
Z-Based Agents for Service Oriented Computing

Ioan Alfred Letia1, Anca Marginean1, and Adrian Groza1

Technical University of Cluj-Napoca
Department of Computer Science

Baritiu 28, RO-400391 Cluj-Napoca, Romania
letia@cs.utcluj.ro

Abstract. Ensuring reliability and adaptability of web services repre-
sents one of the main prerequisites for a larger acceptance of web services
technology. We present an agent based framework to model the global
behavior of atomic e-service and their composition using Z. We consider
failures associated with web services and we try to handle runtime ex-
ceptions through formal methods for specification and verification of a
composite service. In addition, our framework enforces the quality of
services, in terms of answer time, by providing Z-agents responsible for
these aspects.

1 Introduction

Service oriented computing [1] involves loosely coupled activities among two or
more business partners. Orchestration describes the way the fine-grained services
can interact with each other at the message level to provide more coarse-grained
business services which can be incorporated into workflows. The process ori-
ented languages used in orchestration assume that the services combination is
predefined, which deeply affects business process reconfiguration.

We handle the dynamic nature of service composition using a formal speci-
fication that integrates process oriented paradigms with ontological knowledge.
Interleaving the execution phase with synthesis allows us to handle the predicted
and unpredicted situations that may arise as a result of services enactments. On
the one hand, the formal specification of the collaborating participants validates
and guarantees the correct execution of the composite service. On the other hand,
the transactional states within the composite service are flexibly manipulated in
order to achieve fault tolerance and robustness [2] during service enactment.

Even though for simple service specification there is a formal approach in-
cluded in WSDL version 2.0 [3], there has been essentially no formal work to un-
derstand the relationship between the global properties of the composite service
and the local properties of its atomic components [4]. Out contribution consists
in introducing a framework for modeling and specifying the global behavior of
e-service composition through the Z language, in a multi-agent context.

2

2 An Agent Architecture for handling services

Effective composition of web services relies on concepts thoroughly studied in
distributed computing, artificial intelligence and multiagent systems. Web ser-
vices are closely related to the agent programming paradigm. The definition of
the web services architecture states that a web service is an abstract notion that
must be implemented by a concrete agent [5]. Even so, web services do not cur-
rently assign any large role to agents and their interactions are still limited to
simple request-response exchanges [6]. MAS mediating web services introduces a
new kind of architecture, in which the communication patterns between agents
representing a service can be considerably more varied and complex.

A MAS approach for web services enhances their capability of dealing with
dynamic nature of environment and requirements. In our approach, the Z lan-
guage is used by the agents for representing domain data, state model or current
tasks. The Zeta-agent has the central role in the composition process, deciding
the services that will be included and their enactment order. According to the
Z-model, Zeta-agent recommends the next actions for each new state of the com-
posed service and updates the current state based on responses of the enacted
web services. If more than one service can be used for the current task, a reliable
agent chooses the proper one as regard to some quality criteria. A type-checker
agent decides how the operations are invoked.

2.1 Dealing with failures

The composite service must deal with both deterministic and nondeterministic
failures. A deterministic failure occurs when an atomic service returns a nega-
tive answer which makes the composite service to deviate from the initial plan.
When the service does not respond within a time limit a nondeterministic fail-
ure has arisen, denoted by NF (Network Failure). Furthermore, handling failures
must meet time constraints. The client provides a ∆max time limit within which
the composite task must be accomplished. This time is split according to some
criteria and the milestones ti are attached to each subtask. When a subtask
is accomplished, the remaining milestones are adjusted. The reliability of the
composed service is ensured by monitoring its state and re-synthesizing it when
facing a failure.

The scenario used for testing our ideas is inspired from common medical
activities. A physician initiates a consultation for a patient Purgon by sending
the task Consult(Purgon) to a composition agent. Firstly, the generated com-
posite service should check for the patient’s insurance. It can exist more than
one web services representing insurance houses, which may be simultaneously
interrogated. If the patient has an insurance, the patient history service is asked
to provide medical profile of the patient. Next, the physician consults the pa-
tient and he writes a prescription, which is sent to the the hospital secretary
service. The secretary service updates the patient profile and it also requests the
insurance house to pay for the consultation. Deterministic failures can appear
on each state, for example if the patient does not have yet an insurance. The

3

medical profile is not indispensable, therefore the consultation can begin after
its allocated time has expired, even though the medical history service has not
yet responded (nondeterministic failure).

3 Service specification

This section covers the structural and behavioral specifications of the atomic
services in Z language and it also identifies the knowledge involved in the com-
position process, encapsulated as business rules. Operational reasoning, including
composition approaches in BPEL style, are fallible due to their limited adapt-
ability restricted to some expected course of actions. In contrast, the formal
reasoning views a composite service as a formula of which properties can be rig-
orously checked. The testing of composite service through execution, common to
operational reasoning, is not sufficient to ensure its correctness in the presence
of a large number of participating services and of the nondeterminism arising
from the behavior of these services.

3.1 Structural Specification

The formal structural model is generated from the WSDL specification, trans-
lated by an automated parser to Z language [7] which defines a Z generic type
for each WSDL component. The Z Componenttype represents the collection of
all these generic types for operations, messages and their components (figure 1).

Component::= element〈〈Element〉〉 | part〈〈Part〉〉 | message〈〈Message〉〉 |
operation〈〈Operation〉〉 | messageref〈〈MessageReference〉〉

Operation

Identifier
name: QName
type: OperationType
messageRefs: seq N

MessageReference

Identifier
message: N

direction : Direction

Fig. 1. Main types for WSDL description

The formal structural description makes possible the verification of referential
integrity for the concrete service model. Instances of these generic types are used
in type checking and behavioral specification of the service, and also for the
effective enactment of the services.

4

3.2 Behavioral Specification

Inspired by flow composition, the behavioral specification augments the service
specification with states modeling elements based on structural specification and
additional knowledge contained by the WSDL-S descriptions. For each WSDL
operation, a state transition is defined specifying its input values, the operation
and the global task that can be accomplished. At this level, an operation op! is
specified by its name and sequence of parameters corresponding to the elements
of involved WSDL messages. This specification can be considered as a procedural
translation of the structural one. For example, the transition Pay1 achieves the
pay task by executing WSDL operation Pay1 with parameters patient? and fee?.

Pay1

fee? : N

patient? : QName
task! : TASK
op! : OPER

op! = op1〈| name== pay1,

param== 〈string〈| value== patient? |〉,

nat〈| value== fee? |〉〉 |〉

task! = pay

OPER::= op1〈〈Operation1〉〉

Operation1

name: QName
param: seq ParamType

There are no specified preconditions for transitions at this level. More behav-
ioral information is added from the business rules at a centralized level. Inside a
service community all the transitions with the same task as output are supposed
to have the same final functionality from a service external viewpoint.

3.3 Business Rules

Current workflow technology is often too rigid [1], meaning that the agents have
limited possibilities to reason on the information provided by the current WSDL
specifications. Aiming to improve the adaptability and expressiveness, we con-
sider the composed service as a business process and we propose the use of five
different types of business rules together with the formal descriptions of services,
both structural and behavioral.

Domain task coordination are structural rules that define a task. In order
to have a shared representation of the tasks and their associated messages, we
consider a domain ontology having the following structure

– concepts: task, workflow task, messages. If the composed service needs the
human intervention, then the workflow task is used. There can be simple and
composed tasks, for the latter being necessary to achieve some other tasks.

– object properties: subtask, precedes: task → task, defining execution con-
straints between tasks. The property hasMessage: task → Message allows
defining the messages associated to a simple task.

5

– datatype properties: typeOfTask and typeOfMessage. We model two types
of tasks: typeT∈ {informative, operational} where typeOfTask: task→ typeT.
The operational tasks imply a change at the data level of the service (as
in updateHistory), while the informative ones (getHistory) are used only to
get some information thus being possible to be executed more than once,
even in parallel when more than one service provides operations for them1.
Regarding the type of message property typeOfMessage: message→ typeM,
there are two categories typeM∈ {input, output}.

Querying the domain ontology provides for structural rules on tasks and exe-
cution constraints between them. Based on precedes and substask relations, one
can identify different control patterns for subtasks2. Considering our scenario,
the first two rules of the following schema represent a sequential pattern, whilst
the last one is a parallel pattern. Having a hierarchical decomposition of tasks
allows dealing with services of different granularity.

rules : seq P TASK↔ TASK

rules= {

〈{startConsult}, {endConsult}〉 7→ consult,
〈{checkInsurance}, {getHistory}〉 7→ startConsult,
〈{payConsultation, updateHistory}〉 7→ endConsult}

Operation constraints express at a global level the constraints of the task
transitions through preconditions and effects. A task transition includes the task
accomplished, the concrete operations from all known services that are able to
achieve the task, preconditions, and effects expressed in terms of process and
domain variables. Process variables are used to monitor the composition process,
while the domain variables characterize the state of the composed service. The
preconditions include both process and domain variables, whilst the effects are
referring only to the domain variables.

In the example from figure 2, the SimplePayGYes transition accomplishes
the pay task and it is possible only if the pay task has not been achieved yet
(process variable condition) and the patient has insurance (domain variable con-
dition). The effect will be the change of the domain variable payConsultation.
The concrete operations are extracted from the behavioral specification of atomic
services (in the below example, from the Pay1 transition) and they are added to
the sequence of operations in the OpPayGYes component of the PayGYes task
transition. We have to observe that for the same task pay there can be more
services providing achieving operations, and all these operations are included in
OpPayGYes. The values of the process variables are not modified by transitions
accomplishing a task as it can be seen in HistoryComposedS schema.

1 A task without a typeOfTask property becomes operational if one of its subtasks is
operational.

2 These ones represent ontological control pattern. A different type of control pat-
terns appears when the composite service handles preconditions and effects for each
operation provided by the services.

6

SimplePayGYes

∆SimpleComposedService
ΞHistoryComposedS
ΞInputData
task! : TASK

¬ (pay∈ done)
hasInsurance= yes
task! = pay
hasInsurance′ = hasInsurance
payConsultation′ = yes;

OpPayGYes

∆OpComposed
ΞInputData

op′ = opa 〈{Pay1 | patient? = patient;
fee? = consultationFee• op!}〉

HistoryComposedS

∆EffectComposed

done′ = done
clock′ = clock
∆

′

max = ∆max

Fig. 2. Pay operation constraints

The task transition for the pay task is the result of merging these three
schemes PayGYes== OpPayGYes∧ SimplePayGYes∧ HistoryComposedS. Due to
the nondeterministic nature of the composite service, task transitions must catch
all the possible situations. Therefore, more transitions are defined for the action
of paying, one for the case the transaction was successfully done and one for the
opposite case. When generating a plan, both of them are considered, but only
one can be included: PayG== PayGYes∨ PayGNo.

Message translation rules define the changes on the process and domain
variables according to the response messages of the enacted services. Based on
the message rules, at every step of the composition, a new state is computed.

Business entity constraints define input requirements for the evolution of
variables through the entire composition process (the total cost of the composed
service, time limit constraint ∆max). In the formal specification they are expressed
as axioms | total price < 10 or as restrictions of type definitions. Therefore, when
animating the Z formal model their truth values are verified in all transitions.

Time constraints are rules that manage instances of time allocated to each
task and they influence the control flow of the composite service. Their role
is to identify failures and to exclude the operations which have generated the
nondeterministic ones from the re-planning process.

4 Z-Oriented Agents

In our framework we deal with a ”community of web services” [8]. Each service
is represented by an agent in the OAA community. The Z-based agents interact
with Zeta tool3 in order to define, verify, and animate the composite web service.

3 http://uebb.cs.tu-berlin.de/zeta/

7

Composition is done in a centralized manner, having the Zeta agent as the main
orchestrator. The composed service is specified by the ComposedService type
having as main components the process variables describing the computation
process included in EffectComposed and OpComposed schemes, respectively the
InputData and the SimpleComposedService for the domain specific variables.

ComposedService
InputData
SimpleComposedService
EffectComposed
OpComposed

OpComposed
op : seq(P OPER)

EffectComposed
done: P TASK
clock : N

∆max : N

clock≤ ∆max

4.1 General algorithm for composition

The composition process (see figure 3) is the result of interleaving planning with
execution. It starts by generating plans according to available operations and
time constraints. Besides the information from the business rules, for each atomic
operation x we consider the estimated time for execution Tx

e and the probability
of execution Px. We also use a factor βx that indicates if the corresponding task
for operation x is optional (βx = 0) or obligatory (βx = 1) and which is initially
provided by the domain ontology. Then, the optional tasks may be adjusted
(0 ≤ βx ≤ 1) by the current client in order to indicate how much the task is
desired. In this manner, client preferences are captured.

Each plan has a quality factor which depends on the estimated execution
time Tx

e for each operation, on the probability of success Px, and on the prefer-
ences given by the client to the optional tasks4. When there are more than one
generated plans, the best one according to this quality factor is chosen. The cho-
sen plan may not be entirely followed, after each enactment of a decided service,
a plan being chosen from the new generated plans.

In case a new plan is picked having the estimated time Tnewplanthe extra time
is uniformly distributed to each operation. The service corresponding to the first
operation is queried and its answer is waited. If the answer does not assure the
achievement of the task, the available time of the operation is decreased and
the probability of success for that operation is updated. Even if Tx

available remains
positive, another plan may become the best one for the moment according to the
Fp factor. In case the same plan is chosen again, there is no need to redistribute

4 For instance, the optional operations like updateHistorymay have β = 0.5.

8

begin

currentplan= {}
repeat

P=compose(currentState, tasks, ∆max)
if P 6= ∅ then

for all p ∈ P do

Fp ←
PN

k=1

βx·P
x

Tx
e

, N =| p |

end for

newplan← p with Fp maximal
if currentplan 6= newplanthen

Tnewplan
e ←

PN
k=1

Tk
e, N =| newplan|

Tnewplan
s =

∆max−Tnewplan
e

N
for all x ∈ currentPlando

Tx
available ← Tx

e + Tnewplan
s

end for

end if

query the service associated to the first operation op of newplan
answers← collectAnswers(op)
if updateState(currentState, answers, time) = ∅ then

Top
available ← Top

available− time
Pop ← updateprobability(Top

available)
else

currentState=updateState(currentState, answers, time)
end if

end if

until P = ∅ or achieved(currentState, tasks)
end

Fig. 3. General algorithm for composition

the extra time. If no new plans can be generated and the requested tasksare not
achieved, then the composition ends with failure.

4.2 Zeta agent

This agent has access to the web services descriptions and to the business rules,
acting as an orchestrator for the composite service.

Planning phase. The process of generating the coordination artifact has two
components that work together. A component that reasons above the domain
task coordination rules and a lambda calculus component that works on states
and tasks, trying to determine the sequence of actions related together by the
states composition.

9

step: TASK→ (ComposedService↔ ComposedService)

step= λ out : TASK•
{∆ComposedService| UniformOps•
(θComposedService, θComposedService′)}

compose: P ComposedService→ seq TASK→ P ComposedService

compose= λ init : P ComposedService• λ tasks: seq TASK•
if #tasks= 0

then init
else

if((compose(init)(front(tasks))) ∩ (dom(step(last(tasks))))) ⊆ ∅

then∅

else step(last(tasks))(|compose(init)(front(tasks))|)

The function compose generates the state corresponding to the composite
service in the planning phase. It receives the sequence of required tasks and the
time constraints and determines the sequence of transactions that solve these
tasks. It is a backwards recursive process that generates on each step a relation
of possible before and after states for all the known transitions that accomplish
the current task, through the step function.

When a task can not be reached from any state transition, the Z agent tries to
decompose a task in subtasks and corresponding actions. A simple decomposition
could be done as in DecomposeTask action. This action is one of the UniformOps
that it is tried on every step of the composition.

UniformOps== UCheckInsurance∨ UGetHistory
∨ UPayConsultation∨ UUpdateHistory∨ UDecomposeTask

DecomposeTask

∆ComposedService
task? : TASK

∃ x : seq TASK| x 7→ task? ∈ rules∧ ¬ compose({θComposedService})(x) ⊆ ∅ •

{θComposedService′} = compose({θComposedService})(x)

The relation generated by the step function is used to reach the next state of
the ComposedService. The second condition of compose function expresses the
situation when none of the before state for the task matches the current state
of the ComposedService. In these cases, the empty set is retrieved, meaning the
composition of that task is not possible. There are three cases where the com-
position may fail in the planning phase: (i) when there is no available transition
for the task, meaning there are no service accomplishing the task, (ii) there are
no decomposition rules, and (iii) from one intermediate state it is not possible
to do the transition for the task.

10

UpdateStateCheckInsurance

∆ComposedService
message? : N

value? : BOOLEAN
clock? : N

clock′ = clock+ time?
message? = checkInsuranceM
hasInsurance′ = if value? = yesthen yeselse no

else hasInsurance
payConsultation′ = payConsultation;
op′ = ∅

done′ = done∪ (if value? = yesthen{checkInsurance} else{})

Fig. 4. Update state schema for checkInsurance Message

Updating phase. The response messages of the enacted services are received
by the Z agent and the new state of the composite service is computed according
to message translation rules. An UpdateStatetransition must be able to update
the composite service state according to the outcomes of the services inquired
at the current step.

Correctness of composition. All the states of the composed service are
checked for validity according to the constraints expressed by domain task ontol-
ogy and operation, respective message translation rules. The updating process
of the service state following the receiving of a message is conditioned by the
existence of a known transition possible in the current state that also follows
the message translation rules. We check the acceptance of the transition given
by the message by intersecting its after states set with all the possible after
states from the current one through stepEff function. An unexpected message
is considered to be valid for the composition process only if there is an available
atomic transition taking the current state to the after update states.

updateState== λ now : P ComposedService; message: N; value: BOOLEAN;
time : N; • {∆ComposedService| UniformUpdateState•

(θComposedService, θComposedService′)}(|now|) ∩ stepEff(now)

stepEff : P ComposedService→ P ComposedService

stepEff= λ beforeState: P ComposedService•
{∆ComposedService| SimpleUniformOps•
(θComposedService, θComposedService′)}(|beforeState|)

11

Interleaving planning with execution is the key element that assures the cor-
rectness of composition. If the service gets into an undesired state and compen-
sation or rollback transitions are defined in the transition knowledge base, they
will be included in the new plan, similar to the normal flow transitions.

6
op1?

mess1!
 val1

mess1!
 val2

op2?
mess2!

op3?

op4?

mess3!

mess2!

var1=yes
var2=yes
var3=yes

var1=no
var2=yes
var3=no

task1 fail

?

1

5

7 8 op5?

Fig. 5. A case of asynchronous message.

The composite service (figure 5) is represented as a sequence of states, tran-
sitions being determined by querying a service (op1?) or receiving an answer
(mess1!). A sequence of a transition querying a service and one receiving the
corresponding message determines the achievement of a task (task1). The initial
plan contains the request of op2 that brought the composed service to the state 5
where mess2 is the expected message. Due to the failure of receiving the expected
message in the allocated time, a new plan is generated proposing op3 as the first
operation. The problem arises in state 7 where the composed service receives
the expected message mess3, but also the message mess2. The wrong message is
identified by the function stepEff, due to the fact that there is no defined atomic
transition equivalent to one of those generated by the updatingState transition
from state 7 and message mess2. The merging of states 6 and 8 is possible if
their variables’ values are consistent. In the case the merging is possible, there
is no need to search back, it is enough to re-plan. In the contrary case, the state
where the delayed message was expected must be identified and plans starting
from both states 6 and 8 must be generated. The best one is followed.

The fulfillment of the requirements in each state constitutes another impor-
tant component. The achieved function, receiving a service state and a task,
checks if the specified task is accomplished in that state. A task is achieved if
it is an atomic one, member of done variable, or there is a sequence of achieved
subtasks that accomplishes the task. This function is used as a termination con-
dition of the process.

12

achieved: P ComposedService× TASK→ P BOOLEAN

achieved= λ currentState: P ComposedService; task: TASK•
{x : ComposedService| x ∈ currentState•

if task∈ x.done∨
(∃ seqx: seq TASK| seqx7→ task∈ rules•
∀ y : TASK| y ∈ ran seqx• yes∈ achieved(currentState, y))

then yeselse no}

4.3 WSDL2Z agent

The goal of this agent is to support the dynamic integration of web services. It
defines a middle-ware trading service for retrieving service instances that match
a given service specification in Z language. To obtain the WSDL specifications
available in the community, the WSDL2Z agent broadcasts requests of type
getWSDL. The obtained WSDL specifications are translated into Z and they
are compared with the model encapsulated in the proper domain agent. If the
specifications match, the names of the operations available in the community
and which are considered useful for the current composition are provided to the
Zeta agent.

4.4 Domain agents

Domain agents provide a set of state variables and invariants for a specific do-
main. They have access to the domain task ontology and operation constraints
rules. Identification of the domain task coordination rules from domain ontology
is one of the responsibility of these agents.

For the medical domain, the SimpleComposedService type is defined by two
domain variables hasInsurance and payConsultation, whilst the InputData type
specifies four input variables of the composed service. Together with the types
specific to the computation process OpComposed and EffectComposed, these two
types define the ComposedService type (see section 3.3).

InputData
patient: QName
consultationFee: N

diagnosis: N

receipt: QName

SimpleComposedService
hasInsurance: BOOLEAN
payConsultation: BOOLEAN

4.5 Reliability agent

The specification in Z of non-functional properties of the composite service are
verified by this agent. The reliability of a web service represents the probability

13

that a request submitted to a service is correctly responded within the maximum
expended time frame [9]. This agent has the task to compute the reliability value
for each service from historical data about past invocations used when (i) the
plans are generated, the zeta agent verifies or estimates if the plans can be
executed within the time limit asked by the client and (ii) the OAA agent waits
for answers only the time estimated by the reliability agent, after that it reports
NetworkFailureand the zeta agent computes the next state.

4.6 Type-checking agent

Type checking is an important issue in web process composition. The process
execution engines typically throw exceptions when they encounter incompatible
types during data flow between activities. In order to use the output from one
web service as input to another web service, it is often necessary to perform a
data transformation. This agent acts as an intermediate layer between the client
and the service. The agent converts the data type provided by the client and
the data type supported by the service to Z representation and performs type
checking. The agent ensures both that only compatible types are used while
establishing a data flow, and also aids in decision making during the automated
data flow.

5 Related Work

Automated composition of web services is an open research issue. On the one
hand XML-based standards have been developed to formalize the composition
of web services. This line is primarily syntactical and the interaction protocols
are manually written. On the other hand, semantic approaches based on ontolo-
gies view the composition process as a goal oriented one, basically as a planning
problem. Our approach starts from a formal specification is order to automate
and validate the composition process, but also provides mechanisms to use onto-
logical knowledge during the composition process. The main advantage relies on
using the built-in state transition composition mechanism of the Z language. We
advocate two strong points of the approach: i) it generates more reliable services,
and ii) the composition expressivity in Z language is not limited to the reasoning
capabilities of the description logic in OWL-S. Integration of agent technology
with web services and semantic web is also aimed in [10] or [11]. In the for-
mer, the integration of web services is coordinated with TucSon, while in latter
OWL-S descriptions of web services together with production rules are used by
workflow managers, developed in JADE, that build or complete the workflow
responding to the user requests. In our approach, the composition process is not
limited to the reasoning capabilities of the description logic.

A classical approach for monitoring the service execution consists in plan-
ning as model checking [12]. Our zeta agent deals with such monitoring aspects,
computing the current state using schema calculus. Specification of composite

14

services also uses service chart diagrams [13], providing a good number of con-
trol flow constructs. In our framework, the composition is verified at runtime,
handling some unpredicted exceptions through re-planning.

Formal specification of complex systems uses a combination CSP-OZ-DC
in [14] for the specification of processes, data and time. The WSAMI language
was also proposed for the specification of a composite service [2]. Given the
WSAMI specification of a service, an instance is automatically selected and com-
posed upon a user request, according to the services that may be retrieved in the
environment. In the web services context, the Z language was used for a formal
specification of a constrained object model for the workflow composition [15].
The above research is focused on the design aspects, the resulted Z specification
being compatible with UML. Our approach is more functional, the specification
being animated by the Zeta tool and then executed by Z-based agents.

The value of flexible provisioning for service flows has been shown [16] by
empirical evaluation in an experimental testbed.

6 Conclusions

In this paper, we introduce a framework for formal specification and verification
of composite services. We considered failures associated with web services and
we tried to handle such runtime exceptions by using formal methods. Using Z-
based agents, a series of advantages exists: i) both process oriented knowledge
and ontological knowledge are used in the composition process; ii) the operations
of a service are represented by Z-schemes and the correctness of the composition
is verified with the schema calculus; iii) the above mathematical framework is
not limited to the reasoning capabilities of the description logic; iv) due to the
existence of multi-agents, one can model more complex interactions between
services, not only request-response messages;

We plan to enhance the animation capabilities of Zeta by introducing a tool
for reasoning with the available Z specifications. Another challenge would be
dealing with the preference concept for describing different importance levels for
the composition rules. The framework is a step forward a functional system where
the formal specifications and the semantic descriptions could work together for
improving the collaboration between services in open environments.

Acknowledgments

We are grateful to the anonymous reviewers for useful comments. Part of this
work was supported by the grant 27702-990 from the National Research Council
of the Romanian Ministry for Education and Research.

References

1. Singh, M.P., Huhns, M.N.: Service-Oriented Computing:Semantics, Processes,
Agents. John Wiley and Sons, Chichester West Sussex (2005)

15

2. Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Schibout, R., Levy, N., Ta-
lamona, A.: Developing ambient intelligent systems: A solution based on Web
Services. Automated Software Engineering 12 (2005) 101–137

3. W3C: Web Services Description Language (WSDL) version 2.0 part 1: Core
language. Technical report, W3C, available at http://dev.w3.org/cvsweb/ check-
out /2002/ws/desc/wsdl20/ (21 February 2005)

4. Bultan, T., Fu, X., Hull, R., Su., J.: Conversation specification: A new approach
to design and analysis of e-service composition. In: 12th International World Wide
Web Conference (WWW’2003), Budapest, Hungary (2003) 403–410

5. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.,
Orchard, D.: Web services architecture. Technical report, W3C, available at
http://www.w3.org/TR/2003/WD-ws-arch-20030808/ (8 August 2003)

6. Paurobally, S., Jennings, N.R.: Protocol engineering for web services conversations.
Int J. Engineering Applications of Artificial Intelligence 18 (2005) 237–254

7. Jacky, J.: The way of Z - Practical Programming with Formal Methods. Cambridge
University Press, Cambridge (1998)

8. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
composition of e-services that export their behavior. In: International Conference
on Service Oriented Computing, Trento, Italy (2003)

9. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web service composition. In: 12th International World Wide Web Conference
(WWW’2003), Budapest, Hungary (2003) 411–421

10. Morini, S., Ricci, A., Viroli, M.: Integrating a MAS coordination infrastructure
with web services. In: Workshop on Web-Services and Agent-based Engineering at
AAMAS, New York, NY, USA (2004)

11. Negri, A., Poggi, A., Tomaiuolo, M., Turci, P.: Agents for e-Business Applications.
In: 5th International Joint Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan, ACM Press (2006) 907–914

12. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: ICAPS04, Workshop on Planning and
Scheduling for web and grid Services, Whistler, Canada (2004)

13. Maamar, Z., Benatallah, B., Mansoor, W.: Service chart diagrams - description
application. In: 12th International World Wide Web Conference (WWW’2003),
Budapest, Hungary (2003)

14. Hoenicke, J., Olderog, E.R.: Combining specification techniques for processes, data
and time. In Butler, M., Petre, L., Sere, K., eds.: Integrated Formal Methods. LNCS
2335. Springer-Verlag (2002) 245–266

15. Albert, P., Henocque, L., Kleiner, M.: A constrained object model for configuration
based workflow composition. In: Business Process Management Workshops. (2005)
102–115

16. Stein, S., Jennings, N.R., Payne, T.R.: Flexible provisioning of service workflows.
In: 17th European Conference on Artificial Intelligence. (2006)

