
  

 

Abstract—Depth accuracy is one of the most important 

characteristics for sensors used in distance estimation. Stereo-

vision systems employ sub-pixel interpolation to achieve such 

accuracy. Literature in this domain is usually dedicated to 

simple window based stereo solutions. There are currently 

several new stereo algorithms developed to counter pixel level 

errors, but they neglect sub-pixel results. We propose the use of 

function fitting to generate interpolation functions optimized 

for each algorithm type. Dedicated interpolation functions 

require the mathematical model of the algorithm. In the 

proposed methodology of generating the interpolation function 

the explicit model of the stereo algorithm is replaced by 

modeling the data distribution resulted from a pre-defined 

input. Several transformations are also proposed to reduce the 

dimensionality of the fitting data without loosing any 

information. The most accurate match for the fitting data-set 

was a sinusoidal function, a novel shape for sub-pixel 

interpolation. The function shows a significant improvement 

compared to legacy solutions, by reducing the error magnitude 

by several factor for both synthetic and real scenarios.  

I. INTRODUCTION 

ETRIEVING accurate depth information is critical part of 

the environment perception for automotive systems. A 

stereo-camera setup is a passive sensor solution for depth 

estimation. Such a system uses pixel-level correspondence 

between two images captured from different viewpoints. But 

pixel-level accuracy is not enough for long range systems 

because the pixel shift between the two images is inversely 

proportional to the distance. Sub-pixel accuracy is required 

to maintain high accuracy throughout the detection range. 

The original taxonomy proposed by Scharstein and 

Szeliski [1] classifies stereo algorithms into two main 

groups, local and global methods. The group of local 

algorithms uses a finite support region around each point to 

calculate the disparities. The methods are based around the 

selected matching metric and usually apply some matching 

aggregation for smoothing. The window aggregation allows 

a local smoothing of the disparity values. Larger windows 

reduce the number of mismatches but also reduce the 

detection rate at object boundaries. The main advantage of 

local methods is the small computational complexity which 

allows for real-time implementations [2, 3]. The main 

disadvantage is that only local information is used at each 

step. As a result these methods are not able to handle 

featureless regions or repetitive patterns. The global methods 

have a very high computational complexity, thus they are not 

applicable for automotive systems.  

In 2005 Hirschmüller proposed the Semi-global matching 

(SGM) [4] stereo algorithm as an alternative to existing 

solutions which achieves high quality results while 

maintaining a reduced execution time. This algorithm cannot 

be classified using the original taxonomy, thus a new group 

was created, the group of semi-global algorithms. The 

method performs multiple 1D energy optimizations on the 

image. The different 1D paths run at different angles to 

approximate a 2D optimization. By using multiple paths 

instead of a single one, it can avoid a streaky behavior 

common with previous algorithms such as dynamic 

programming or scan-line optimizations. The energy 

optimization is based on a correlation-cost and a smoothness 

constraint. The smoothness is enforced by two components, a 

small penalty, P1, used for small disparity differences and a 

larger penalty, P2, used for disparity discontinuities. The 

larger penalty is adaptive and based on intensity changes to 

help with object borders. The form of the energy function is: 
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where D is the set of disparities, C is the cost function and 

Np is the neighborhood of the point p in all directions. The 

function T turns the values true and false into 1 and 

respectively 0. Dp and Dq represent the selected disparities 

in the points p and q. The Middlebury benchmark [5] shows 

the results achieved using this. The algorithm consistently 

achieves results similar to the computationally most 

expensive methods while clearly differentiating itself from 

other real-time solutions. Several real-time implementations 

were also proposed for smaller resolution images. These 

results show that the method represents a good compromise 

between speed and accuracy for real-time systems such as 

automotive applications. 

Generally stereo algorithms use a simple parabola 

interpolation [2, 4]. The method uses the smallest matching 

value and its neighbors to interpolate a parabola around the 

three points [6, 7]. The location of the minimum point for 

this parabola will represent the sub-pixel shift. This solution 

is mathematically accurate if the matching function can be 

modeled at least locally as a 2
nd

 degree polynomial. However 

in 2001 Shimitzu and Okutomi [8] have highlighted that this 

solution presents a serious issue for the simple window based 

stereo algorithm, namely the pixel-locking effect where 

given sub-pixel ranges are favored and large errors can 

accumulate. 
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Another solution proposed for sub-pixel interpolation is 

the use of a linear function [6, 7]. The linearity is motivated 

for simple stereo algorithms which are based on aggregation. 

The symmetric V interpolation proposed for the Tyzx 

DeepSea development system is one such solution [3]. This 

system shows high accuracy thanks to the synergy between 

the stereo algorithm and the sub-pixel interpolation function. 

Figure 1 shows the difference in shape for the two basic 

solutions, the parabola and the symmetric V. 

 
In this paper we present a new methodology for estimating 

sub-pixel interpolation functions for stereo pipelines. It 

allows the generation of specific functions for the stereo 

algorithms, depending on the real distribution of the 

matching costs. The second section presents a brief overview 

of existing solutions to the sub-pixel interpolation problem. 

The third section presents the stereo algorithm used for this 

paper. This is required because we believe that the sub-pixel 

performance is dependant on the selected algorithm. The 

description of our methodology and the resulting 

interpolation function is presented in the fourth section. The 

fifth section contains the evaluations which were performed 

using several functions on different benchmarks. The last 

part of the paper contains our conclusions. 

II. RELATED WORK 

A. Sub-pixel Estimation 

The work presented by Shimitzu and Okutomi [8] handles 

the problem of pixel-locking by modeling the error and 

applying a correction through the use of the model. They 

observed that the error is symmetric and could be cancelled 

through the use of shifted images. The shifted images will 

have the error function inverted compared to the simple 

matching. Although this solution proved to be quite 

effective, its main disadvantage is that the stereo matching 

has to be performed 3 times resulting in a significant waste 

of computing resources. 

B. Stereo algorithm 

Modern stereo methods such as the Semi-Global method 

[4] use multiple non-linear transforms due to which 

estimating a perfect mathematical model for the sub-pixel 

interpolation is almost impossible. Examples of such 

transformations are the census transform and also global and 

semi-global optimizations. The distribution of the matching 

values also varies between the solutions and as such it is 

important to mention the stereo algorithm for which we 

estimate the interpolation function. 

The stereo algorithm selected for this paper is a variation 

of the basic Semi-Global method [9]. These modifications 

concern both the running time and the sub-pixel accuracy. 

To reduce the running time our configuration uses only 4 

optimization directions. The original description [4] specifies 

that the recommended number of directions is at least 8 to 

achieve quality, but our tests show that the difference is 

insignificant for automotive applications. Our system is 

optimized for automotive scenes where the object surfaces 

are usually tilted around the image axis. Consequently 

diagonal directions introduce no extra information. Besides 

reducing the computational task, this optimization has the 

advantage of simplifying memory accesses. 

We also observed an issue with the original algorithm 

concerning sub-pixel accuracy. The P1 component affects 

the matching values used in sub-pixel interpolation. The 

values at the positions -1 and +1 may be shifted with the 

constant P1. As a result some of the sub-pixel values are 

corrupted and point scatter is increased. We proposed the 

elimination of this component from the equation. The new 

equation is: ( ) ( ) [ ]2,
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For the correlation metric our solution uses the Census 

transform, a novelty for the Semi-Global method. This 

metric has the main advantage of being independent of 

luminosity and contrast differences between cameras. Other 

papers [10] evaluated the different metrics and the Census 

transform was consistently between the best solutions 

especially in the presence of radiometric errors. These 

features are important for an automotive system where the 

precise calibration of cameras is difficult. The original 

metrics proposed for the Semi-Global method were shown to 

be not effective in such systems. Another solution [11] 

proposed uses ZSAD, but in our tests the Census based 

solution presented a reduced number of errors. Figure 2 

presents a comparison of the two solutions on a typical 

scenario. 

 

III. SUB-PIXEL FUNCTION ESTIMATION 

A. Overview 

In this paper we propose the use of function fitting in 

order estimate a new sub-pixel interpolation function with 

reduced errors. Instead of modeling the sub-pixel errors, our 

solution works with the distribution of the input values. For 

our model we choose to preserve the argument list from the 

 
Fig. 1.  Parabola interpolation versus symmetric V 

 
Fig. 2.  Intersection scene. Comparison of different solutions, left is 

SGM+ZSAD, and right is our solution using SGM + Census 
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parabola method to preserve simplicity. The formula for the 

sub-pixel disparity is: 

 ( ), ,
Final d 1 d d 1

d d f m m m
− +

= +  

where d is the integer disparity and m is the matching cost 

for the different disparity steps. 

B. Data generation and transformations 

The input data is generated using a rendered 3D scene of a 

vertical surface. The surface is textured with a non-repetitive 

pattern to reduce the stereo uncertainty. The stereo system is 

chosen to have similar parameters as a real system with a 

baseline of 44cm and a focal length of 6mm. The imaging 

resolution is 512x383. The position of the plane is set to 

distances corresponding to disparity values ranging from 3.5 

to 4.5 pixels using a step of 0.05. This allows us to evaluate 

the behavior of the 3D points around the integer disparity 4. 

Although this value is arbitrarily selected, the sub-pixel 

interpolation is independent of the integer value. The value 

corresponds to a range beyond 40 meters and thus the errors 

are also highlighted in the metric space. The image on figure 

3 is an example from the set. Even though it is a synthetic 

image we tried to simulate the real imaging conditions to get 

results as close as possible to reality. 

 
The rendering results in 21 pairs of left-right images used 

for the stereo vision algorithm. For the sub-pixel 

interpolation function we need to log for each point the three 

matching values used by the function. To reduce the 

dimensionality of the problem, we consider only the relative 

position of the 3 points. These can be described using only 

the following two parameters 
d 1 d

leftDif m m
−

= − and 

d 1 drightDif m m
+

= − . This allows us to model the 

interpolation function as a 3D surface while maintaining the 

shape of the matching function. 

The point distribution is presented in figures 4-7. Each 

point is a tuple of (leftDif, rightDif, expected sub-pixel 

value). The sub-pixel value is mapped to the range 0-1 

starting from 3.5 to 4.5. When looking at the different 

viewpoints, we can observe a pattern in the XY view. The 

sub-pixel value shows a direct dependence on the polar angle 

of the points. The 3D points draw a surface similar to a 

generalized helicoid. This is further evidence for the 

observed correlation. Applying a function fitting in 3D is 

quite difficult, but our observation allows us to reduce the 

dimensionality of the problem once more.  

 

 

 

 
The polar angle of the points in the XY coordinate system 

is : 

( )arctan /polarAngle leftDif rightDif= .  

In our evaluation we use a simplified variable without the 

 
Fig. 3.  Example image (right camera, distance is 62.17m) 

 
Fig. 7.  YZ view of the point distribution. 

 
Fig. 6.  XZ view of the point distribution. 

 
Fig. 5.  XY view of point distribution. 

 
Fig. 4.  Perspective view of point distribution. X and Y are the 

horizontal axis, while Z is the vertical axis. (X,Y,Z) represents the 

tuple (leftDif, rightDif, expected sub-pixel value). 
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arctangent function, /var leftDif rightDif= . We take into 

consideration the symmetricity of the problem around the 

value 0.5 to eliminate the issue of extremely large values 

( 0rightDif → ). The distribution will be modeled using the 

one dimensional function in the following way: 

 
( / ),

1 ( / ),

:[0,1] [0,0.5]

function leftDif rightDif leftDif rightDif
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function rightDif leftDif leftDif rightDif
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C. Managing the fitting process 

Due to the large spread of the point distribution we are not 

able to perform perfect fitting. Our solution is to use average 

values for each sub-pixel step. The basis for this solution lies 

in the fact that each step is represented by a dedicated stereo 

image pair. For each image the average distance of the points 

is required to match the expected distance to the surface. The 

images are also independent from each other, thus we can 

average the values only across a single image. 

The first option is to apply the averaging on the input data 

before fitting. The advantage of this solution is that the 

amount of data is significantly reduced. The function can 

also be visualized helping to establish the main components. 

These components will be used in the function fitting phase. 

The averaged points are presented on figure 8 and we can 

already observe that the final solution should contain a 

sinusoidal component. The first solution was to use a spline 

which fits perfectly to the averaged data points, but we 

observed some residual errors when performing the 

evaluation with the whole data-set. The evaluation estimates 

the distance to the surfaces as the average of the individual 

points. The reason for the difference between fitting and the 

evaluation is the non-linearity of the function. As 

consequence this solution is not accurate enough because we 

cannot estimate the final error at the fitting phase. 

 
We solved this problem by applying the function fitting to 

all points and averaging only the results. The target is to 

minimize the distance of the average values from the 

expected ones. The problem with this solution is the 

complexity of the fitting and the lack of visual feed-back. 

Even though these issues made the process harder, this 

solution provided the most accurate results as the fitting 

estimates matched the evaluation results. 

D. Optimization metric 

Before we can estimate a function, we need to define the 

optimization metric which needs to be minimized. The basic 

metric used for fitting is the sum of errors. This solution may 

result in non-uniform optimization. A low sum cannot 

guarantee the lack of error peaks for the final estimate. For a 

robust system it is much more important to consider the 

worst case error. In conclusion our methodology is focused 

on optimizing the maximum error. 

IV. RESULTS 

A. Resulting function 

Our solution uses a model based fitting for simplicity. The 

model uses component functions, for example polynomials 

and trigonometric functions. The components were identified 

using the shape presented in figure 8. The best fit was 

achieved when a sinusoidal component represented 99% of 

the final function. A first and a second degree polynomial 

represented the remaining part. We consider that the 

polynomial components are too small to take into account 

because they are within the error margin of the imaging 

process. The sinusoidal function has the following formula: 

( ) ( )sin * / 2 / 2 / 2 0.5function x x π π= − + .  

B. Evaluation using the generating data-set 

Our first evaluation uses the fitting data-set to compare the 

new function with the parabola and linear interpolations. 

This test shows the best case results for our solution, but it 

helps to highlight the problems with the other solutions and 

provided a basis for comparison.  

The figure 9 presents the deviation between the measured 

distance of the synthetic surface and the expected one. We 

use the relative deviation to normalize the results with 

respect to the distance. The first observation is the 

dependence of the error on the sub-pixel location. This is 

highlighted mostly in the case of the parabola and linear 

interpolation. The symmetric behavior of the interpolation 

functions is also observable in the figures. There are few 

locations where this behavior is violated. The locations 

match in all three graph and are caused by the imaging 

errors.  

Both the parabola and linear interpolations show a very 

strong pixel locking tendency with error rates up to 5%, and 

3% respectively. These values are very large for an ideal test 

case and resulted from the mismatch between the stereo 

algorithm and the sub-pixel interpolation. Although the two 

methods have shown good or even excellent results in case 

of window based stereo solutions, they are not appropriate 

for complex solutions such as the Semi-Global method. 

Our solution shows a significant reduction in the error 

magnitude. The maximum error is reduced to 0.6% and for 

50% of the region it is under 0.1%. At these error rates, the 

components independent of the sub-pixel interpolation 

represent a significant portion of the total error. For example 

 
Fig. 8.  Averaged data points (leftDif/rightDif, expected sub-pixel) 
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the deviation from symmetricity can reach 0.4% (at 58.81m).  

 

C. Evaluation using a tilted surface 

In order to validate our results concerning accuracy we 

used another synthetic test case. The main advantage of the 

synthetic image compared to real ones is the availability of 

an environmental model. This model allows us to accurately 

estimate the errors for each solution.   

The model used for this test contains a surface tilted at 

exactly 45 degrees. The surface stretches from 35 meters to 

45 meters in depth and from -5 to 5 meters in height. 

For the evaluation we decided to average the values across 

each image row. This solution allows us to eliminate the 

effect of the point spread from the total error. The result is a 

set of average Y and Z coordinates belonging to each row. 

The values are presented on figure 10. The expected Z 

values are calculated using the measured Y values and the 

3D model. 

 

 
Table 1 presents a detailed report of the error values. The 

values are comparable with those presented in the previous 

example. The maximum values for the parabola and linear 

solution dropped by 35% while our solution remained the 

same. But even with the drop in efficiency the maximum 

value is better by a factor of 5 respectively 3. The biggest 

difference is in the average error which is improved with a 

factor of 7 respectively 4. These results prove that our 

solution is not only optimized for a single test case but can 

also perform similarly in other scenarios. 

 

D. Evaluation using real images 

We also performed a brief evaluation of the three 

solutions using real images. The methodology is similar with 

the previous evaluation, but instead of a tilted surface we use 

two vertical surface located at 23.57 meters and 28.53 meters 

respectively. The surface is textured using the same texture 

as the one used for synthetic tests. The real distances were 

measured using a laser rangefinder for maximum accuracy. 

An example image is presented in figure 11. The evaluation 

used a region of interest from the patterned surface located 

near the center of the image. 

 
The results are summarized in table 2 and are similar with 

the synthetic ones. Figure 12 and 13 shows the distances for 

the different image rows. The figures show that these results 

are not due to some constant deviation in distance because 

the errors for legacy solutions change in sign between the 

two measurements. Interestingly the shape of the surface is 

preserved between the different solutions. This shape is due 

to imaging issues. For the test performed at 23.57 meters 

these errors have an increased magnitude and as a result the 

difference between the three solutions is lowered, but our 

solution is still better by several factors. 

 

 

TABLE I 

DISTANCE  ERRORS FOR TILTED SURFACE 

Method 
AVERAGE 

 (ABS) 

AVERAGE 

(REL) 

 MAX 

(ABS) 

MAX 

(REL) 

Parabola 693.8 mm 1.75743 % 1317 mm 3.23962 % 

Linear 373.5 mm 0.94699 % 807.5 mm 1.94809 % 

Proposed 97.13 mm 0.24274 % 283.5 mm 0.65971 % 

ABS – Absolute values ; REL – Relative values 
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Fig. 13. Estimated real vertical surface at 23.57 meters. Y axis is 

distance in millimeters, X axis is image row index in selected region. 

 
Fig. 11.  Real scene with pattern located in middle at 23.57 meters. 
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Fig. 12. Estimated real vertical surface at 28.53 meters. Y axis is 

distance in millimeters, X axis is image row index in selected region. 

-5000

-3000

-1000

1000

3000

5000

35000 40000 45000Depth (mm)

H
e
ig

h
t 

(m
m

)

Proposed Parabola Linear

v

 
Fig. 10.  Estimated synthetic surface at 45 degrees. Axis are in mm. 

 
Fig. 9.  Error for parabola (blue), linear (red) and sinusoidal (green).  
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The reduced depth error also improves the performance of 

environment perception for driver assistance systems. The 

results of the previous two tests are applicable for object 

distance estimation improving the accuracy of the 

environment model. The removal of the pixel locking effect 

also helps the elevation map algorithm [12] to generate a 

more refined classified occupancy grid (figure 14). The most 

visible result is the extension of the side-walk detection 

range. The road surface is also smoother on the depth map 

image. 

 

V. CONCLUSIONS 

In conclusion we have show that the problem of sub-pixel 

interpolation needs new solutions for accuracy critical 

systems. Many solutions were proposed for the simpler 

window based stereo algorithms, but they are not appropriate 

to newer solutions such as the Semi-Global method. 

In this paper we propose the use of function fitting to 

estimate new functions explicitly designed for a given stereo 

algorithm. Through the use of 3D modeling and rendering a 

set of synthetic stereo image pairs can be created as a source 

of input data. 

We also proposed a set of transformations to reduce the 

dimensionality of the problem without loosing information. 

This process is important because multi-dimensional 

function fitting can be a very difficult problem. We believe 

that these transformations can be reused for other stereo 

solutions as well. 

Our solution uses a model based function fitting to 

determine the interpolation function. We first generated a 

rough model based on reduced data and used it to estimate 

the main components of the final model. The resulting 

function is a sinusoidal, a novelty for sub-pixel interpolation. 

It was able to match the data while also preserving a simple 

shape without the need for weird constants. 

To verify the validity of our solution we used two 

synthetic and two real data sets. At this phase we wanted to 

use an image set for which the 3D model is known. This 

helps to eliminate any errors resulting from model 

inaccuracies. More complex real images do not allow this 

level of knowledge, but will be used in further work to 

validate our findings. The results for all four evaluations are 

consistent and prove that our approach can significantly 

reduce sub-pixel errors for the Semi-Global matching stereo 

algorithm. The same function fitting methodology is not 

limited to any given stereo solution and can be used to model 

even the most complex algorithms. 

The results are also applicable to driving assistance 

systems, both for structured and unstructured environment 

description. 
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TABLE II 

DISTANCE  ERRORS FOR REAL IMAGES 

Method 
AVERAGE 

 (28.53M) 

AVERAGE 

(23.57) 

 MAX 

(28.53M) 

MAX 

(23.57) 

Parabola 724.6 mm  480.6 mm 823.7 mm 558.5 mm 

Linear 403.1 mm 300 mm 518.9 mm 405.4 mm 

Proposed 57.76 mm 86.18 mm 147.8 mm 213.3 mm 

 

Fig. 14. Urban scene, left column is the classified occupancy grid, 

right column is the depth map generated by the SGM. Top row uses 

parabola interpolation, while lower one the new function. 
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