
Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Plausible Description Logic Programs for
Stream Reasoning

Ioan Alfred Letia and Adrian Groza

Department of Computer Science
Technical University of Cluj-Napoca, Romania

Adrian.Groza@cs.utcluj.ro

ICAART, 6 February 2012, Vilamoura, Portugal

February 5, 2012

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Outline
1 Stream Reasoning
2 Integrating Plausible Rules with Ontologies

Plausible Logic
Translating from DL to PLP

3 DSMS in Haskell
Haskell Platform
System Architecture

4 Running Scenario
5 Ongoing Work

ICAART, 6 February 2012, Vilamoura, Portugal

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

It’s a Streaming World

sensor networksa

urban computing
social networking
financial markets

The value of the Sensor Web is related to
the capacity to aggregate, analyse and
interpret this new source of knowledge
Currently, there is a lack of systems
designed to manage rapidly changing
information at the semantic levelb

a
[LPPHH10] D. Le-Phuoc, J. Parreira, M. Hausenblas, and M. Hauswirth.

Unifying stream data and linked open data. Technical report, DERI, 2010.
b

[VCvHF09] E. D. Valle, S. Ceri, F. van Harmelen, and D. Fensel. It’s a
streaming world! reasoning upon rapidly changing information. IEEE Intelligent
Systems, 24:83â89, 2009.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Stream Reasoning

Real time logical reasoning on huge, possible infinite, noisy
data streams, aiming to support the decision process of
large numbers of concurrent querying agents.
Continous semantics

1 streams are volatile - they are consumed on the fly and not
stored forever;

2 continuous processing - queries are registered and
produce answers continuously

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Conceptual Architecture of Stream Reasoning

LARK perspective (The Large Knowledge Collider)

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Outline
1 Stream Reasoning
2 Integrating Plausible Rules with Ontologies

Plausible Logic
Translating from DL to PLP

3 DSMS in Haskell
Haskell Platform
System Architecture

4 Running Scenario
5 Ongoing Work

ICAART, 6 February 2012, Vilamoura, Portugal

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Plausible Logic

Plausible Logic

Non-monotonic reasoning concerned with the problem of
deducing conclusions from incomplete or uncertain
information.
The expressivity of Defeasible Logic is limited by its
inability to represent or prove disjunctions.
Extends Defeasible Logic by accomodating disjunction.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Plausible Logic

Plausible Theory

A reasoning situation is defined by a plausible description made of

a set of indiputable facts, each represented by a formula.

a set of plausible rules (example: {bird} ⇒ flies which might
have a few exceptions.

a set of defeater rules () which can prevent a conclusion
without supporting its negation. (if the buyer is a regular one and
he has a short delay for paying, we might not ask for penalties
regular ∼ penalty)

a priority relation � from all rules R to the plausible and defeater
rules Rpd . � must not be cyclic.

Formulas are proved at different levels of certainty.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Plausible Logic

Level of Proofs

In decreasing certainty they are: the definite level, the
defeasible levels or and the supported level.

The definite level is like classical monotonic proof in that
modus ponens is used and so more information cannot
defeat a previous proof.
Proof at the defeasible level is non-monotonic, that is more
information may defeat a previous proof.
A more cautious defeasible level of proof can be defined by
changing the level of proof required to eliminate
counter-evidence from not δ-provable to not even
supported.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Plausible Logic

Inference in Defeasible Logic

Notation
P = (P1, ..., Pn) is a formal proof (derivation)
q is a literal, F the set of facts
A(r) the antecedent of the rule r
R[q] the set of rules with consequent q
Rs[q] the set of strict rules with consequent q
Rsd [q] the set of strict and defeasible rules with consequent q

r � s means that a rule r beats rule s

The inference conditions come in pairs: a proof −∆f proves that +∆f can not
be proven.

Strict inference

+∆:
If P(i + 1) = +∆q then either

q ∈ F
∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P(1..i)

−∆:
If P(i + 1) = −∆q then either

q 6∈ F
∀r ∈ Rs[q] ∃a ∈ A(r) : −∆a ∈ P(1..i)

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Plausible Logic

Inference in Defeasible Logic
Defeasible inference

+∂:
If P(i + 1) = +∂q then either
+∆q ∈ P(1..i) or

∃r ∈ Rsd [q]∀a ∈ A(r) : +∂a ∈ P(1..i) and
−∆¬q ∈ P(1..i) and
∀s ∈ R[¬q] either

∃a ∈ A(s) : −∂a ∈ P(1..i) or
∃t ∈ Rsd [q] such that ∀a ∈ A(t) : +∂a ∈ P(1..i) and t � s

−∂:
If P(i + 1) = −∂q then
−∆q ∈ P(1..i) and either

∀r ∈ Rsd [q]∃a ∈ A(r) : −∂a ∈ P(1..i) or
+∆¬q ∈ P(1..i) or
∃s ∈ R[¬q] either

∀a ∈ A(s) : +∂a ∈ P(1..i) and
∀t ∈ Rsd [q] ∃a ∈ A(t) : −∂a ∈ P(1..i) or t 6� s

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Translating from DL to PLP

DL \ LP t LP \ DL

Examples of DL beyond DLP
1 State a subclass of a complex class

expression which is a disjunction
(Human u Adult) v (Man tWoman)

2 State a subclass of a complex class
expression which is an existential
Radio v ∃hasPart .Tuner

Examples of LP beyond DLP
A rule involving multiple variables.

Man(X) ∧Woman(Y)→ PotentialLoveInterestBetween(X ,Y)
DL’s not used to represent ”more than one free variable at a time”

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Translating from DL to PLP

Expressing OWL into Horn logic

1 A triple of the form (a, P, b) can be expressed as a fact P(a, b)
2 Instance declaration of the form type(a, C), stating that a is an instance

of class C, can be expressed as C(a)
3 The fact that C is a subclass of D (C v D) is expressed as

C(X)→ D(X)

4 Domain and range restrictions can be expressed in Horn logic: the
following rule states that C is the domain of the property P:
P(X , Y)→ C(X)

5 sameClassAs(C, D) can be expressed by the pair of rules
C(X)→ D(X), D(X)→ C(X)

6 Transitivity of a property P is expressed as P(X , Y), P(Y , Z)→ P(X , Z)

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Translating from DL to PLP

Expressing RDFS/OWL into Horn logic

1 The intersection of classes C1 and C2 is a subclass of D:
C1(X), C2(X)→ D(X)

2 C is a subclass of the intersection of D1 and D2 as: C(X)→ D1(X),
C(X)→ D2(X)

3 the union of C1 and C2 is a subclass of D: C1(X)→ D(X),
C2(X)→ D(X)

4 C v ∀P.D: C(X), P(X , Y)→ D(Y)

5 ∃P.D v C:P(X , Y), D(Y)→ C(X)

6 C is a subclass of the union of D1 and D2 would require a disjunction in
the head of the corresponding rule, not available in Horn Logic, but
availalbe in Plausible Logic.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Outline
1 Stream Reasoning
2 Integrating Plausible Rules with Ontologies

Plausible Logic
Translating from DL to PLP

3 DSMS in Haskell
Haskell Platform
System Architecture

4 Running Scenario
5 Ongoing Work

ICAART, 6 February 2012, Vilamoura, Portugal

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Haskell Platform

Haskell Advantages

1 purity: no side effects
the order of expression evaluation is of no
importance: extremely desirable in the
context of streams coming from different
sources
implicit parallelism: significant when dealing
with huge data which are parralel in nature.

2 polymorphism: same code processing
eterogeneous streams.

3 equational reasoning: query optimisation for
answering in real time to many continous
queries.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

System Architecture

System Architecture

Plausible
Theory

Haskell Platform

Streams
Module

.

.

Decisive
Plausible Tool

Mapping
Module

Facts

Strict
Rules

Plausible Rules
and Priorities

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

System Architecture

Streams Module

Type Function Signature
Basic constructor <:> ::a -> S a -> Sa

extract the first element head:: S a -> a
extract the sequence following the stream’s head tail:: S a -> S a
take a stream and returns all its finite prefixes inits :: S a -> S ([a])
take a stream and returns all its suffixes tails :: S a -> S (S a)

Transfor apply a function over all elements map :: (a -> b) -> S a -> S b
mation interleave 2 streams inter :: Stream a -> Stream a -> S a

yield a stream of successive reduced values scan :: (a -> b -> a) -> a -> S b -> S a
computes the transposition of a stream of streams transp :: S (S a) -> S (S a)

Building repeated applications of a function iterate :: (a -> a) -> a -> S a
streams constant streams repeat :: a -> S a

return the infinite repetition of a set of values cycle :: [a] -> S a
Extracting take the first elements take :: Int -> S a -> [a]
sublists drop the first elements drop :: Int -> S a -> S a

return the longest prefix for which the predicate takeWhile :: (a -> Bool) -> S a -> [a]
p holds
return the suffix remaining after takeWhile dropWhile :: (a -> Bool) -> S a -> S a
removes elements that do not satisfy p filter :: a -> Bool) -> S a -> S a

Index return the element of the stream at index n !! :: S a -> Int -> a
return the index of the first element equal to the elemIndex :: Eq a => a -> S a -> Int
query element
return the index of the first element satisfying p findIndex :: (a -> Bool) -> S a -> Int

Aggregation return a list of corresponding pairs from 2 streams zip :: S a -> S b -> S (a,b)
combine two streams based on a given function ZipWith :: (a -> b -> c) -> S a -> S b -> S c

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

System Architecture

Stream Processing Examples

An RDF stream of auction bids states the bidder agent, its
action, and the bid value:

type RDFStream = [((subj ,pred ,obj), τ)]

[(a1, sell ,30),14.32), (a2, sell ,28),14.34), (a3,buy ,26),14.35)]
Adding two financial streams:

zipWith + s1 (map conversion s2)

Computing at each step the sum of a stream of transactional
data:

scan + 0 [2,4,5,3, ...]

providing as output the infinite stream [0,2,6,11,14, ...].
Policy-based aggregation: zipWith policy stream stream

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

System Architecture

Mapping Module

Sensor v ∀measure.PhysicalQuality
Sensor v ∀hasLatency .Time
Sensor v ∀hasLocation.Location
Sensor v ∀hasFrequency .Frequency
Sensor v ∀hasAccuracy .MeasureUnit
WirelessSensor v Sensor
RFIDSensor vWirelessSensor
ActiveRFID v RFIDSensor

Plausible
Theory

Haskell Platform

Streams
Module

.

.

Decisive
Plausible Tool

Mapping
Module

Facts

Strict
Rules

Plausible Rules
and Priorities

Sensor(X),Measures(X ,Y)→ PhysicalQuality(Y)
Sensor(X),HasLatency(X ,Y)→ Time(Y)
Sensor(X),HasLocation(X ,Y)→ Location(Y)
Sensor(X),HasFrequency(X ,Y)→ Frequency(Y)
Sensor(X),HasAccuracy(X ,Y)→ MeasureUnit(Y)
WirelessSensor(X)→ Sensor(X)
RFIDSensor(X)→WirelessSensor(X)
ActiveRFID(X)→WirelessSensor(X)

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

System Architecture

Dynamic Knowledge

Dynamic domains: the rapid development of
the sensor technology rises the problem of
continuously updating the sensor ontology.

The ontology is treated as a stream of description logic axioms:

map T [A v B,C v ∀r .D, ...]

ouputs:

[r1 : A(X)→ B(X)), r2 : C(X), r(X ,Y)→ D(Y), ...]

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Outline
1 Stream Reasoning
2 Integrating Plausible Rules with Ontologies

Plausible Logic
Translating from DL to PLP

3 DSMS in Haskell
Haskell Platform
System Architecture

4 Running Scenario
5 Ongoing Work

ICAART, 6 February 2012, Vilamoura, Portugal

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Real-time Stock Management

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Plausible Knowledge Base

Milk v Item
Item v ∀HasPeak .Time
WholeMilk v Milk
LowFatMilk v Milk
fm1 : WholeMilk .
sm1 : LowFatMilk .
sm1 : LowFatMilk .

r1 : Milk(X)→ Item(X)
r2 : Item(X),HasPeak(X ,Y)→ Time(Y)
r3 : WholeMilk(X)→ Milk(X)
r4 : LowFatMilk(X)→ Milk(X)
f1 : WholeMilk(fm1)
f2 : LowFatMilk(sm1)
f3 : LowFatMilk(sm2)

r10: Milk(X),Stock(X ,Y),Less(Y , c1)⇒ NormalSupply(X , c2)
r11 : HasPeak(X ,Y) NormalSupply(X , c2)
r12 : Milk(X),Stock(X ,Y),Less(Y , c1),hasPeak(X ,Z),now(Z)

⇒ PeakSupply(X , c3)
r13 : AlternativeItem(X ,Z),Milk(X),Stock(Z ,Y),Greater(Y , c4)

⇒ ¬PeakSupply(X , c3)
r14 LastMeasurement(S,Y),HasLatency(S,Z),Greater(Y ,Z)

⇒ BrokenSensor(S)
r15 BrokenSensor(S),Measures(S,X) Stock(X ,)

r13 � r12

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Continous Queries

Simulating infinite streams: s1 = (randomItem itemsList) : s1

s1 : [(lm,1), (a,2), (wm,3), (b,4), (c,5), (lm,6), (b,7), ...]

s2 : [(a,1), (lm,2), (lm,3), (noItem,4), (d ,5), (lm,6), (a,7), ..].

Monitoring milk items (either whole or low fat)
MI = filter (\x = prove ∆ (milk x)) (map first (merge s1 s2))

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Outline
1 Stream Reasoning
2 Integrating Plausible Rules with Ontologies

Plausible Logic
Translating from DL to PLP

3 DSMS in Haskell
Haskell Platform
System Architecture

4 Running Scenario
5 Ongoing Work

ICAART, 6 February 2012, Vilamoura, Portugal

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Decisive Plausible Logic Tool2

The proof in each case used all
of the rules and one priority for
every four rules

Defeasible Logic - handles hundreds of thousands of rules1.
Plausible Logic - disjunction introduces exponential complexity

In practice the number of disjuncts is small
DLP is polynomial

1
Results reported by A. Rock and D. Billington, An Implementation of Propositional Plausible Logic, 23rd

Australasian Computer Science Conference, 2000, pp 204-210.
2

Available at http://www.ict.griffith.edu.au/arock/DPL/

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Handling Complexity

Selecting the inference algorithm can be exploited to adjust
the reasoning task to the complexity of problem in hand
The level of abstraction can be adapted for the current
scenario by importing a more refined ontology into PDLP

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Computing the Degree of Plausibility

The strength of plausibility of the consequents is given by the
superiority relation among rules.
Exploiting specific plausible reasoning patterns:
”If A is true, then B is true, B is true. Therefore, A becomes
more plausible” (epagoge)
”If A is true, then B is true. A is false. Therefore, B becomes
less plausible.”,
”If A is true, then B becomes more plausible. B is true.
Therefore, A becomes more plausible.”

Plausible
Theory

Haskell Platform

Streams
Module

.

.

Decisive
Plausible Tool

Mapping
Module

Facts

Strict
Rules

Plausible Rules
and Priorities

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Supporting Decisions Under Contradictory
Information

Argumentative Semantics of Plausible Logic

Rebuttal Argument
Undercutting Argument
Exploit the connection between plausible reasoning and
argumentation theory.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Role of Ontologies

Gap between high level knowledge for management decisions
and process models or low level streams.

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Conclusion

Our semantic based stream management system is
characterised by:

aggregating heterogeneous sensors based on the
ontologies translated as strict rules
handling noise and contradictory information inherently in
the context of many sensors, due to the plausible
reasoning mechanism.

Thank you!

Stream Reasoning Integrating Plausible Rules with Ontologies DSMS in Haskell Running Scenario Ongoing Work

Danh Le-Phuoc, Josiane Xavier Parreira, Michael
Hausenblas, and Manfred Hauswirth.
Unifying stream data and linked open data.
Technical report, DERI, 2010.

Emanuele Della Valle, Stefano Ceri, Frank van Harmelen,
and Dieter Fensel.
It’s a streaming world! reasoning upon rapidly changing
information.
IEEE Intelligent Systems, 24:83–89, 2009.

	Stream Reasoning
	

	Integrating Plausible Rules with Ontologies
	Plausible Logic
	Translating from DL to PLP

	DSMS in Haskell
	Haskell Platform
	System Architecture

	Running Scenario
	

	Ongoing Work
	

