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Abstracl-This paper presents a 3D lane detection method 
based on stereovision. The stereovision algorithm allows the 
elimination of the common assumptions: flat road, constant 
pitch angle or absence of roll angle. Moreover, the availability 
of 3D information allows the separation between the road and 
the obstacle features. The lane is modeled as a 3D surface, 
defined by the vertical and horizontal clothoid curves, the lane 
width and the roll angle. The lane detection is integrated into a 
tracking process. The current lane parameters are predicted 
using the past parameters and the vehicle dynamics, and this 
prediction provides search regions for the current detection. 
The detection starts with estimation of the vertical profile, 
using the stereo-provided 3D information, and afterwards the 
horizonlal profile is detected using a model-matching 
technique in the image space, using the knowledge of the 
already detected vertical profile. The roll angle is detected last, 
hy estimating the difference of the average heights of the left 
and right lane borders. The detection results are used to 
update the lane state through Kalman filtering. 

I. INTRODUCTTON 

ANE detection is a key problem in any driving 

computer vision. Laser scanners and radars may detect the 
obstacles faster and more accurately, but the lane delimiters 
itlust be somehow seen in a graphical way. The problem of 
detecting the lane may seem very simple, especially in 
highway scenarios, when the road markings are clear and 
the lane has a well-defined geometry. The reasons for which 
this problem may seem simple is that very often the 
accuracy of the algorithm is judged by the quality of the 
detection in the image, and not by the quality of the lane 
geometry parameters and of the ego car positioning 

L .  assistance system, and one of the privileges of 
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parameters. These parameters are crucial for a driving 
assistance system. An error of one meter in detection of an 
obstacle's position may not be very severe, especially if the 
object is not very close, but an error of a tenth of a degree 
in estimation of the ego vehicle's position inside the lane 
may lead to an incorrect trajectory prediction, when 
traveling at highway cruise speed. The situation is made 
even more serious by the fact that the lane is usually used as 
a reference system for object tracking. 

Lane detection has been for quite a long time the 
monopoly of the monocular image processing techniques. 
Monochrome images tend to be preferred over color, due to 
better resolution and reduced data load. Lane detection 
methods become in this case a problem of fitting a certain 
2D model to the image data. The 2D model can be a 
projection of a 3D road model (a clothoid curve i s  the most 
commonly used 3D model) io the image plane [l], [2], [3], 
[4], [5], [6], [7], [XI, usually the projection of a flat road of 
constant curvature, or it can be any mathematical model 
which can be matched under some robustness constraints, 
such as splines or snakes 191, [lo]. Some methods try to 
transform the 2D image into a surrogate 3D space by using 
inverse perspective mappings, under certain assumptions 
[ l l ] ,  [12], [13], [14]. Sometimes the model itself is not 
explicitly stated, but it is implied by some assumptions that 
the algorithm takes (for instance, parallel lines). 

The data to which the model is fitted can be the grayscale 
image, which can undergo several enhancements [111, the 
image gradient [l], [2], [lo], [ 3 ] ,  features extracted using 
frequency domain processing [15], edges extracted using 
specialized edge detectors [XI, or higher level features, such 
as the whole road marking [16]. 

The models are fitted to the image using different 
techniques, many of which involve some kind of search and 
a likelihood function to be maximized [I], [lo], [14], an 
energy function to be minimized [9], the use of the Hough 
transform [XI or the iterative update of a probability model 
using a Kalman filter [SI, 171, 1171. A somewhat different 
method, using a multi-agent architecture approach is 
presented in [12]. 

After the lane is detected in the image the 3D information 
can be extracted in several possible ways. If the 2D model 
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is a projection of the 3D one, the parameters of the 3D lane 
can be easily extracted, provided that a calibration was 
initially performed. Under certain assumptions, road 3D 
information can be extracted from the image [5]. 3D 
information can also be extracted using the Kalman filter 
and regarding the 3D lane parameters as the state vector and 
the 2D detection as the measurement [31, [7], [17]. 3D 
information can be extracted also by inverse perspective 
mapping (IPM) [ I l l .  Reference [I31 presents a technique 
that also detects the pitch angle from the relative orientation 
of the lane markings in the IPM image. Information from 
other types of sensors, such as radar, can be fused into the 
lane detection process 121 for better 3D results. 

All the monocular lane detection methods suffer from 
their connection to a specific assumption. The detection 
itself is based on these assumptions (flat road, constant 
curvature, etc), and when it is the time to extract 3D 
information the assumptions take an even heavier toll. 

This paper presents a lane detection method based on 
stereovision. The stereovision algorithm allows the 
elimination of the assumptions of flat road, constant pitch 
angle or absence of roll angle (which is actually the most 
common of all assumptions). Moreover, the availability of 
3D information allows the separation between the road and 
the obstacle features. The lane is modeled as a 3D surface, 
defined by the vertical and horizontal clothoid curves, the 
lane width and the roll angle, and it is detected by model- 
matching techniques. 

11. LANE MODEL PARAMETERS 

Lane detection is regarded as the continuous estimation of 

- 
- 
- 
- 
- 

the following parameters [IS]: 
W - the width of the lane 
c ~ , ~  - horizontal curvature of the lane 
ch,l - variation of the horizontal curvature of the lane 
c , , ,~  - vertical curvature of the lane 
X,, - the lateral displacement of the car reference 
system from the lane reference system (lane center) 
a; y, W the pitch, roll and yaw angles of the car (the 
rotation angles between the car reference system and 
the world reference system). 

These parameters describe the lane position and geometry 

- 

through the following equations: 
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Equation (1)’ describes the horizontal profile - the 
variation of the lateral position (X) of the center of the lane 

with the distance 2. Equation (4) describes the vertical 
position for any point on the road. The first two terms 
compose what we’ll call the vertical profile, while the last 
term is due to the roll angle. All coordinates are given with 
respect to the car coordinate system, which is placed on the 
ground in the front center point of the ego vehicle. 

111. LANE DETECTION AIMRITHM 

Lane detection is integrated into a tracking process. The 
current lane parameters are predicted using the past 
parameters and the vehicle dynamics, and this prediction 
provides search regions for the current detection. The 
detection starts with estimation of the vertical profile, using 
the stereo-provided 3D information, and afterwards the 
horizontal profile is detected using a model-matching 
technique in the image space, and using the knowledge of 
the already detected vertical profile. The 3D parameters of 
the horizontal profile are extracted by solving the 
perspective projection equation. The roll angle is detected 
last, by checking the difference in height coordinates of the 
3D points neighboring the left and right lane border. The 
detection results are used to update the lane state through 
the equations of the Kalman filter. 

A. Slate Prediction 
The lane parameters which have already been presented 

form the state vector: 

x=(w,  ch.0 3 ch.1 8 cq0 2 cv.1 2 x c w  3 y, W )T (5) 

The uncertainty associated to this vector forms the state 
covariance matrix P. 

The equations presented in [IS] are used to obtain the 
lane state prediction X, and its covariance matrix Pp The 
addition is the use of a yaw rate sensor (integrated in the 
ESP system) for measurement of the ego vehicle’s 
curvature, instead of modeling it as noise. 

The state prediction is used to obtain the image space 
prediction. The lane in the image space is represented as a 
vector XD= ( x , ~ ,  x * ~ ,  ... xnI, x ln  x2, ... x,,,), holding the lateral 
image coordinates ( x  coordinates) of the left and right lane 
borders for fixed yz image coordinates, same as in [3]. This 
vector has an associated PI, covariance matrix. The 
algorithm for generation of XD and Po from Xp and Pp is, 
however, totally new. This method has been thought as a 
method for detecting the lane using almost any kind of 
representation possible. 

The first step is to project in the image a series of points i 
having the coordinates X i  = 0, Yi = Y (Zi), Z, = 2, + i’Dz. 
Y(Z) denotes the equation of the (predicted) vertical profile. 
The result will be similar to the curve C in the Fig. 1. The 
horizontal image lines will be the values of y ,  for which 
we’ll try to detect the x coordinates. The second step is to 
project the left and right lane marking points having Z = Zi 
into the image plane. The X and Y coordinates of these 
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points will he found by applying ( 1  j, (Z), (3) and (4) to the 
predicted lane parameters Xp. The result of this step are the 
A points in the Fig. 1. However, the image x coordinate of 
these points cannot he directly introduced in the Xo vector. 
Due to the roll angle and to the fact that the camera may not 
he horizontally aligned, the A points differ from the points 
that we seek, which are the B points. The solution is to find 
the intersection of the y; horizontal lines to the lane border 
image curves, which are actually composed of line 
segments. If the value of D, is accurately tuned to the 
scenario, this approximation is quite reasonable. 

I 
ig. 1. The lines of constant Z versus the horizontal lines 

The values of PD are computed using the classical 
formula of covariance propagation through a linear 
transformation: 

P, = j .P , , . JT  (6) 

The transformation of Xp into XD is not linear, and 
cannot even he expressed through a formula. Therefore, the 
transformation linearization matrix J (the Jacobian of the 
transformation) is computed through numerical partial 
differentiation of each term of XD with respect to each term 
of x p .  

The final result of the prediction is shown in Fig. 2. The 
vector XI, provides us the prediction of the lane in the 
image space, and the diagonal of its covariance matrix PD 
provides the width of the search regions. 

Fip. 2.  Rcwltr of the line prstliction i n  thc inxiye space 

B. Vertical Profile Defection 
The first step of detection is the estimation of the 

parameters of the vertical profile, which are the pitch angle 
and the vertical curvature. The side view of the set of 3D 
points is taken into consideration, as seen in the Fig. 3. 
From all the 3D points only the ones that project inside the 
predicted search regions are processed. 

1 

I I 
Fig. 3. Side view of the reconstructed 3D points inside the 
predicted search region 

The pitch and vertical curvature are extracted using a 
method similar to the Hough transform, but instead of 
having a Hough space of two dimensions, which would 
complicate the search, we make use of the fact that in the 
near distance (up to 30 meters) the road can he considered 
flat. Therefore, an angle histogram is built for each possible 
pitch angle, using the near 3D points, and then the 
histogram is searched from under the road upwards. The 
first angle having a considerable amount of points aligned 
to it is taken as the pitch angle. The detection of the 
curvature follows the same pattern. The pitch angle is 
considered known, and then a curvature histogram is built, 
for each possible curvature, but this time only the more 
distant 3D points are used, because the effect of a curvature 
is felt only in more distant points. 

C. Horizonral Profile Detection 
The horizontal profile detection is done in the image 

space, using the search regions generated by the prediction 
step. The core of the algorithm is a model-matching process 
similar to the one described in [3], hut which works on 
edges instead of a gradient image. The edge points are 
filtered - only those edges that correspond to 3D points that 
comply with the vertical profile are used for lane model 
matching. The algorithm iteratively matches a straight line 
inside a search region (a search region is a trapezoid 
defined by the top and bottom horizontal lines and the 
width of the bases is given by the diagonal of the 
covariance matrix Po), and updates the whole XI, vector 
through the equations of a Kalman filter. The model is 
considered fit if enough search regions have been 
successfully associated. The covariance matrix Po contains 
inside all the constraints of the model (because it was 
generated through the Jacobian of the projection algorithm), 
and therefore at the end we'll he sure that what we detect on 
the image is the perspective projection of the chosen 3D 
model of the lane. _ .  

Now that the lane is detected in the image plane, there is 
the need of extracting the 3D lane parameters. Again, we 
must remember that the points that make the Xo vector do 
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not directly correspond to known Z distances. The approach 
that is taken in order to solve this problem is similar to the 
approached used for prediction. This time, we project the 
points of (0, Y(Z,), ZJ along with the points (XLnj Y(Zi) + y 
XI./. Z,J, thus generating in the image lines of constant (and 
known) Z. The left and right lane border will consist of line 
segments, and therefore it is easy to compute their 
intersection with the lines of constant Z. It is the opposite of 
the prediction (Fig. 1) - now we seek the A points knowing 
the B points. 

It is easy now to extract the X coordinates of the A points. 
The Z coordinate is known, and the Y coordinate depends 
on the vertical profile, which is known, and of the roll angle 
and the X coordinate itself. We also know the image 
coordinates of the points, and therefore we can solve the 
perspective projection equation and find X .  At the end of 
this step we’ll have for each lane border 10 pairs of (X, Z) 
coordinates. A least-squares technique is used to solve (2) 
and (3) for the horizontal profile parameters and for the 
lane width. 

D. Roll Angle Defection 
The roll angle detection becomes straightforward after the 

image space lane detection. The 3D points that project in 
the neighborhood of the detected borders are selected. The 
average height on the left is subtracted from the average 
height on the right, and this difference is divided by the lane 
width. The result will be the tangent of the roll angle. 

One question raises here: how can we detect the 
horizontal 3D profile if we haven’t detected yet the roll 
angle? The answer is that the roll angle is one of the 
parameters of the lane that has a very slow variation in time, 
and therefore we start initially with a zero roll angle, detect 
the horizontal profile, and then detect the roll angle, which 
will be used for horizontal profile detection in the next 
frame. The values should converge to the correct ones in 
two or three frames. 

E. State Update 
The results of the detection in the current frame are used to 
update the lane state vector through the Kalman filter, 
achieving in this way increased stability. In the absence of 
detection in the current frame the prediction is used as the 
new state vector, but only up to a point. If the detection 
lacks for several frames the track is aborted. 

IV. RESULTS 
The stereovision-based lane detection system has been 

tested in a variety of scenarios, mainly on highway roads 
(Fig. 4) and provincial roads (Fig. 5).  The detection has 
proven fast and accurate. Actually, the algorithm works 
with almost any kind of lane delimiters (Fig. 6), provided 
that they obey the clothoid constraints and there are not too 
many noisy road features (a constraint usually fulfilled by 
most of the roads). The results are good even in the 
presence of strong road shadows (Fig.7) or high vertical 

(Fig. 6) or horizontal curvatures (Fig.7), or in the presence 
of obstacles on the current lane (Fig. 8). 

The algorithm’s performance is decreased in the presence 
of light saturation, which makes the lane delimiters almost 
invisible, or in the absence of good camera calibration 
parameters - a key requirement of any stereovision system. 

b. 
Fig. 4. Results of the lane detection on highways, 

Fig. 5.  Results of lane detection on provincial roads. 
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Fig. 6. Results of lane detection on non-flat roads with 
vertical curvature. 

horizontal curvature and shaded lane markers 

V. CONCLUSIONS 
A technique for lane detection using stereovision has 

been presented. The method combines several detection and 
tracking techniques and enhances them for a more accurate 
and general lane model matching. The lane is represented as 
a 3D surface, and the assumptions of flat road and zero 
pitch and roll angles are eliminated due to the availability of 
the 3D information. This technique can be easily scaled up 
to another lane model, due to the generality of the model 
generation and matching and of the 3D parameters 
reconstruction method. 

The results have proven that this is a viable, fast and 
performant approach. The results can be further enhanced 
by using supplementaty image processing techniques 
besides edge detection for border feature selection and 
classification. The use of color information can also add a 
plus to the robustness and accuracy. 

b. 
Fig. 8. Results of lane detection the presence of obstacles 
on the current lane 
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