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Abslruct-This paper presents a high accuracy, far range 
stereovision approach for driving environment perception based on 
3D lane and obstacle detection. Stereovision allows the elimination 
of the common assumptions used in most monocular systems: flat 
road, constant pitch angle or absence of roll angle. The lane 
detection method i s  based on clothoidal 3D lane model, The 
detected lane parameters are the vertical and horizontal 
curvatures, the lane width and the roll angle. The detected lane 
profile is used for road obstacle features separation. Based on a 
vicinity criteria the over road 3D points are grouped and tracked 
over frames. The system detects and classifies the meaningful 
obstacles in terms of 3D position, size and speed. 

I 

Index Tems--Stereovision, 3D Lane detection, 3D points 
grouping, Object detection and tracking. 

1 .  INTRODUCTION 

LASSICAL approaches in driving assistance systems are C radar and laser scanner based systems. They can detect 
obstacles fast and accurate but are not suitable for visual 
features as lane markings. Therefore, for a coniplete description 
of the driving environment, vision based systems have reached 
a special attention especially with the increasing of the 
processing power of the low cost standard PC's. 

Obstacle detection through image processing has followed 
two main trends: mono and stereo. The monocular approaches 
are using techniques such as object model fitting [I] ,  color or 
texture segmentation [2], [3], symmetry axes [4] etc. The 
estimation of 3D characteristics is done after the detection 
stage, and it is usually performed through a combination of 
knowledge about the objects (such as size), assumptions about 
the characteristics of the road (such as flat road assumption) 
and knowiedge about the camera parameters available through . 
calibration. The stereovision-based approaches have the 
advantage of directly measuring the 3D coordinates of an 
image feature, this feature being anything from a point to a 
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complex stnicture. 
Lane detection has been for quite a long time the monopoly 

of the monocular image processing techniques. Lane detection 
methods become in this case a problem of fitting a certain 2D 
model to the image data. The 2D model can be a projection of a 
3D road model (a clothoid cuwe is the most commonly used 3D 
model) in the im2ge plane [ 5 ] ,  161, [7], [SI, usually the 
projection of a flat road of constant curvature, or it can be any 
mathematical model which can be matched under some 
robustness constraints, such as splines or snakes [9],  [lo]. 
Some methods try to transform the 2D image into 3 surrogate 
3D space by using inverse perspective mappings, under certain 
assumptions [ 111. 

In this paper we present a method for a full 3D 
reconstruction of the visible scene based on stereovision, The 
stereovision algorithm allows the elimination of the 
assumptions of flat road, constant pitch angle or absence of roll 
angle.(which is actually the most common of all assumptions). 
The lane is modeled as a 3D surface, defined by the vertical and 
horizontal clothoid curves, the lane width and the roll angle, 
and it is detected by model-matching techniques [12]. 
Moreover, the availability of 3D information allows the 
separation between the road and the obstacle features. The  
obtained 3D points above the detected 3D road surface are 
grouped into objects based on density and vicinity criteria. The 
system detects obstacles of all types, outputting them as a list of 
cuboids having 3D positions and sizes, without making any 
assumption about their type [ 131. The detected objects are then 
tracked using a multiple object tracking algorithm,. which 
refines the grouping and positioning, and detects the speed. 

11. ENVIRONMENT MODEL 
In order to describe the driving environment we have to 

define first the 3D coordinates systems in which we perform the 
measurements. The ego-car coordinates system has its origin on 
the ground plane and is the projection of the middle of the car 
front axis. Its axes (Xc,Yc, Zc) are parallel with the tree main 
axis of the car. The position of the two cameras relative to the 
car coordinate system is completely determined by the 
translation vectors Ti and the rotation matrices R' (i=l,Z). Due 
to the rigid mounting of the stereo system inside the car these 
parameters are considered to be unchangeable during driving. 
Their accuracy is essential because stereo reconstruction is 

0-7803-8961 -t/05/$20.00 WO05 IEEE. -331 - 

mailto:graf@volkswagen.de


performed in the car coordinates system and therefore are 
estimated offline using a dedicated calibration procedure suited 
for far range stereovision [ 143. 

The world coordinate system has its origin in the middle of 
the current lane, theXlvaxis is contained in the road plane and is 
perpendicular to the lane delimiters, the Y,  axis is 
perpendicular on the road surface, the ZW axis is parallel with 
the tangents to the lane delimiters. The world coordinates 
system is moving along de lane'mid axis together with the car 
and thus only a lateral and a vertical offsets between the origins 
of the two coordinates systems exists (vector Tc from Fig. 1). 
The relative orientation of the two coordinates systems (& 
rotation matrix) will be also changing due to static and dynamic 
factors: the loading of the car is a static factor; acceleration, 
deceleration and steering are dynamic factors, which also cause 
the car to change its height and pitch, yaw and roll angles with 
respect to the road surface. 

Fig. I .  

The lane is modeled as a 3D surface, defined by the vertical 
and horizontal clothoid curves. Lane detection is regarded as 
the continuous estimation of the following parameters E1 51: 
- W -  the width of the lane 
- ch.0 - horizontal curvature of the lane 
- ch,! - variation of the horizontal curvature of the lane 
- c , ,~  - vertical curvature of the lane 
- X, - the lateral displacement of the car reference system 

from the lane related world coordinate system (X 
component of T,) 

- the pitch, roll and yaw angles of the car (the 
rotation angles between the car reference system and the 
world reference system - the rotation angles corresponding 

which are describing .the lane position and geometry through 
the following equations: 

- a, y, 
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Equation (1 )  describes the horizontal profile - the variation 
of the lateral position (x) of the center of the lane with the 
distance Z. Equation (4) describes the vertical position for any 

point on the road. The first two terms coinpose what wc'll call 
the vertical profile, while the last term is  due to the roll angle. 
All coordinates are given with respect to the ego-car coordinate 
system (Fig. I ) .  The objects are rcpresented as cuboids, having 
position in the ego-car world coordinate system, size and 
velocity. The position (X, z) and velocity (vx and vz) are 
expressed for the central lower point of the object [ 131. 

111. 3D STEREO RECONSTRUCTION 

The stereo reconstruction algorithm used is mainly based on 
the classical stereovision principles available in the existing 
literature [ 131. Constraints, concerning real-time response of 
the system and high confidence of the reconstructed points. 
were supplementary used. 

.In order to reduce the search space and to emphasize the 
structure of the objects, only edge points of the left image are 
correlated to thc right image points [ 131. Road granule-like 
textures and off-road vegetation texture are first eliminated 
because an edge point generated by these textures is very hard 
to correlate and time consuming for disambiguation and the 
reconstruction of these points is not required since they are note 
betonging to any object of interest. In order to eliminate these 
regions from the correlation process non-structured areas (in 
which the gradient direction is randomly distributed) are 
searched and marked (Fig. 2). 

Fig. 2 :  Non-structured areas are show as red grId cells 

Due to the cameras horizontal disparity, a gradient-based 
vertical edge detector was implemented. Non-maxima 
suppression and hysteresis edge linking are used. By focusing 
to the image edges, not only the response time i s  improved, but 
also thc correlation task is easier, since these points are placed 
in non-uniform image areas. 

Area based correlation is  used by searching along the 
epipolar lines computed from the stereo-geometry. It can be 
applied on the gray-scale images or on the LOG images. To 
have a low rate of false pairs, only strong responses of the 
correlation function are considered as correspondents. if the 
global minimum of the function is not strong enough relative to 
other local minimums than the current left image point is not 
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correlated [13J The main problem concerning this 
disambiguation condition i s  that i t  also rejects repetitive 
patterns that are parts of relevant objects: near road poles, 
similar cars placed in the same neighborhood, road markings 
and so on. Fig. 3 shows the correlation function for a left image 
point that is not reconstructed because there are two possibte 
correspondents in the right image. 

The main idea to solve these ambiguities is to use a wider 
neighborhood for computing the similarity. In order to 
minimize the processing titne the similarity using the wider 
mask will be computed only in the local minimums detected by 
thc correlation. The size of the mask must be computed by 
considering the width of the rcpetitive pattern: the distance in 
pixels betwccn the PR1 and PRZ (Fig. 3) or between the 
extreme possible solutions (the lcft most one and the right most 
one). 

~ 

2 

I 
PK2 are both possible solution. 

To achieve a better 3D depth resolution, the sub-pixel right 
correspondent is computed by fitting a parabola to the 
correlation function [13]. The obtained accuracy is about 114 to 
1j6 pixcls. After this step of finding correspondences, each 
left-right pair of points is mapped into a unique 3D point: two 
3D projection rays are traced, using the camera geometry, one 
for each point of the pair. By computing the intersection ofthe 
two projection rays, the coordinates of the 3D point are 
determined [13]. 

1V. LANE DETECT~ON 

Lane detection is integrated into a tracking process. The 
current lane parameters are predicted using the past parameters 
and the vehicle dynamics [12], and this prediction provides 
search regions for the current detection (Fig. 4). 

The detcction starts with estimation of the vertical profile 
(pitch angle and vertical curvature), using the stereo-provided 
3D information. The side view of the set of 3D points is taken 
into consideration (Fig. 5 ) .  From all the 3D points only the ones 
that project inside the predicted search regions (Fig. 4) are 
proccsscd. 

Fig. 4. Lane prediction in the image space. 

- .  1 r q ? * < * r m  
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Fig. 5. Side view of the reconstructed 3 0  points inside the predicted search 
region 

The pitch angle is extracted using a method similar to the 
Hough transform applied on the lateral projection of the 3D 
points in the near range of 0-20 m. (in which we approximate 
the road flat) [ 121. After detecting the pitchangle, detection of 
the vertical curvature follows the same pattern. The pitch angle 
is considered known, and then a curvature histogram is buiIt, 
for each possible curvature, but this time only the more distant 
3D points are used. 

Afterwards the horizontal profile is detected using a 
model-matching technique in the image space, and using the 
knowledge of the already detected vertical profile [ 121. The 3D 
parameters of the horizontal profile are extracted by solving the 
perspective projection equation. Thc roll angle is detected last, 
by checking the difference in height coordinates of the 3D 
points neighboring the left and right lane border. The detection 
results areased to update the lane state through the equations of 
the Kalman filter [ 121. 

Having the 3D lane surface detected, and taking the 
advantages of the stereovision to detect the elevated continuous 
structures, we can detect the so called driving arm delimiters. 
For that purpose, on each side of the current lane an elevated 
interest area following the Fane surface is defined (Fig. 6) and 
divided in five search zones with progressively increasing 
depth (in order to preserve the points density). 

z 
Fig. 6. Interest area for driving area delimiters searching 



For each zone the projection of the 3D points on XOYplane 
is performed and the histogram of the points density along the X 
axis is computed (Fig. 7). The X coordinates of the histogram 
peaks above a threshold are taken as candidate points and 
interpolated further using a clothoidal curve having same 
vertical and horizontal profile as the current lane (1)-(4). The 
obtained parameters of the curve are tracked using the Kalman 
filter. 

I I 

a -Left image b - 3D points' histogram 
Fig. 7. Points density histogram in the search zones of the driving area 

delimiters 

v. GROUPNG 3D POINTS INTO OBJECTS 

In the case of the controlled environments the flat road 
assumption is enough for obstacle/road separation [13]. In the 
case of the real world environments the road surface has 
smooth variation' in the vertical direction. In this case the flat 
road assumption is wrong because some of the road points will 
be detected as object points. 

The Lane Detection module provides a classification of the 
reconstructed 3 D  points. The vertical (Fig. 5) and frontal lane 
profile can be used to obtain a separation of the 3D points given 
by the stereo reconstruction algorithm into three important 
classes: road points, points above the road and points beIow the 
road. 

An expected f' coordinate of each 3D point is computed 
using the vertical profile (4). However, this is incomplete 
approach due to the fact that it does not take into cbnsideration 
the roll of the road. The complete Y expectation is given by: 

- only the points labeled as above the road will be 
processed. 
too far points (background points) are rejected. 
too close points (possible wrong input points that are 
situated at a short distance) are rejected 
points situated too far in the left side of the left lane or 
in the right side of the right lane are rejected. 

- 
- 

- 

The main observation regarding the top view segmentation 
(bird eye view of the detected environment) is that the density 
of 3D reconstructed points decreases in the depth [13]. The 
idea is to compress the top view space with the distance to 
obtain a relative constant point density for any distance [13]. 

The first step of the grouping is to connect the adjacent point 
in the top-view histogram of the compressed coordinates. 
Without the obstacle/road separation the top view histogram 
looks like in the lower part of Fig. 8. There is the risk that the 
car points will be connected with the road points. Also a lot of 
points from the road will be detected as obstacle points. 

Fig. 8. 3D points top view histogram without objecthad separation 

The advantages of the road separation can be observed in the 
Fig. 9. In the top view histogram are processed only the points 
above the road but not too high. The possible obstacle points 
appear as isolated ciusters in the compressed space (top view 
histogram). 

The points in a band of 20 cm around this expected Y are 
considered as road points, The ones above are taken (labeled) 
for object grouping, and the ones below are rejected. Are also 
rejected the points that are too high above the road surface 
(higher than 4m). The following constraints are imposed to the 
points which are grouped in objects: 
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In the top-view (,m) histogram there is the possibility to 
have two objects situated at the same distance and at the same 
position on the X-axis, but they have different position on thc 
Y-axis. This could be a problem because the points too high 
above thc road will be grouped with the point above or on the 
road. To avoid this, each object was segmented in the Y 
dircction. The segmentation algorithm is like the top view 
scgmentation. The histogram is now an array, not a matrix. An 
element of this array counts how many points have been 
compressed in that element before the objects can be prolonged 
with one or morc points that are not close to the real object but 
they overlap with the object in a top-view. These points will 
generate small objects. To reject them, the found objects are 
filtered using a threshold for minimum points per object. 

VI. OBJECT TRACKING 

Object tracking is used in order to obtain more stable results, 
and also to estimate the velocity of an object along the axes X,  I‘ 
and Z. An important problem of the tracking algorithm 
prcsented in 1131 was the lack of discrimination between the 
motion of an object and the motion of the ego-vehicle. The 
most dramatic changes appear when our vehicle’s motion has 
an important angular component (for instance, steering or 
pitching due to impcrfections in the road). The variation of our 
yaw causes a strong lateral displacemcnt of the tracked objects, 
displacement that increascs linearly with their Z distance. The 
pitch angle variation causes an important variation of the 
tracked object’s vertical position, which has caused a lot of 
track misses in the previous version of the tracked algorithm, 
and also influenccd the measurement of an object’s lateral 
speed. 

Thanks to thc lane detection and tracking system, we can 
express our position with respect to the center of the lane. 
Therefore, we’ll assume the existence of two coordinate 
systems: the ego-car coordinate system and the lane related 
world coordinatc system (Fig. I) .  The transformations between 
thc car and the world Coordinate system are: 

In order to avoid the problems that occur in tracking the 
objects in our coordinate system, we have chosen to track the 
objccts in the world coordinate system. The internal state of the 
tracker is kept in this system, while the output of the tracking 
algorithm is converted in the car coordinate system, for 
visualization. The steps of the tracking algorithm will be 
therefore the following: 

I .  Trackitg initialization: 
- find a non-tracked object, and extract its Xc,Yc,Zc 

coordinates and the initial size. 

- convert these coordinates in the world coordinate 
system. Initialize the Kalman filter with ( X ,  Yw, Z,). 

2. Normal fracking operation: - make prediction of the current object position, using 
the Kalman filter (expressed in world coordinates) 
convert in the world coordinates the positions of the 
objects resulted from grouping. 
select the objects that are close to the prediction and 
create a new position measurement. 
update the Kalman filter through the measurement. 
update the object’s size estimation. 

- 

- 

- 
- 

3. Convert the position of the tracked object in car coordinates, 
and create output objects for visualization. 

VII. RESULTS 

The detection system has been deployed on a standard 2.8 
GHz Pentiumo IV personal computer, and the average 
processing cycle takes up to 100 ms, therefore securing a 10 fps 
detection rate. This makes the system suitable for real-time 
applications. Tests covered as much traffic conditions as 
possible, from highways to country roads. 

The lane detection algorithm works with almost any kind of 
lane delimiters, provided that they obey the clothoid constraints 
and there are not too many noisy road features (a constraint 
usually fulfilled by most of the roads). The results are good 
even in the presence of high vertical or horizontal curvatures, or 
in the presence of obstacles on the current lane (figures 10-12). 

In all situations the obstacles were reliably detected and 
tracked, and their position, size and velocity measured. The 
detection has proven to have a maximum working range of 
about 100 rn, with maximum measurement errors of 5% in 
depth. The edge performance of the tracking algorithm was 
tested for ego-car speeds up to 150 km/h and relative incoming 
traffic speeds up to 250km.h. Static objects as poles, fences or 
construction areas delimiters (figures 1 1-12) bounding the 
driving area around the current lane were also successfully 
detected. 

Fig. 10. Highway scenario: obstacle prcsent on the current lane. ’ 
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Fig. 1 I .  Highway scenano: incoming obstacles road side poles succesafully 
detected and tracked 

I 

104” 

I 
65n 

Fig. 12. Highway scenario: construction area ~ driving area delimiters (poles 
and fences) successfully detected and tracked. 

VIII. CONCLUSIONS 
We have presented a stereovision-based system for vehicle 

environment perception in a large variety of traffic scenarios, 
and under real-time constraints. A high accuracy stereo 
reconstruction method was developed by optimizing the 
camera parameters calibration, feature . extraction and 
correlation procedures. Using the reconstructed 3D points 
corresponding to the edges features an original and reliable lane 
detection method and robust obstacle detection and tracking 
algorithm were perfected. By representing the lane as a 3D 
surface, assumptions as flat road and zero pitch and roll angles 
were eliminated and a better obstacleiroad separation was 
perfonned. 

The hnctions of this system can be greatly extended in the 
fbture. Regarding the stereo reconstruction algorithm, 
improvements can be made by correlating horizontal edge 
features or contour line features instead of edge points. The 
lane detection algorithm can be further enhanced by using 
supplementary image processing techniques besides edge 
detection for lane border feature selection and classification 
even in the absence of painted lane markings. Also a inore 
accurate model and model matching techniques can be 

developed to handfe extreme clothoidal and non-clothoidal 
surfaces, such as highway exits or special road situation such as 
a 90-degree turn in an intersection. Because any type of object 
is detected the obstaclc detection module can form the basis for 
any type of specific object detection system, such as vehicle 
detection, pedestrian detection, or even traffic sign detection. 
The classification routines can be performed directly on our 
detected objects, with the advantage of reduced search space. 

REFERENCES 

D M. Gavrila, “Pedestrian Dctcction from a Moving Vehicle”, Prwc. of 
Biropeun Conference on Criinprer Virion, Dublin. Ireland, 2000, pp. 
37-49. 
Ulrich and 1. Nourbakhsli, “Appcarance-Based Obstaclc Detection with 
Monocular Color Vision”, Proc. of rl7e AAAZ Nufiond Conference on 
Ar t@c id  Inlelligence, Austin. TX JulyiAugust 2000, pp. 866-87 t . 
T. Kalinke. C. Tzomakas, and W. von Seelen, ”A Texture bascd Object 
Detection and an Adaptive Model-bascd Classification”, in Pwc. of IEEE 
InfelIigent Vehicles $rnposirrm ‘98, (Stuttgart, Ccrmany), Oct. 1998. pp. 
34 1-346. 
Kuehnle, “Syminctry-based vehicle location for AHS”, in Procs. SPIE 
Tmnspomtion S e m m s  nnd Controls: Colli.~io~ A voidance, TraJk 
Managcnzeiit. andlTS, vol. 2902, (Orlando, FL), Nov. 1998. pp. 19-27. 
Ma, S .  Ldnkshmanan, A. Hero, “Road and Lane Edge Detection with 
Multisensor Fusion Methods”, IEEE International ConJ 011 l m g e  
Processing, Kobe. Japan, Oct. 1999. vol.2, pp.686-690. 
R. Aufrere. R. Chapuis, F. Chausse, ”A model-driven approach for 
rcal-time road recognition”, kfuchinc Vision arid App/icorions. 
Springer-Verlag, 2001, pp. 95-107. 
R. Chapuis, R. Aufrcrc. F. Chausse, “Recovering the 3D shape of a road 
by vision”, Image Processing cmd ifr  Applications, IEEE, $999. pp. 
686-690. 
R. Aufrerc, R. Chapuis, F. Chausse, “A fast and robust vision-based road 
following algorithm”, !EEE-ln/dIigmf Veliicle.r Sjwpwirrm lLZ000. 
Dearbom, Michigan (USA), October 2000, pp, 192-197. 
Jung Kang, I. Won Choi and In So Kwcon. “Finding and Tracking Road 
Lanes using Line-Snakes” in Proceedings of Conference un ZnteIligenf 
Vehicles, 1996, Japan. pp. 189.1 94. 

. 

[ IO]  Y. Wang er al., “Lane detection using spline model”, Pattern Recugnirion 
Letter3 vol. 21 (2000). no. 8, pp. 677-689. 

[I!] M. Bertozzi, A. Broggi, A. Fascioli, and A. Tibaldi, “An Evolutionary 
Approach to Lane Markings Dctcction in Road Environments”, In Atfi del 
6 Convcgno deII’Associazione Irulirrnu per l’lntelligmnza Arf;ficirrIe, 
Siena, Italy, Septcmber 2002. pp. 627-636. 

[ I 2 1  S. Nedevschi. R..Schmidi, T. Graf. R. Dancscu. D. Frentiu, T. Marita, F. 
Oniga, U. Pocol, “3D Lane Detection System Based on Stereovisiun“, in 
Proc of 1EEE hrelligenl Transportorion Sj~,riems Conjercnce (ITSC), 
Washington, USA, Octobcr 44,2004, pp. 292-297. 

[I31 S. Nedevschi, R. Schmidt, T. Graf, R. Dancscu. D. Frentiu, T. Marita, F. 
Oniga, C. Pocol, ”High Accuracy Stcrco Vision System for Far Distance 
Obstaclc Detection”, in  Proc. i f l E E E  IrifeIIigenl  vehicle.^ S~,r!iposium. 
Parma, Italy. June 1417,2004, pp.161-166. 

[I41 S. Nedevschi, R. Dancscu, D. Frentiu, T. Mnrita, F Oniga, C. Pocol, 
Thorsten Graf, Rolf Schmidt. “High Accuracy Stereovision Approach for 
Obstacle Detcction on Non-Planar Roads”, in Proc. oj IEEE InleIigenf 
Engineering .Sy.s/ems (INES), Cluj Napoca, Romania, 19-2 I Spt. 2003, 

[ I S ]  J. Coldbeck, B. Huertgen, “Lane Detection and Tracking by Video 
Sensors”, In Proc.of IEEE Intemaiionol C(w/erence on Indigent  
Trunsporlarion Sy.5tern.s. October 5-8. 1999. Tokyo Japan, pp. 74-79. 

pp.211-216. 

- 336 - 


