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Abstract. While formal methods have proved to be unfeasible for large
scale systems, argument-based safety cases offer a plausible alternative
basis for certification of critical software. Our proposed method for in-
creasing safety combines formal methods with argumentation-based rea-
soning. In a first step, we provide a formal representation of the the
argumentative-based Goal Structuring Notation (GSN) standard used in
industry. In a second step, our solution exploits reasoning in description
logic to identify assurance deficits in the GSN model. The identified flaws
are given to a hybrid logic-based model checker to be validated against a
Kripke model. The method is illustrated for an unmanned aerial vehicle
software, with reasoning performed in RacerPro engine and the HLMC
model checker based on hybrid logic.
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1 Introduction

Assuring safety in complex technical systems is a crucial issue [6] in several crit-
ical applications like air traffic control or medical devices. Safety assurance and
compliance to safety standards such as DO-178B [10] may prove to be a real
challenge when we deal with adaptive systems, which we consider with continu-
ous changes and without a strict behavioral model. Traditional methods, which
are mainly based on previous experiences and lessons learned from other sys-
tems are not effective in this case. Argument-based safety cases offer a plausible
alternative basis for certification in these fast-moving fields [10].

Goal Structuring Notation (GSN) is a graphical notation for structured ar-
guments used in safety applications [7]. GSN diagrams depict how individual
goals are supported by specific claims and how these claims or sub-goals are
supported by evidence. A GSN diagram consists of the following nodes: achieved
goals, not achieved goals, context, strategy, justification, assumption, validated
evidence and not validated evidence. The nodes are connected by different sup-
porting links like: has-inference or has-evidence. To support automatic reasoning
on safety cases, we formalise the GSN standard in DL.



Our solution exploits reasoning in description logic to identify assurance
deficits in the GSN model. The identified flaws are given to a hybrid logic-based
model checker to be validated in a given Kripke structure. All formulas were
verified using the Hybrid Logic Model Checker (HLMC) [5] extended to include
Next, Future and Until operators, while the reasoning in Description Logic (DL)
was performed on RacerPro [8].

2 System Architecture
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Fig. 1. System architecture

The solution is based on three technical instrumentations: (i) the SHI version
of DL, (ii) the GSN standard, and (iii) hybrid logics (HLs). For the syntax,
the semantics and explanation about families of description logics, the reader
is referred to [2]. For the GSN graphical notation the minimum elements are
introduced in section 3, while for a complete description the reader is referred
to [7]. We assume also that the reader is familiar with model checking in temporal
logic. However, in the following we provide specific details about HLs.

Hybrid logics extend temporal logics with special symbols that name individ-
ual states and access states by name [1]. With nominal symbols N = {i1, i2, . . .}
called nominals and Svar = {x1, x2, . . .} called state variables the syntax of hy-
brid logics is ϕ := TL | i | x | @xtϕ |↓ x.ϕ | ∃x.ϕ. With i ∈ N, x ∈ Wvar,
t ∈ N∪Wsym, the set of state symbols Wsym = N∪Wvar, the set of atomic let-
ters Alet = P∪N, and the set of atoms A = P∪N∪Wvar, the operators @, ↓,∃
are called hybrid operators. The semantics of hybrid logic is formalized by the
following statements:

M, g,m |= a iff m ∈ [V, g](a), a ∈ A

M, g,m |= @tϕ iff M, g,m′ |= ϕ, where [V, g](t) = {m′}, t ∈ Wsym

M, g, w |=↓ x.ϕ iff M, gxm, w |= ϕ
M, g,m |= ∃x.ϕ iff there is m′ ∈ M such that M, gxm′ , w |= ϕ



The semantics, where M = 〈M,R, V 〉 is a Kripke structure, m ∈ M , and g
is an assignment, specifies the roles of the @ operator (shifts evaluation to the
state named by nominal t), the downarrow binder ↓, respectively the existential
binder ∃, binding the state variable x to the current state, respectively to some
state in the model [5] . A hybrid Kripke structure M consists of an infinite
sequence of states m1,m2, ..., R a family of binary accessibility relations on M

and a valuation function L that maps ordinary propositions and nominals to the
set of states in which they hold, i.e. M = 〈〈m1,m2...〉, R, L〉 [4]. In the graph
oriented representation of M, the nodes correspond to the sequence of states
brought about by different modalities represented as links between states. Each
state is labeled by a different nominal, while links are labeled by the relation
connecting two states.

Running scenario. The illustrative scenario regards the safe insertion of a UAV
into the civil air traffic as shown in [3]. The presented Unmanned Aircraft Sys-
tem consists of the UAV itself equipped with an autonomous control system,
a ground station and the Air Traffic Management, which provides the required
coordinates for the UAV. The goal is to prove that an UAV can complete safely
its mission inside the civil air traffic and that all the major implied risks (e.g.
collision with other objects or UAVs, loss of critical functions) are mitigated. For
space considerations, we will restrict ourselves to those safety cases related to
collision risks. In this specific context, an autonomous decision making system
must consider at all times the set of safety regulations elaborated to deal with
collision detection and avoidance imposed during a mission [11].

The corresponding hybrid Kripke structure is illustrated in Fig. 2. Its states
correspond to the basic functions of the system (table 1): path following along
the established corridor (PathFollowing), detection of possible obstacles (Detec-
tObstacles), avoidance maneuver (AvoidObstacles), fault control (FaultControl)
and landing (Land). The transition from one state to another is triggered by an
event that leads to a change in the system’s parameters: obs (signals presence
of obstacles), d (returns distance between UAV and obstacle), errObs (signals
an error in the Detect function) and errAvoid (signals an error in the Avoid
function). For example, the signaling of an approaching obstacle when in the
DetectObstacles state leads to the transition of the system in the AvoidObstacles
state. The signaling of an error in any of the DetectObstacles or AvoidObstacles
functions, leads the system in the FaultControl state. If the system recovers from
the error state, it returns to the PathFollowing state. Otherwise, the mission is
aborted by landing to a designated location, hence entering in the Land state.

3 A Formal Model for the GSN Standard

3.1 The GSN Safety Case for the UAV Scenario

In this section we build the safety case for our scenario as a GSN diagram. The
top level goal states that all risks of collisions are managed (Fig. 3). This claim
is refined into two more specific sub-goals, each capturing a different possible



Table 1. Set of states of the UAS

State Parameters Specification

PathFollowing ¬obs UAV follows the path on the given corridor

DetectObstacles obs Obstacles are signaled by sensors

AvoidObstacles obs ∧ d UAV performs an avoidance maneuver

FaultControl errObs ∨ errAvoid Error signaled by Detect or Avoid

Land ¬obs ∨ errObs ∨ errAvoid UAV performs the landing procedure
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Fig. 2. Kripke model for the UAV.
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Fig. 3. Goal Structuring Notation

context: with another UAV present in the same corridor space or with another
object. We further decompose the sub-claim referring to the exceptional case



of collision with another UAV, arguing that the avoidance must be ensured by
a specific emergency procedure (based on the so-called Detect&Avoid function)
and by mitigating all the risks in case of function loss. We continue the refinement
process until we come to elementary claims that may be ensured by evidences.
Considering the sub-claim referring to the situation in which no other UAV is
present in the corridor space, we argue that the ATM transmits the correct coor-
dinates for the right path following and that the UAV acknowledges correctly the
commands received and sets its trajectory based on them. Moreover, we argue
that the Detect&Avoid function is correct and therefore it must ensure that an
obstacle is identified within a certain distance which allows the safe application
of avoidance maneuver and that the UAV performs the indicated safety avoid-
ance commands. Additionally, a safety claim is associated to the Detect&Avoid
function stating that the risks of loss for this function are acceptable. The risks
are calculated as specified in [3] using the Functional Hazard Assessment (FHA)
for identifying a severity for each failure and flight mode(automatic or manual)
of the UAV, and the Preliminary System Safety Assessment (PSSA) for deriving
the safety requirements. These analyses are taken as evidences in validating as
acceptable the risks of loss for the Detect&Avoid function.

3.2 Modeling the Goal Structuring Notation in DL

The relationship supportedBy , allows inferential or evidential relationships to be
documented. The allowed connections for the supportedBy relationship are: goal-
to-goal, goal-to-strategy, goal-to-solution, strategy to goal. Axiom A1 specifies
the range for the role supportedBy , axiom A2 the range, axiom A3 introduces the
inverse role supports, and A4 constraints the role supportedBy to be transitive.

(A1) > v ∀supportedBy .(Goal t Strategy t Solution)
(A2) ∃supportedBy> v Goal t Strategy
(A3) supportedBy− ≡ supports
(A4) supportedBy v supportedBy

Inferential relationships declare that there is an inference between goals in
the argument. Evidential relationships specify the link between a goal and the
evidence used to support it. Axioms A5 and A8 specify the range of the roles
hasInference, respectively hasEvidence, while A6 and A9 the domain of the same
roles. Definitions A7 and A10 say that the supportedBy is the parent role of both
hasInference and hasEvidence, thus inheriting its constraints.

(A5) > v ∀hasInference.Goal (A8) > v ∀hasEvidence.Evidence
(A6) ∃hasInference> v Goal (A9) ∃hasEvidence> v Goal
(A7) hasInference v supportedBy (A10) hasEvidence v supportedBy

Goals and sub-goals are propositions that we wish to be true that can be
quantified as quantified or qualitative, provable or uncertainty.

(A11) QuantitativeGoal v Goal (A13) ProvableGoal v Goal
(A12) QualitativeGoal v Goal (A14) UncertaintyGoal v Goal



A sub-goal supports other high level goals. Each safety case has a top level
Goal , which does not support other goals.

(A15) SupportGoal ≡ Goal u ∃supports.>
(A16) TopLevelGoal ≡ Goal u (¬SupportGoal)

For each safety argument, the elements is instantiated and a textual descrip-
tion is attached to that individual by enacting the attribute hasText :

(A17) > v ∀hasText .String), (A18) ∃hasText .Statement v >
(f1) gt : TopLevelGoal , (f2) (gt , ”The system meets requirements”) : hasText
(f3) gp : ProvableGoal , (f4) (gp, ”Quick release are used”) : hasText
(f5) gu : UncertaintyGoal , (f6) (gu, ”Item has a reliability of 95%”) : hasText

Intermediate explanatory steps between goals and the evidence include state-
ments, references, justifications and assumptions.

(A20) Explanation v Statement t Reference t Justification tAssumption
(A21) Statement ≡ ¬Reference, (A22) Statement ≡ ¬Justification
(A23) Statement ≡ ¬Assumption, (A24) Reference ≡ ¬Justification,
(A25) Reference ≡ ¬Assumption, (A26) Justification ≡ ¬Assumption,

The evidences or solutions form the foundation of the argument and will
typically include specific analysis or test results that provide evidence of an
attribute of the system. In our approach, the evidence consists in model checking
the verification for a specification of the system.

(A27) Evidence v ∃hasFormula.Formula u ∃hasSpecification.Statement
∃hasModel .KripkeModel u ∃hasTestResult .>

Given the above formalization for GSN, our scenario depicted in Fig. 3 is
formally represented in Fig. 4.

Table 2. Retrieving information about the GSN model.

Query RacerPro query RacerPro answer

Top level goal (concept − instances TopLevelGoal) g1
Support goals (concept − instances SupportGoal) g2, g3, g4, g5
Evidence supporting
goal g1

(individual − fillers g1hasEvidence) e1, e2

Evidence verified
against the model m1

(individual − fillers m1 )
(inverse hasModel))

e1, e2, e3, e4, e5

Evidence not verified (concept − instances(and Evidence
(some hasTestResult False))

e1, e2, e3, e4, e5

Goals supported by not
verified evidence

(concept − instances NotVerifiedGoals) g1, g2, g3, g4, g5

(A28) NotVerifiedGoal ≡ Goal u ∃hasEvidence.NotVerifiedEvidence
(A29) NotVerifiedEvidence ≡ Evidence u ∃hasTestResult .False



g1 : Goal , g2 : Goal, g3 : Goal, g4 : Goal, g5 : Goal
e1 : Evidence, e2 : Evidence, e3 : Evidence, e4 : Evidence, e5 : Evidence
(g2, g1) : supports, (g3, g1) : supports, (g4, g3) : supports, (g5, g3) : supports
(g2 , e1 ) : hasEvidence, (g2 , e2 ) : hasEvidence, (g4 , e3 ) : hasEvidence
(g4 , e4 ) : hasEvidence, (g5 , e5 ) : hasEvidence
(g1 , ”Risks of collision are managed .”) : hasText
(g2 , ”Collisions are avoided − No UAV .”) : hasText
(g3 , ”Collisions are avoided − UAV .”) : hasText
(g4 , ”Detect&Avoid function is correct .”) : hasText
(g5 , ”Risk of loss of Detect&Avoid is acceptable.”) : hasText
(e1 , ”Corridors from ATM ensure separation.”) : hasSpecification
(e2 , ”UAV respects corridors from ATM .”) : hasSpecification
(e3 , ”UAV detects close objects.”) : hasSpecification
(e4 , ”UAV avoids detected objects.”) : hasSpecification
(e5 , ”FHA and PSSA.”) : hasSpecification
c1 : Context , (c1 , ”No other UAV in the corridor .”) : hasText
c2 : Context , (c2 , ”Other UAV in the corridor .”) : hasText
m1 : KripkeModel , (e1 ,m1 ) : hasModel , (e2 ,m1 ) : hasModel
(e3 ,m1 ) : hasModel , (e4 ,m1 ) : hasModel , (e5 ,m1 ) : hasModel

Fig. 4. The Abox of the UAV scenario.

4 Interleaving Reasoning with HL and DL for Identifying
Assurance Deficits

Our method interleaves two steps: First, we check with hybrid logic if the ev-
idence nodes from the GSN representation have their corresponding formulas
validated against the Kripke model. Second, by reasoning in DL, we identify
which goals in the GSN model are not supported by verified evidence.

4.1 Validating Evidence with Model Checking

For the given scenario, we start by verifying the first two pieces of evidence
e1 and e2 in the model M1 . The verification uses three parameters: (i) the
minimum distance dmin allowed between the UAV and another object without
risk of collision; (ii) the reported coordinates cuav by the UAV; and (iii) the given
coordinates cATM by the ATM. Formula f1 attached to evidence e1 through the
assertion (related e1 f1 hasFormula) in DL is expressed in HL as:

f1 =↓ i(cATM ) → @i[F ](cATM > dmin) (1)

f1 states that if the ATM starts transmitting coordinates at a state i, then for
all future states the coordinates will be transmitted such that to ensure that the
minimum safe distance is preserved between the UAV and other objects.

The formula corresponding to the evidence e2 is:

f2 =↓ i(cATM ) → @i[Next](cuav = cATM ) (2)



According to f2 , if the ATM starts transmitting coordinates at a state i, then in
the next state the UAV should acknowledge the newly received coordinates by
reporting the exact coordinates as the ones transmitted in the previous state.
The justification j2 of the sub-goal g2 supported by e1 and e2 is expressed as:

j2 =↓ i(cuav = cATM ) → @i[F ](cuav > dmin) (3)

The implication f1 ∧ f2 → j2 is true (the acknowledgment and following of
the coordinates from the ATM ensures the required minimum safe distance) .

Evidences e3 and e4 are used to validate the sub-goal g4 about the cor-
rectness of the Detect&Avoid function. To check the supporting evidences, two
parameters are required: (i) the reported distance dobs between the UAV and
another approaching UAV; and (ii) the minimum distance dmin allowed without
any risk of collision. The justification j4 for the sub-goal g4 is formalized as:

j4 =↓ i(dobs < dmin) → @i[F ]((dobs 6= 0)U(dobs > dmin)) (4)

Justification j4 states that if we bind to i the state in which the reported
distance between the UAV and another approaching UAV is less than the min-
imum one then for all future states the reported distance must be kept higher
then 0, increasing it, at the same time, until no danger of collision (dobj > dmin).

Evidence e3 (UAV detects close objects) is formally expressed as:

f3 =↓ i(dobs) ∧ @i(dobs < dmin) →↓ i(obs) (5)

According to f3 , if in the current state named by nominal i, the distance to a
possible obstacle is transmitted to the UAV and the distance is less than the
minimum allowed one, the presence of an obstacle is reported by the sensors to
the UAV signaling a risk for collision.

Evidence e4 (UAV avoids detected objects) is formally expressed as:

f4 =↓ i(obs) → @i((dobs 6= 0)U(dobs > dmin)) (6)

Equation 6 states that if we bind to nominal i the state in which an obstacle
is signaled by the sensors to the UAV, then the reported distance to the obstacle
must be maintained different than 0 until the increase of distance between the
UAV and the obstacle becomes higher then the minimum established threshold,
indicating that the avoidance maneuver was performed.

To complete the validation of g4 , we have to prove the formula f3 ∧ f4 →
j4 , which is true (the presence of an obstacle indicated by an observed distance,
which is less than the minimum accepted one will entail an avoidance maneuver).

4.2 Identifying Assurance Deficits

At this time check, the formal GSN model is updated with the assertions in Fig. 5.
Given the new information, the GSN model can be interogated to retrieve goals
and evidence which are not validated yet. Querying the RacerPro engine for the



NotVerifiedGoals, we obtain g1 , g3 , g5 , while the concept NotVerifiedEvidence
includes only one instance, the evidence e5 . The RacerPro system is able to
provide explanations why a specific goal belongs to a specific concept. In this
way, the safety engineer can figure that the goal g3 is not validated because of
g5 , which relies on the piece of evidence e5 whose formula was not checked in
the given kripke model M1 . This reasoning mechanism is particularly useful in
real application where a GSN model has hundreds of nodes.

(e1 , f1 ) : hasFormula, (e1 , ”true”) : hasTestResult
(e2 , f2 ) : hasFormula, (e2 , ”true”) : hasTestResult
(g2 , j2 ) : hasJustification, (f − g2 , ”true”) : hasTestResult
(e3 , f3 ) : hasFormula, (e3 , ”true”) : hasTestResult
(e4 , f4 ) : hasFormula, (e4 , ”true”) : hasTestResult
(g4 , j4 ) : hasJustification, (f − g4 , ”true”) : hasTestResult

Fig. 5. Updating the Abox for the GSN model with the newly validated evidences.

Given the above knowledge, the safety engineer is aware that the SupportGoal
g5 should be validated. In the given scenario, the validation is based on the
analysis results of the FHA and PSSA considering the reported error parameters
errObs and errA. The maximum acceptable degree of risk will be referred as ra.
If in the FaultControl state the parameters errObs and errA will lead to a risk
result rerr which is higher than the maximum degree of allowed risks, then the
emergency landing is performed. Formally:

f7 =↓ i(FaultControl) ∧ @i(rerr < ra) → ([Next]i → Land) (7)

One can observe from the Kripke structure in Fig. 2 that there is a valid
transition from state FaultControl to state Land in case that the risk is higher
than the acceptable limit, but also to PathFollowing in case that the returned
result is a positive one and it allows the UAV to continue its mission safely.
Therefore, formula f7 proves as true. With this new information sent to the
RacerPro engine, the concept NotVerifiedGoals will contain no instances, which
formally validates the safety case from the GSN model.

5 Discussion and Related Work

While both argumentation [7, 6, 10] and model checking [11] have been applied
for certification of safety systems, we aimed to demonstrate that combining the
two methods might bring about additional advantages such as preliminary val-
idation of argumentation schemes constructed to support safety cases, ensuring
in advance that the stability of the system will not be affected by the available
choices and, at the same time, foreseeing possible impediments in selecting one
option over another. Considering the benefits of abstractization by combining
DL with model checking [9], we complemented the graphical GSN standard with
a formalized model. We argue that this joint approach increase the transparency
and trust when certifying critical safety systems.



6 Conclusion

The contributions of the paper are: 1) integrating hybrid logic with argumenta-
tion theory, and 2) providing a formal model of the GSN standard in description
logic. While the GSN graphical argumentation language structures safety cases
and facilitates understanding for the human agent, the hybrid logic is able to
validate the evidence nodes of the diagram. Description logic was used as a mid-
dleware language to lightly integrate GSN and model checking. DL’s reasoning
capabilities are used to analyze the status of the arguments and their supporting
evidence. In our view, the proposed method is a step towards a formal model for
the GSN standard. Currently, we are investigating the feasibility of our solution
against large-scale safety cases.
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