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Abstract: An efficient classification system uses only the most representative features extracted from images in order to reach a 
decision. A multimodal system may consider multiple sources of such information. Selecting those features is not a simple task due 
to the fact that multiple features selection (FS) methods exists, with multiple setup possibilities and multiple possible feature 
vectors to be applied on. Moreover, by applying the FS, the new vector may comprise too few features and the recognition accuracy 
to significantly drop. This paper proposes solutions to compensate that accuracy loss by the SVM kernel selection.   
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I. INTRODUCTION  
Like humans use their senses to relate to the world around 
them, today machines have to interpret the environmental 
data, and this is generally accomplished by different signal 
processing techniques. One of them, i.e. computer vision 
implies acquiring, processing, analyzing, and understanding 
images to produce numerical or symbolic information, e.g., 
in the form of decisions.  

Computer vision has many applications already in use 
today in the intelligent vehicle field: road detection and 
following, scene understanding, pedestrian or vehicle 
detection, obstacles recognition, tracking, etc. In such 
applications, machine learning plays a central role: to build 
computer systems that learn from experience or data. These 
systems require a learning process, just like humans do; this 
will specify how they should respond (as a result of the 
experiences or examples they have been exposed to) to new 
examples, unknown. 

In order to obtain the numerical representation of the 
data, which have to be recognized by a classification system, 
some features could be preferred (to encode this 
information), according to the application domain. To 
process images, for example, features like wavelets, 
statistical moments, coefficients of some transforms may be 
used. In an obstacle detection and recognition (ODR) 
system, these features were obtained in the features 
extraction (FE) module, being extracted from the obstacle 
corresponding images from the visible and infrared domains. 
Generally, the more varied these features are, the better, as 
they can retain much complementary information. Still, the 
main purpose is to extract a compact and pertinent numeric 
signature of obstacle image, followed by an efficient and as 
fast as possible classification of it. 

Few questions are foreseen here in order to explain the 
title of the paper: What means a multimodal classification 
system? Why is it considered efficient? What designing 
aspects are envisioned? Why are needed both features and 
classifiers selection? Next, essential answers to these 
questions are envisioned.  
A classification system or classifier is able (in certain 

conditions, e.g. after a proper learning stage) to identify to 
which of a set of categories a new observation belongs. To 
accomplish this, it generally uses a training set of data with 
examples or observations whose category membership is 
known. Being a multimodal one means that in taking the 
final decision it considers not only one type of data, but 
multiple ones. These could arise from the same source, from 
different sources of the same type or even from different 
sources of different type. For example, in computer vision 
applications one system may use different information from 
the same image provided by a visible spectrum camera (e.g. 
from the RGB channels, the data corresponding to red and 
to blue channels), or two images from two different visible 
spectrum cameras (e.g. in the case of stereo images), or even 
two images from two different spectrum cameras, like 
visible and infrared (e.g. in the case presented here).   

In order to obtain a fast and accurate and thus efficient 
recognition system, only the most representative features for 
each modality used in the system or for the multimodal one 
(depending on the system type) should be retained. How to 
decide which are the most representative features to 
describe the data in a classification system? The answer is 
quite simple: by a features selection operation. Still, it is not 
as simple to accomplish due to the fact that multiple features 
selection methods exists, with multiple setup possibilities 
(thus also wondering How to apply these features selection 
methods?) . In the presented case these also may be applied 
to multiple possible feature vectors. Another possible 
drawback is that by applying the features selection, the new 
vector may comprise too few features and the new accuracy 
to significantly drop.  The proposed solutions envisioned to 
compensate that accuracy loss by the SVM model selection 
(i.e. the kernel type and the hyper-parameters). A bi-
optimization criteria was used and the designing aspects 
refers to how the features selection (FS) and kernels 
selection (KS) were accomplished to speed up the system.  

Although these methods were applied in the frame of an 
ODR system to process VIS and IR images, other possible 
usage may be inferred.  
The proposed solutions may function with two possible 
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databases, one working with monomodal data and the other 
working with multimodal data, as presented in the following 
sections. Even a bimodal situation was used, the adopted 
algorithms and methods may be easily adapted to a 
multimodal condition. The main purpose of this paper is to 
present multiple investigations, as concerns the system 
optimization by two different criteria: the accuracy of the 
recognition but also the computational time.   
 
II. DESCRIBING THE CLASSIFICATION SYSTEM 
In most classification systems, the FE module is followed by 
a features selection (FS) one, as shown in Figure 1. In the FS 
stage, the importance of the features previously extracted in 
the FE module and combined (in a features fusion step) in a 
single feature vector denoted FV, is estimated. Within the 
FS stage, only the features that are most relevant will be 
chosen to further represent the information. The resulted 
vector will be one containing only the selected features and 
it will be denoted sFV. In Figure 1, the features fusion 
module refers to the fact that different families of features 
were combined in a single FV.  

One important task to consider, when trying to develop 
a robust model for an object classification system, was to 
use features and classifiers (i.e. SVM kernels) selection to 
better adapt the information specificity to the aimed 
classification problem.  

For the classification task, an extensive number of 
combinations between types of features and classification 
algorithms have been tested during the last years. For 
example, in order to solve the road obstacle categorization 
problem, motion and appearance information was used with 
an AdaBoost cascade approach [1], HOG features were 
processed by an SVM [2], multiple cues were used within a 
neural network [3], HOG and Haar wavelets within an 
AdaBoost classifier [4] among others. These systems or the 
methods within them are generally difficult to compare 
because they are rarely tested on a common data set and 
with the same experimental setup. Just recently some authors 
compared the results previously obtained by them or by 
other research teams on the same database [5,6,7]. 

The road obstacle classification system uses different 
global texture features organized as feature families (FF) 
which have been extracted from visible (VIS) and infrared 
(IR) images. The features corresponding to 8 different FFs 
were obtained in the FE module and a FV was thus 
constructed. Then, the FS process followed, where only the 
most relevant features were retained (comprised in a sFV) 
for time reduction reasons.  
 

 
Figure 1. The FS step in the frame of a classic computer 

vision-based system. 
 

A. Details about the FE module 
 

For the ODR system, different types of features for VIS and 
IR images were investigated in order to find the best features 
combination to assure an efficient classification. Thus, in the 
FE module more features were extracted; these were 
organised in families: the first FF, denoted FF1, comprises 
only 2 geometrical features, as illustrated in Table 1, i.e. the 
width and the height of the original bounding box 
comprising the obstacle image (for both modalities); the 
other 7 FFs were separately extracted from each modality, 
VIS and IR in our case, and they were: 7 statistical 
moments, 64 Haar wavelets, 32 Gabor wavelets, 8 Discrete 
Cosine Transform (DCT) coefficients, 16 grey level 
coocurence matrix coefficients, 14 run length encoding 
features and 28 Laws features.    
 

Table 1. Features Families (FF) used in the classification 
system to compose the Features Vector (FV) 

 

Geometric features FF1 2 

Statistical moments FF2 7 

Haar wavelet FF3 64 

Gabor wavelet FF4 32 

DCT coefficients FF5 8 

Coocurence matrix FF6 16 

Run Length Encoding FF7 14 

Laws features FF8 28 
   

The number of features inside each FF is known, and it is 
the number of features decided to be extracted, so it may 
vary from one FE method to another. In this way, there are 2 
common features for FF1, and for each modality the next 
modality-specific 7, 64, 32, 8, 16, 14 and respectively 28 
features, as shown in Table 1.   

Next, these FFs were combined in a way to obtain the 
monomodal vectors [FF1,FF2(M1), FF3(M1), …, FF8(M1)] 
or [FF1,FF2(M2),FF3(M2), …,FF8(M2)] and respectively 
the bimodal vector [FF1,FF2(M1),FF3(M1), …,FF8(M1), 
FF2(M2),FF3(M2), …,FF8(M2)], in the parenthesis being 
specified the modality from which those features were 
considered. The monomodal vectors have a length of 171 
features, while the bimodal one has 340 features. For the 
general case, these values can be simply denoted by n or n1 
and n2 when modality is also suggested, respectively n12 for 
the bimodal vector length. 

In order to perform the FS task, Weka [8] was used and 
Figure 2 shows how a monomodal vector (with first and last 
features observable) looks like. Such FV is extracted for 
each of the 321 pedestrians, 329 vehicles, 45 cyclists and 
237 background image objects, these being the training set.  

 

 
 

Figure 2.  An arff file with a monomodal vector in Weka  



 

Volume 57, Number 3, 2016                                                   ACTA TECHNICA NAPOCENSIS                      

                                                                                                  Electronics and Telecommunications 

________________________________________________________________________________ 

 

3 
 

B. The problem to be solved  
 

The problem to be solved when approaching the FS and the 
KS was to assure a real time processing for the proposed 
system but still providing a high accuracy if possible. 
Therefore, the reduction of the computational time 
corresponding to the FE step and to the classification 
mechanism was quite necessary. By reducing the FV 
dimension, the classification time will diminish too, this 
being generally accomplished in any classification problem. 
Moreover, if this reduction of the FV is achieved with a 
slight decrease of the accuracy rate, the system can be 
considered quite robust.  

Standard classifier accuracy (Acc) is obtained based on 
all four combinations of true/ false and positive/ negative 
factors like, equation (1) shows: 
 

Acc = [TP/(TP+FN) + TN/(TN+FP)]/2   (1) 
 

Instead of equation (1), the arithmetic average of class 
accuracies, which is called a balanced accuracy (bAcc) was 
used; it is a particularly useful evaluation measure for 
unbalanced datasets, defined by the equation (2):  
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where K is the number of objects classes, and TPR is the 
true possitive rate computed for each class. 
 Since FE is desired to be fast, the performances of the 
entire system depends heavily on the choosen features. If the 
features extracted from different modalities are quite 
different as concerns their representing scales, in order to be 
properly combined in a multimodal vector, they should all 
be normalised in the same domain, thus also prior to their 
selection.  
 The experiments developed in the FS module were 
organized only as tests, performed on different scenarios. In 
addition, in the first attempts to approach the FS algorithms, 
either a proper database for the final goal was available, i.e. 
to perform the fusion between VIS and IR images. Still, we 
used the most proper one we have at that time, the Robin 
database [9], which contained VIS and IR images, but not-
correlated eachother. Thus, the obstacles from VIS database 
do not have a corresponding obstacle in IR (same obstacle, 
same pose). The first set of developed experiments were 
performed on this Robin database and we did select features 
on each modality VIS and IR, but the results were not 
further used (for the last module, thus the fusion task). Only 
later, a proper database for performing the VIS-IR fusion 
was received (this was the last database we used, i.e. the 
Tetravision, provided by VisLab from Parma). 
 
C. Details about the employed databases   
 

Several companies and research centers have engaged in the 
past in the Robin project [9]. This competition was for the 
evaluation of object detection, object recognition and image 
categorization algorithms based on VIS and IR images not 
correlated each other. We subscribed for the dataset 
produced by Bertin – Cybernetix, where the proposed 
dataset was made of colour and infrared images of vehicles 
and pedestrians. The task was to discriminate humans and 
vehicles, so the goal was to assign the correct label to a 
patch which may contain an element of a class or some 

backgrounds. The experiments performed on the Robin 
database implied classifying with 5 classes (Standing 
Person, Unknown Posture, Motor Bike, Tourism Car and 
Utility Car). There were 1406 objects (train) and 691 objects 
(test) in the visible domain, and 1659 objects (train) and 
1050 objects (test) in the IR domain. 

The second database which was used comprises VIS 
and IR images (i.e. the Tetravision database), being 
designed to recognize the type of obstacles previously 
determined as regions of interest by a stereo-vision obstacle 
detection module. Very few systems based only on passive 
sensors and performing VIS - IR information fusion exist. 
Among them, the Tetra-Vision system proposed at VisLab 
[10], [11] at the University of Parma, was designed for 
pedestrian detection from four stereo correlated VIS–IR 
images. As a first attempt, there were only 486 objects, 
divided in 389 (train) and 97 (test), but for the final setup, 
there were 1164 objects. Even the database is small, it is a 
very difficult one, because of the high intra-class variability. 
The database was randomly divided into a training set (80%) 
and a testing set (20%), the class instances being well 
balanced between the training and testing sets. For more 
details and information, please consult [12]. 

The first database comprises two sets of data which 
cannot be interpreted in the same way, while the second one 
allows it. Thus, in the first case the database comprises more 
monomodal subsets of data, while the second database has 
multimodal data.  
 As previously mentioned, the main reason to perform 
the FS task was the reduction of the time needed by the 
system to classify a new test object. Having this in mind, 
few questions were quite obvious to be addressed: Will the 
retained features, organized as sFVs, lead to some 
improvements regarding the classification time, compared 
to the original feature vectors (FVs)? Would the sFVs 
maintain the high accuracy rates? Or, if these will degrade, 
how much will be lost? Can we compensate this, somehow? 
Can a classifier selection task help in this case? Thus, in the 
experiments we developed, we tried to find answers to these 
questions; which are possible solutions, and which one we 
considered best will be presented in the following sections. 
 

III. APROACHING THE FS TASK  
For the FS operations, there are multiple variants, 
concentrated on two fundamental directions: filters and 
wrappers. These differ mostly by their evaluation method. In 
the presented experiments, only filters were used, as they are 
generally faster. For any filter method, an attribute 
evaluator should be mentioned; this evaluator could be 
applied: to individual features, as for the Ranker methods or 
to subset of features, as for the Search methods. 

Search methods get through the attribute space to find a 
good subset, and the quality of the respective subset is 
measured by an attribute subset evaluator.  

The most utilized search methods in Weka are detailed 
presented in [13]. One of the search methods is the Best 
First one; this searches the features space by greedy hill 
climbing combined with a backtracking facility. The method 
is implemented in such a way that it does not use a stopping 
criterion based on the performance reduction. Instead, it has 
a parameter that specify how many consecutive 
nonimproving nodes must be encountered before the system 
backtracks, as presented in [13]. In this way, the exploration 
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of the entire search space is assured, in a forward (starting 
from the empty set of attributes), backward (starting from 
the full set), or in both directions (starts at an intermediate 
point) [14].  

Cross-validation is generally used for model selection 
(e.g. find the best classifier or kernel, find the best 
regularization hyperparameters), but it could be also applied 
for FS, since cross-validation provides an estimate of the 
generalization ability of models. The ability of models to 
predict depends both on the used features and on the 
complexity of the used model. We have considered the use 
of the cross-validation process also in the FS stage, and 
indeed the time needed for the algorithm to perform the 
selection process is much more increased compared to the 
situation in which no cross-validation was applied. Still, the 
possible benefits are from both sides: the accuracy of the 
recognition and the classification time.  

It is essential to estimate the computational burden of 
algorithms for FS problems, the computational time being 
generally strongly influenced by the search strategy and by 
the evaluation criteria. The evaluation criteria may also be 
expensive as it may involve training a classifier or 
comparing every pairs of examples or features. The fact that 
this processing of FS methods performed in the cross-
validation loop takes much more time than another method 
not using the cross-validation process, is not critical for our 
system, it is not even affecting our system. No real-time 
operation is required in this stage, because the FS operation 
is performed off-line, when the system is not running on the 
road. Here, the system is just preparing for the real situation, 
thus for the online functioning. 

In Weka, the FS methods could be applied directly, on 
the full training set of data when the FS method is applied 
only once on all the data from the training set or by a cross-
validation technique when the FS method is applied on each 
individual fold of data; in the latter case, there is a number 
equal to the number of folds for the application of the 
respective FS method; here, a number of 10 folds have been 
chosen and this situation is denoted 10f-CV. 

Two methods were used for features evaluation, both 
combined with a Best First search algorithm: 

The CfsSubsetEval evaluates the worth of a subset of 
attributes by considering the individual predictive ability of 
each feature along with the degree of redundancy between 
them. Generally, subsets of features with low inter-
correlation, but highly correlated with the class are preferred 
by this algorithm. The forward selection was used and the 
search stoped if 5 consecutive fully expanded subsets 
showed no improvement over the current (best) subset. [13] 

The Consistency Subset Evaluation (or simply denoted 
Consistency) evaluates the worth of a subset of attributes by 
the level of consistency in the class values when the training 
instances are projected onto the subset of features. It 
consider out of 10% from the total number of instances (the 
training data), run the algorithm and check the inconsistency 
criterion based on its selected features on the remaining 90% 
of the data. Then, add those patterns causing inconsistencies 
to the training data and run again the algorithm. This process 
continues until the number of inconsistencies is below a 
tolerable value [13]. 

In the first experiments, only one of these two feature 
evaluation methods were intended to be retained for further 
investigations. 

IV. APROACHING THE KS TASK  
All the proposed solutions implied to compensate the 
accuracy loss by the SVM model selection. The SVM 
classifier is a complex classifier [15,16,17], which according 
to the combination of its hyper-parameters, but also 
considering the complexity value, may offer better or worse 
performance on a specific dataset. Even the smallest 
variation may influence its behavior.  

Suppose the training data as a set of instance-label pairs 

(xi,yi), i=1,...,m where xi∈R
n
 represents the input vector and 

yi∈{−1,+1} the output label associated to the corresponding 

item xi. The parameter n represents the input vector 
dimension, where xi corresponds to (xi

1
, xi

2
,..., xi

n
). These 

vectors will be mapped into a feature space using a kernel 
function K, which defines similarities between pairs of data. 
The kernel functions from the two modalities VIS and IR 
could be of different types, and could work with different 
hyper-parameters.  

A first possible method to perform the KS was to use a 
grid search for every type of classical SVM kernel, the SK 

type we denoted, SK ∈ {RBF, POL}, the linear one being a 

particular case of the polynomial one. The effect is that a 
classifier will be used to process the first modality 
information and a possible different classifier will be used 
on the second one. Different types of SKs were tested: RBF, 
linear and polynomial, with the kernel parameters and the 
penalty parameter, denoted C, representing the values to be 
optimized (these have less than two parameters to optimize). 

Another possible solution considered in order to 
compensate the accuracy loss by a KS, is to more deeply 
intervene on the classifier side: to use an improved kernel 
(i.e. a multiple kernel, denoted MK) for the SVM, as 
suggested in [18]. By performing the fusion between the 
extracted and selected features with different MKs, for the 
SVM classifier, we generally obtained an accuracy higher 
than the ones obtained with different classic types of kernels 
(i.e. SKs). 

For the VIS-IR fusion case, a MK learned as a linear 
combination of two kernels, was proposed:  

( ) ( )

( ) ( )nk
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nk

iIR
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where the single kernels 
VIS

SK  and 
IR

SK could be any type 

of kernels (with similar or different hyperparameters). 
Each simple kernel is involved with a weight that 

represents its relative importance for classification. The 
weighted value α  allows the system adjustment to the VIS 
or IR domain according to the context. If an object from VIS 
domain is quite difficult to be detected or classified only 
from the VIS image, we can consider its counterpart from 
the IR domain, where the object intensities are higher and 
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uniform. Thus, the role of the α  weighting parameter is to 
reinforce the importance of the domain which is more 
significant for the obstacle classification in a specific 
situation. The kernel selection process, with the optimization 
of the hyper-parameters, but also of the weighting value α  
has been described in [19]. 
 The difference between SK and MK can be explained in 
a common scenario of a bimodal system. One can either use 
two SVM classifiers, thus with different SKs on the two 
different modalities, either use a single SVM classifier with 
a MK. The parameter C can be different in the first case, but 
in the second one, C is the same on both modalities. The 
entry vectors are also different: there are two unimodal 
vectors in the first case, while in the second one there is a 
single bimodal vector.   

If there is more than one combination of parameters (so 
we have different kernels which act the same regarding the 
classification accuracy) the selection of the winner kernel 
was imposed to be made according to the shorter mean 
classification time from the cross-validation step. This was 
called a bi-objective optimization: the accuracy must be as 
higher as possible, while the classification time, the lower, 
the better. 

 
V. DATABASE WITH MONOMODAL DATA 

All the investigations developed as first attempts for 
performing the FS will be presented in this section, as 
accomplished for the first setup of the experiments, thus on 
the Robin database.  
 

A. The tested FS methods on monomodal vectors 
 

The first tested method, i.e. CfsSubsetEval is based on 
Correlation and it is denoted FS_R1 in what follows. The 
second method was the Consistency Subset Evaluation 
(Consistency), denoted FS_R2 in what follows. Based on the 
obtained results, one single FS method should be retained in 
order to implement the final system. Thus, two of the most 
used FS methods from the specialty literature were tested 
and the sFVs presented in Table 1, in the left half of the 
table were obtained. The sFVs obtained by the 2 methods 
FS_R1 and FS_R2 comprise 42 VIS features and 30 IR 
features, respectively 10 VIS features and 9 IR features. 

The features selected with FS_R1 represented only 25% 
and 18% from the corresponding 171 VIS features and 
respectively 171 IR features from the initial FVs. Similar, 
the selected features with FS_R2 are only 6% respectively 

5% of them (the selected features from each corresponding 
sFV differed also by their ordinal number relative to the 
family they belongs). 

 
For the general case, the number of features selected 

will be denoted by x and will be reported to the entire 
number of features from the respective monomodal vector. 
It also worth mentioning that there may be some features 
appearing in one modality, but not in the other modality. For 
example, with the Cfs Subset Evaluation FS_R1 method, the 
FF5 and FF8 (i.e. dct and laws here) features were missing 
in the first modality (i.e. VIS in the presented case), while 
they appeared in the second one (i.e. IR). Similarly, using 
the Consistency Subset Evaluation FS_R2 method, FF2 and 
FF8 (i.e. statistical and laws) features appeared just in the 
second modality. 

The same remark can be done for features appearing in 
both domains, but with different ordinal numbers. For 
example, in the FS_R1 case, FF2, FF3, FF4 and FF6 (i.e. 
wavelet, statistical, cooc and gabor) features appeared in 
both domains, but with different orders for the respective 
features; this means they are different features even they 
belong to the same family; to conclude in this stage: multiple 
quite different sFVs resulted. 
 

B. Solutions proposed with monomodal vectors 
  

For the first possible solution, different combinations of 
the SVM hyperparameters were tested on the original 
vectors, on each domain. In this manner, the best SKs were 
found on each modality: for the RBF kernel, we obtained C 
= 50, and gamma = 0.2, for both domains VIS and IR, while 
for the polynomial and linear case we found C = 25 (for 
VIS) and C = 100 (for IR), and the polynomial degree d = 5 
for VIS and d=4 for IR as presented in [20].  

In all these cases, the input vector was the one 
containing all the 171 features, but Weka also considered 
the class of the object, so that appeared 172 in the GUI (as 
presented in Figure 2). The best accuracy values obtained 
were with a POL kernel on the first modality, i.e. 94.80% 
and an RBF kernel on the second modality, i.e. 94.27% as 
presented in Table 2. Using the same previously obtained 
kernels, SK type, also the sFVs (resulted after the 
application of the FS process on the initial FVs) were 
evaluated. 

 
Table 1. Selected features in all the four developed experiments  

 

 
Search method + 

Cfs  (FS_R1) 

Search method + 

 Consistency (FS_R2) 

Search method + 

Cfs  (FS_T1) 

Search method + 

Cfs  by 10f-CV (FS_T2) 

First database Second database 

F
ir

st
 m

o
d

a
li

ty
  

42 

25% 

2 of 2 - FF1 

4 of 7 - FF2 

27 of 64 - 

FF3  

6 of 32 - FF4 

0 of 8 - FF5 

1 of 16 - FF6 

2 of 14 - FF7 

0 of 28 – FF8  

10 

6% 

2 of 2 - FF1 

0 of 7 - FF2 

8 of 64 - FF3  

0 of 32 - FF4 

0 of 8 - FF5 

0 of 16 - FF6 

0 of 14 - FF7 

0 of 28 – FF8 

17 

10% 

0 of 2 - FF1 

0 of 7 - FF2 

7 of 64 - FF3  

1 of 32 - FF4 

0 of 8 - FF5 

0 of 16 - FF6 

5 of 14 - FF7 

4 of 28 – FF8 

8 

5% 

0 of 2 - FF1 

0 of 7 - FF2 

5 of 64 - FF3  

0 of 32 - FF4 

0 of 8 - FF5 

0 of 16 - FF6 

2 of 14 - FF7 

1 of 28 – FF8 
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S
ec

o
n

d
 m

o
d

a
li

ty
 

30 

18% 

2 of 2 - FF1 

1 of 7 - FF2 

16 of 64 - 

FF3  

1 of 32 - FF4 

1 of 8 - FF5 

5 of 16 - FF6 

0 of 14 - FF7 

4 of 28 – FF8 

9 

5% 

2 of 2 - FF1 

1 of 7 - FF2 

5 of 64 - FF3  

0 of 32 - FF4 

0 of 8 - FF5 

0 of 16 - FF6 

0 of 14 - FF7 

1 of 28 – FF8 

 

 

 

25 

15% 

0 of 2 - FF1 

0 of 7 - FF2 

12 of 64 - 

FF3  

4 of 32 - FF4 

1 of 8 - FF5 

0 of 16 - FF6 

7 of 14 - FF7 

1 of 28 – FF8 

 

 

 

12 

7% 

0 of 2 - FF1 

0 of 7 - FF2 

4 of 64 - FF3  

2 of 32 - FF4 

1 of 8 - FF5 

0 of 16 - FF6 

5 of 14 - FF7 

0 of 28 – FF8 

As presented in Figure 3, given at the input the initial FV 
comprising all initial monomodal features, i.e. 171 in the 
present case, or n in a general situation,  the SVM kernel 
selection is performed and a selected SVM kernel, SK type 
results. Next, by using this sSK for each corresponding 
modality, also on the sFVs this was applied. The obtained  
accuracy values were smaller than those obtained with the 
initial FVs, as presented in Table 2; these differences were 
computed in percentage, to be more noticeable when 
reported to the initial FVs (last two columns). Smaller 
percentages were aimed if they are negative, or by contrast 
higher ones if they are positive. The second column 
illustrates the size of the new FV, so sFV, which is better if 
it is smaller.   
 

 
 

Figure 3. SK model selection based on the initial FV. 
 

Table 2. Results obtained on 1
st
 database with sSKFVn. 

 

FV FV size 
Acc on 
M1[%] 

Acc on 
M2[%] 

Initial FVs FVn 94.80 94.27 

sFVwith 
FS_R1 

sFV_M142=25%; 
sFV_M230=18% 

86.19  
-9% 

87.90  
 -7% 

sFVwith 
FS_R2 

sFV_M110=6%;   
sFV_M29=5% 

78.38  
-17% 

82.47  
-13% 

 
With the same kernels previously used on VIS and on IR, as 
for the initial FV with 171 features, also the evaluation of 
the sFVs were accomplished and the following were 
obtained: on VIS an accuracy of 86.19% for FS_R1, 
respectively 78.38% for FS_R2 and on IR an accuracy of 
87.90% for FS_R1 and respectively 82.47% for FS_R2. To 
deeply analyze this aspect, the lost in percentages was 
computed for the accuracy: 9% and 7% for the FS_R1, 
respectively 17% and 13% for FS_R2, as compared to the 
accuracy of the corresponding initial FVs. The analysis 
could be transposed on a multi-modality classification 
problem, in a similar manner.   

If the percentage values from Table 2 are positive or 
they meet the requirements established in the first, designing 
phases of the system, then this first solution may be adopted. 
If not, as it was in the presented case, proceed further for 
another possible compensation of the accuracy loss.  

The accuracy decreased after the FS step, and thus the 
performances obtained with the sFVs were degraded. But, in 
compensation, the processing time was lower (which is very 
important for the real time request) than using a large 
number of features. Next, the implications of a smaller FV 
were compared from the time perspective: the time needed 
for the FE process shows that the computation time in the 

case of the initial FVs is greater than the time needed to 
compute the sFVs. The feature extraction time but also the 
classification time for one object were analysed. The feature 
extraction time (FE time) is used to extract all the needed 
features for an object after it was previously identified as a 
possible obstacle by the detection module. Then, the 
corresponding object is classified by the recognition 
module, and this is accomplished in a specific amount of 
time, denoted the classification time. 

In order to compare these two time indicators, the ones 
from only one modality were aimed, i.e. the VIS one, as for 
the other modality is quite a similar interpretation.   

Considering the case for the vectors from the VIS 
domain, and as reported to the corresponding time obtained 
when using the initial vector with all features, the specific 
amount of time were reduced with 23% at FS_R1 and 51% 
at FS_R2 for the FE time; respectively reduced with 78% at 
FS_R1 and 84% at FS_R2 for the classification time. Thus, 
the most significant reduction of the processing time was for 
FS_R2: from the FE time ½ was saved, respectively a little 
more over 4/5 saved from the classification time, but with 
the inconvenient to loose 17% of the accuracy. In the FS_R1 
case, the time savings were not so effective: only almost 1/2 
of the amount was saved with FS_R2, which is 
approximately 1/4 from the FE side, respectively almost 4/5 
on the classification, but as concerns the accuracy only 9% 
was lost, so almost a half from the loss recorded with 
FS_R2.  

The first decision, to choose between the two 
features evaluation methods was taken: quite obvious, the 
interest was concentrated more on the FS_R1 method as it 
presented the smallest compromise between time and 
accuracy reduction. The FS_R2 was too radical, and implied 
too much loss from the accuracy side. Thus, in the 
investigations which followed, the Best First search 
combined with the Correlation based evaluation of features, 
was considered best for the presented system. 

Another variant, which may constitute the second 
solution is to perform the SVM model selection for each 
individual sFV as suggested in Figure 4. The sFVs were 
considered different if the number of features was not equal, 
or if the modality was not the same, or even if a single 
feature was different in two sFVs having the same number of 
features. 

 

 
 

Figure 4. SK model selection based on the selected 
features, thus using sFV. 

 
To conclude, the first possible solution was to compensate 
the accuracy loss: to perform a modality-based SVM model 
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selection, so to select the best SVM kernel, denoted SK, on 
each modality. This selection could be performed based on 
the initial monomodal FVs, comprising all the extracted 
features (n) or directly on the sFVs, thus comprising only the 
selected ones (x). By the application of these selected 
classifiers on the vectors containing the selected features, 
the accuracy values may be analysed. Based on this analysis, 
the solution may be adopted or discarded.  
 

VI. DATABASE WITH MULTIMODAL DATA 
First, we also applied the FS technique to the 2

nd
 database, 

to obtain the sFVs with fewer coefficients than the entire 
VIS171 and IR171 or VISIR340 feature vectors, and thus to 

reduce the processing time. Therefore, as presented in [21], 
we computed the mean of the accuracy and of the 
classification time (corresponding to one object) like in the 
previous experiment we developed (on the Robin database).  
 
A. The tested FS methods on a bimodal vector 
 

The Cfs Subset Evaluation method based on correlation was 
also chosen, combined with the Best First search as shown 
in Table 1, but here the algorithm was applied to the 
bimodal VISIR vector. The FS method was thus applied on 
the fused feature vector VisIr340 or M1M2n12 in the general 
case. In the same way, the selection process considered the 
learning set. After applying the FS method, a number of 42 
features were selected, with 17 features from VIS and 25 
features from IR. The selected features represent only 10% 
and respectively 15% from the initial corresponding FVs, as 
shown in the right part of the Table 1. Using these selected 
features, 3 sFVs were thus computed: the first, a bimodal 
one, comprised all the 42 features (VisIr42), the second one 
contained only the visible ones (VIS17) and the last one with 
only the corresponding infrared features (IR25). This FS 
process will be referred in what follows as FS_T1. Next, the 
same FS method was applied once again, but this time using 
a 10-folds crossvalidation technique, to evaluate the features 
individually. As a result, a number of 20 selected features (8 
VIS and 12 IR) were obtained, these being also presented in 
Table 1. The selected features represent only 5% and 
respectively 7% from the initial corresponding FVs. In what 
follows, this processing will be referred as FS_T2 and the 
corresponding sFVs as VisIr20, VIS8 and IR12 or sFV_Mix 
(with the modality i and x selected features) in the general 
case as shown in Table 4. 

To conclude, a total number of six sFVs were tested in 
this second experiment as presented in [21]. These 
computed sFVs have fewer features than their monomodal 
or bimodal corresponding initial FVs.   
 

B. Solutions proposed with multimodal vectors 
 

The first possible solution proposed to compensate the 
accuracy loss, was also tried on the Tetravision database, but 
this time the VIS and IR images were correlated eachother.  
 Like Figure 3 shows, given at the input the initial 
monomodal FV comprising all features, the SVM kernel 
selection was performed and a selected SK results. Next, by 
using this sSK for each corresponding modality, the 
obtained accuracy values were smaller than those obtained 
with the initial FVs, as presented in Table 3; these 
differences were also computed in percentage, as reported to 
the initial FVs. Once again smaller percentages were aimed 
if they were negative ones. The results presented in Table 3 

are only for the RBF kernels, as they were better than their 
polynomial counterparts.  
 A second variant of this possibility was to test also with 
the bimodal vector VisIr; not surprisingly, the results were 
best (last column in Table 3). Still, all the obtained accuracy 
differences are negative, which means that by applying the 
FS task, the performance (as concerns the recognition rate) 
was diminished.  
 

Table 3. Results obtained on the 2
nd

 database with sSKFVn 
 

Acc on modality [%] 
Initial FV size 

M1 M2 M1M2 
FVs FVn 97.1 97.1 97.1 

sFV with 
FS_T1 

sFV_M117=10% 
sFV_M225=15% 

86.19  
-8.6% 

87.90  
-2.7% 

95.30  
-1.9% 

sFV with 
FS_T2 

sFV_M18=5%   
sFV_M212=7% 

78.38  
-11.6% 

82.47  
-6.2% 

92.10  
-5.1% 

 
Considering that the selected features comprised only 12.5% 
for FS_T1, respectively 6% for FS_T2, we considered the 
obtained results quite good. Accuracy has increased with 1% 
only by the application on the bimodal vector. 

The second solution we proposed was also applied in 
this case, so the SVM model selection was performed for 
each individual sFV. The obtained results are presented 
next, in Table 4. 
 

Table 4. Results obtained on the 2
nd

 database with sSKFVx. 
 

Acc on modality [%] 
FV size 

M1 M2 M1M2 
Initial 
FVs 

FVn 97.1 97.1 97.1 

sFVwith 
FS_T1 

sFV_M117=10% 
 sFV_M225=15% 

89.7  
-7.6% 

95.9  
-1.2% 

96.9  
-0.2% 

sFVwith 
FS_T2 

sFV_M18=5%   
sFV_M212=7% 

87.5  
-9.9% 

94.9  
-2.3% 

94.9  
-2.3% 

 

As it was expected, all the accuracy differences 
obtained with the second proposed solution are smaller than 
the ones obtained with the first solution previously 
presented. This is due to the fact that the SK was optimized 
on that specific sFV. Even so, they are still negative.   

The third solution can be applied only on bimodal data 
and implies the use of a MK instead of a SK, as shown in 
Figure 5. Thus, for an MK of type RbfRbf, as presented in 
[21] a 96.9% accuracy was obtained for FS_T1, respectively 
95.9% for FS_T2 (as presented in Table 5). The accuracy 
values assure only -0.2%, respectively a -1.2% difference 
related to the initial FV (the ones comprising 340 features). 
Most important, with only 12% for FS_T1 and even a half, 
i.e. only 6% features for FS_T2, the accuracy is only a little 
smaller than that obtained with the original vector. The 
conclusion was that the reduction of the number of features 
was too significant.  

The third proposed solution implies the optimization of 
the MK’s parameters set (kernel,α ,

1
p ,

2
p ,C) on a learning 

set using the 10 fold-crossvalidation method. This means we 
were looking for the MK parameters for which the best 
mean recognition rate was acquired after the cross-
validation process. The input vector 

i
x  from equation (3) 

will be divided in k

i
x ,1 for VIS domain and nk

i
x

,1+  for IR, 

with { }nk ,...,2,1∈ . In the presented case, for the vectors 

obtained with FS_T1 and FS_T2, k is 17 and respective 8, 
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with the corresponding input vector dimension: n=42 and 
respectively n=20. A grid search was performed for every 
type of SK or MK, with the kernel parameter and the penalty 
parameter C  representing the values to be optimized. 

 

 
 

Figure 5. MK model selection based on a specific sFV 
 

 

Table 5. Results obtained on 2
nd

 database with sMKFVx 

FV size Acc on M1M2[%] Initial 
FVs FV340 97.1 

sFVs with FS_T1 M117M225=12%  96.9 => -0.2% 
sFVs with FS_T2 M18M212=6%    95.9 => -1.2% 

 
Considering the highest accuracy and the lowest 
classification time, RBF(IR12) was the best processing from 
all the monomodal SKs and RBF(VisIr42) the best one for 
the bimodal SK; for the MK, the best combination was 
obtained with Rbf1Rbf2 (VisIr42). Also, the accuracy was 
higher in the case of using concatenated features than in the 
case of separate feature-vectors, so bimodal vectors act 
better than monomodal ones when classified by a SK, i.e. 
using a classical SVM. In addition, the classification time 
for the SK is lower as compared to a MK. Still, the bimodal 
SK does not allow the system adaptation to the VIS-IR 
context (so the adaptation of the system to different 
environmental conditions), like MK does through the 
weighted parameter α .  

The fourth solution was considered to reinforce the 
system based on fusion. This could be accomplished at 
different levels, so we tested them in order to decide which 
one is best for our system. By now, as presented in [21] a 
feature fusion approach was proposed, by the construction 
of a bimodal vector, but also a kernel fusion approach by 
the use of the MK inside the SVM. In [22] a relatively new 
type of fusion was considered, i.e. the fusion at the 
classifier matching-scores level. The results obtained by all 
types of fusion have been compared, but also we provided 
the results for a simple classifier, KNN with K=1 and K=3. 
The best results were for the matching-scores fusion: only 
by these approaches, the difference for the accuracy values, 
as compared to the initial monomodal FVs, was positive. In 
this way, for VIS17 and IR25, thus with only 12% features 
from the entire number on both domains, we obtained 
97.4%, overcoming with +0.3% the value obtained with the 
initial FV. In [23] another possibility to perform the fusion 
was proposed, this time being realized at the raw data level, 
the FVs needed in this data-fusion case being obtained 
from the combined VIS+IR image. The data-fusion 
situation, i.e. maxDataFusion seems to be the best solution 
to our problem, followed by the FeatureFusion. The 
experiments showed that the fusion at different levels can be 
considered to provide better results for our problem than the 
monomodal systems. If either solution proposed in this 
paper not function as one expect, it may be considered that 
the initial setup of the system should be changed. For 
example, more training data should be added, or the desired 
level of accuracy should be diminished in a first attempt; 
also, other interventions, in the latter stages of the entire 
system should be considered. 

VII. CONCLUDING REMARKS 
A consistent part of the work was dedicated to the 
experiments on the Tetravision database, as presented in 
[12], mostly due to the fact that they were even from the 
beginning, more organized and the results were validated in 
more complex scenarios, including fusion at different levels. 
But the way in which these were organized and how the 
setup parametrization was applied, were obtained by 
observations and repeated experiments. The receipt 
discovered in this way, thus to cover as many setup 
possibilities as one may imagine, was presented in this 
paper. First, the setup of the database, together with the 
aimed FS method and test mode should be established. Next, 
on the initial monomodal vectors or directly on the selected 
features vectors, the SVM model selection could be applied, 
so selected SKs resulted on each modality. If this solution is 
not good enough or does not fit the system type (being a 
bimodal one for example), the procedure could be repeated 
using a MK instead of a SK, and this could be successfully 
adapted to any bimodal system or even to a multimodal one. 
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