geometry of perspective images, generates 
intersections of the imaginary cylinder around the 
omnidirectional image, with a set of planes. The planes are 
generated in such a way that they intersect the two cylinders 
maximally, the intersection curves becoming the new rows in 
the resulting image. Although this process, also called epiline 
sampling, respects more rigorously the epipolar geometry of 
catadioptric images,  computing the rectification is 
significantly slower, and requires saving the whole mapping 
between the rectified and original images, instead of a 3x3 
homography matrix.  

V. STEREO MATCHING AND RECONSTRUCTION 

Stereo matching algorithms aim to find corresponding 
points between two images of the same scene, usually by using 
an objective function representing the dissimilarity between 
two points which it aims to minimize in combination with 
enforcing some kind of continuity of the correspondences 
throughout the image. The matching function can range from 
the simple Euclidean distance, through cross-correlation, 
normalized cross-correlation, to other complex distance metrics 
for a fixed or dynamically sized window. Often the images are 
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first transformed to obtain tolerance to luminosity, contrast, 
rotation and other changes in the image. 

Regarding the enforcement of continuity we can distinguish 
local, semi-global and global algorithms. 

Local algorithms use a small to medium sized window 
around the featured image point, and evaluate the matching 
function in this neighborhood. Global matching methods use 
ordering of pixels, unique correspondence constraints, and 
smoothness constraints to find an optimal pixel-wise matching 
of the two images. While local algorithms provide excellent 
speed and global algorithms excellent quality, none of them 
provide overall satisfying results. Semi-global matching 
algorithms provide significantly better results than local 
algorithms, but at the same time are feasible for a real-time 
application. They usually impose constraints only in one 
direction, reducing the algorithm complexity and execution 
time, but ensuring smoothness in the direction of epipolar lines. 
The semi algorithm introduced in [9] performs optimizations in 
several directions to simulate the performance of global 
matching methods, allowing also real time execution at the 
same time. 

The method employed by us is an improved version of the 
SGM algorithm by Hirschmuller, and is described in [15]. The 
authors used as matching function, the hamming distance of the 
census transform of the image, applied for a 9x9 window. The 
census transform can be computed as: 
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The SGM algorithm performs an energy minimization in 

several directions, to provide a smoothness to the disparity 
function. The original authors of SGM recommended 
minimization in 8 or 16 directions, however it was proven in 
[15] that 4 directions provide satisfying results, with no 
significant loss of quality versus 8 or 16 directions, but clear 
gains in execution speed.  The equation leading the 
minimization in four directions is: 

[ ] [ ]� >−+� =−+�=
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The algorithm searches the point along an epipolar line, 

which minimizes expression (13), where C is the matching cost 
obtained by the hamming distance, P1 is a penalty term for 
small changes in disparity, and P2 is a higher penalty for 
discontinuities in disparity. By not only trying to minimize the 
cost of matching, but introducing penalties for discontinuities, 
a smoothness and continuity of reconstructed surfaces is 
obtained, together with a smaller error rate. 

For the simple pinhole perspective model, brought to 
canonical form by calibrated rectification, 3D reconstruction is 

possible by computing the direction of the ray projected onto a 
given pixel, and computing the distance by measuring the 
disparity between the corresponding points in the two images. 

 This method however does not work well for uncalibrated 
stereo configurations. Since in 3D space the geometry of the 
virtual cameras does not equal a pure translation, and also 
because the rectifying homographies induce a skew factor in 
the projection matrix, the distance of the points is not estimated 
correctly using the pinhole model. We considered two 
alternative solutions, a homogeneous method based on the 
direct linear transformation and an inhomogeneous linear 
triangulation algorithm (see [12]). 

For two corresponding image points and camera matrices 
P1 and P2 , and a 3D point P, we have x1 = P1P and x2 = P2P, 
taking the fact that the vector product of two vectors with the 
same direction is 0, we obtain the linear system: 
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The inhomogeneous method represents the vector P as 
[X,Y,Z,1]T, and the set of homogeneous equations from 
equation (14) reduces to a set of inhomogeneous equations, 
which can be solved with linear least squares optimization, 
using the normal equation.  

The homogeneous method uses singular value 
decomposition to solve the linear system from equation (14). 
The advantage of this method is that it also works for points 
close to the origin (with 0 Z coordinate, or in our case with 0 X 
or Y coordinate), contrary to the inhomogeneous method, 
which for points close to the origin on the Z axis gives 
erroneous results. Implementation of the singular value 
decomposition is however slower and more complicated than 
implementing the normal equation. 

VI. EXPERIMENTAL RESULTS 

A. Single Camera calibration 

For both calibration methods we performed several 
experiments, retaining the results which gave the smallest 
reprojection error, both individually as well as after performing 
stereo calibration. The images with unsuccessful corner 
extraction were removed for both methods individually. 

We performed the first calibration according to the unified 
projection model, using Mei’s toolbox [13], with 88 images of 
a planar grid of 8x8 squares, placed at different angles and 
distances from the two cameras. As one can see in Table I, the 
average reprojection error for the training images was around 
0.38 pixels, with a standard deviation of the same order. 

The second calibration method, using Scaramuzza’s 
omnidirectional camera calibration toolbox [16] was performed 
on the same number of images, with the same grid pattern, for 
polynomials of the 3rd and 4th degree. Although this method is 
more general and can be applied for different types of 
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catadioptric sensors, in our case a slightly higher average 
reprojection error was obtained of around 0.5 pixels (Table II).  

TABLE I.  CAMERA PARAMETERS (MEI)  

Significance Variable Value(Left) Value(Right) MU 
Focal length 

1μ  
2μ  

437.8133 
437.4077 

422.46367   
422.89815 

mm 

Principal  
point 1c  

2c  

699.1116 
506.6615 

696.72415   
526.37908 

pixel 

Mirror coef. ε  1.4377 1.37719 - 
Skew α  0.0000 0.0000 - 
Distortion 
coefs. 

k1 
k2 
k3 
k4 
k5 

0.2233 
0.5281  
0.0009 
0.0039 
0.0000 

0.2323 
0.3333 
0.0016 
0.0011   
0.0000 

- 

Reprojection 
error 

22
yx ee +

 

 
0.38369 

 
0.38155 

 
pixel 

TABLE II.  CAMERA PARAMETERS (SCARAMUZZA) 

Significance Variable  Value(Left) Value(Right) MU 
Image center cx 

cy 
691.97975 
507.08323 

707.79377 
530.98057 

pixel 

Affine 
transformatio
n 

c 
d 
e 

1.000013 
-8.32780 
-9.82916 

1.0000003 
-7.4254888 
-4.29391347 

- 

Taylor 
polynomial 

a0 
a1 
a2 
a3 

1.681829282 
0 
0.0000152558 
-0.0000000044 

-1.713962922 
0 
0.0000144366 
-0.000000003 

- 

Reprojection 
error 

22
yx ee +

 

0.56804 0.623365 pixel 

 

B. Relative camera parameters and calibration verification 
Since we discovered that the calibration results are strongly 

dependent on the size and quality of the training set, we used 
the computation of relative reprojection error as a measure of 
quality for the single camera calibrations.  As described in 
Chapter II we obtain this measure, by taking the extrinsic 
parameters computed at the calibration phase, computing the 
relative position of the two cameras which minimizes the 
Euclidean distance between the two of them, and computing 
the average distance in pixels between the points in the frame 
of one camera transformed in the frame of the other, and 
projected on the image, and the extracted pixel point for its 
correspondent. 

Fig. 2 illustrates the reprojection errors of 4 different 
calibrations (in vertical and horizontal configurations) with the 
first model, after computing the relative coordinates with a 
least squares minimization, and after accounting for the 
properties of the rotation. One can see clearly that when 
increasing the number of training images the calibrations 
become more accurate and the relative reprojection error 
decreases drastically. 

 
Fig. 2. Stereo reprojection error 

For accurate calibration the compensation for the symmetry 
of the rotation increases the error only slightly. 

The best result obtained (for 88 training images and a 
vertical configuration) was a reprojection error of 0.74 pixels 
before the polar decomposition, and of 0.88 pixels after. The 
average distance in 3D in the frame of a camera between a 
point and its correspondent rotated and translated from the 
frame of the other is 19 mm. 

The results were also similar for the second calibration 
method, but since this is more general than the first, we 
decided to conduct our experiments further with Scaramuzza’s 
model. 

We also tested the extrinsic calibration method for both the 
horizontal and the vertical configurations. 13 x-shaped targets 
were used, of different height and size, placed at different 
distances, the target centers were extracted with subpixel 
precision, and their position was measured in the world 
reference frame using a high-precision GPS sensor with a 
precision of 2 cm. 

The mean reconstruction error was between 5.2% and 8% 
for the test set for the four virtual cameras. The absolute 
reconstruction error grew quadratically with the distance as 
expected in stereo reconstruction algorithms (Fig. 3). 

 
Fig. 3. Stereo reconstruction error for the test set 
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C. Fundamental matrix computation and rectification results 

We compared the different algorithms for the computation 
of the fundamental matrix using the set of points extracted at 
the calibration phase, both for the cylindrical and the 
perspective unwrapping techniques. This includes the 8-point 
algorithm, with RANSAC, with Least-squares and with the L-
meds method. RANSAC was proven to perform significantly 
better than the 8-point algorithm, and similarly to the L-meds 
method. The least-squares algorithm performed even worse 
than the 8-point method, explainable by a significant number of 
outliers which skewed the result. One can also see that for the 
perspective reprojection the fundamental error on the parts of 
the image is significantly smaller than for the whole 
image.(Table III). 

TABLE III.  FUNDAMENTAL MATRIX COMPUTATION RESULTS 

Method Error on whole image 
[pixel] 

Avg. error on quarters 
[pixel] 

8-point alg 2.0949 0.7199 
RANSAC 1.69402 0.4323 
Least squares 2.3888 1.1091 
L-meds 1.6432 0.4202 

 
We decided to use for rectification the value of the 

fundamental matrix obtained by the RANSAC estimation, 
since there was no significant difference versus the L-meds 
method, and the number of inliers was slightly higher. The test 
set for measuring the error was separated from the training set, 
and the number of inliers was grater than 99% of the test data. 
The results obtained for different methods on quarters on the 
image are comparable to the ones obtained for simple 
perspective images in urban scenes presented in [20]. 

We tested first of all the methods for rectification presented 
by Hartley in [8] and Ma in [12]. The errors from the 
fundamental matrix naturally were transmitted to the 
rectification step, not increasing significantly. The linear 
methods had a superior performance relative to the epiline 
sampling method (Table IV), which can be explained by the 
fact that while the first two are using purely image properties, 
the second also uses the model parameters which might also 
induce some errors. The rectification transforms were saved as 
lookup tables, and a real-time mapping is performed in the 
moment of image acquisition.  

TABLE IV.  RECTIFICATION ERROR 

Method Error on whole 
image [pixel] 

Avg. error on 
quarters [pixel] 

Hartley [8] 1.72386 0.55119 
Ma [12] 1.658924 0.59834 
Epiline sampling [4] 2.3888 - 

 
We have also performed experiments with rectification 

methods based on the extrinsic parameters of the cameras in 
the 3D space, but the higher reprojection error, and the reduced 
number of matchings in the stereo matching phase determined 
us the adapt Hartley’s method. 

 
Fig. 4. Stereo disparities (growing from green to red) 

D. Stereo matching  

A GPU implementation of the SORT-SGM algorithm was 
directly applied to the rectified image pairs.  

As one can see the results of the matching were quite 
satisfying, obtaining a dense stereo image, where 
correspondences exist, with few erroneous matches (see Fig.4). 

Finally the two presented reconstruction methods were 
applied, the pinhole model, and the linear triangulation 
algorithm. Several subpixel estimation were tested together 
with the two algorithms, we present here the best results 
obtained for a parabolic interpolation method. Although the 
linear triangulation algorithm has a smaller error in estimating 
the correct distances, it didn’t worked well from the point of 
view of continuous surfaces with subpixel estimation methods, 
suggesting for the necessity of future research in finding a 
proper interpolation method preserving continuity for this type 
of depth estimation (see Fig. 5). 

 
Fig. 5. Depth estimation with the triangular method before (upper image) and 

after subpixel estimation (the left image rendered in 3D space) 

The pinhole method preserves continuity even after 
subpixel estimation (see Fig. 6.), but while the reconstruction 
error for the triangular method corresponds to the values on 
Fig. 2, in case of the pinhole method this error grows 
significantly worse for large distances. 
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Fig. 6. Reconstruction with the pinhole model before and after subpixel 

estimation (the left image rendered in 3D space) 

VII. CONCLUSIONS 

We presented in this paper an extensive study about stereo 
calibration, rectification and reconstruction for omnidirectional 
images, with a few suggestions for improvement in terms of 
speed and performance, the most important being the 
transformation of the two omnidirectional images in a system 
of 4 pair of perspective ones. The uncalibrated rectification 
methods provided us with a rectification error comparable to 
the ones of the perspective cameras, however without the need 
for a complex algorithm at the time of image stitching. The 
main problem at the moment consists in the fact that during 
reconstruction the pinhole reconstruction model has a high 
reprojection and depth estimation error, while the linear 
triangulation method does not work well together with the 
traditional SGM and subpixel estimation methods. We suggest 
further experiments for improving the reconstruction results. 

A first suggestion is changing the rectification method to a 
calibrated one, creating a canonical configuration such that the 
pinhole model can be correctly applied with higher precision. 
This implies a greater rigidity in the hardware configuration, 
such that there are no changes in the extrinsic parameters (not 
even minor ones), since they can greatly influence the stereo 
correspondence process.. 

A second improvement idea is changing the stereo 
matching and the subpixel estimation algorithms such that the 
continuities apply for the linear triangulation model, not only 
for the pinhole model. 
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