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Abstract –  The challenging task of  recognizing  textual
entailment  aims  to  check  whether  the  meaning  of  a
smaller text -  the hypothesis h - can be inferred from
another text  T.  Current    methods  interleave  natural
language  processing,  machine  learning,  search  and
lexical  resources.  All  these  instruments  pose
computational challenges that make textual entailment
unfeasible  for  large  texts.  Hence,  we  investigate  how
textual entailment is affected by text summarization. By
summarising  the  text  T,  we  expect  a  decrease  of
accuracy, but an increase of computation speed. We aim
to assess the expected decrease in accuracy caused by
summarisation against time benefits due to smaller text
given to  entailment  machinery.  Our results  show that
the time needed for computing entailment is decreased
four  times,  while  the  accuracy  decreases  with  two
percentages1.
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I.  INTRODUCTION 

The  challenging  task  of  recognizing  textual
entailment (TE) aims to check if a natural language
text T entails a smaller statement h. Current methods
use a bag of tricks from natural language processing
(NLP),  machine  learning,  search,  and  lexical
knowledge bases. 

All  these  instruments  pose  computational
challenges.  NLP has difficulties  to  build syntactical
trees  for  large texts [1].  Machine learning relies  on
training pairs that need to be annotated as entailment
or non-entailment, often manually [2]. Searching for
similarities  between  T  and  h  is  done  by  replacing
words in h with synonyms, antonyms, homonyms or
with different paraphrases. The search space is huge,
given the branching factor of available relationships
among  words  and  given  the  required  backtracking
during  search  [3].  The  above  complexity  imposes
restrictions to apply TE on real world texts. To avoid
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these  limitations,  before  given  to  the  entailment
machinery, one option is to summarise the texts.

However,  summarisation  may  impact  the
effectiveness of textual entailment, as relevant words
may  be  removed.  In  this  paper,  we  investigate  the
impact  of  summarisation  on  the  performance  of
textual entailment. Our first hypothesis was that the
accuracy will decrease, but with better computational
time.  Hence,  we  analyse  the  threshold  between
accuracy and time, guided by the following research
questions:
    Q1: How does the size of the training set impact    
            the performance metrics of textual entailment?
    Q2: How does the processing time vary before and
           after the summary?
    Q3: What is the impact of summaries on textual 
           entailment?

II. DISCUSSION AND RELATED WORK

Textual entailment is a computational challenging
task  in  NLP.  Bos  et  al.  advocate  in  [4]  that
recognizing  entailment  bears  similarities  to  Turings
test, as access to different knowledge sources and the
ability  to  draw  conclusions  are  among  the  primary
ingredients for an intelligent system. Many NLP tasks
do  have  strong  links  to  entailment.  In  case  of  the
summarization task, the summary should be entailed
by  the  original  text.  Paraphrases  can  be  seen  as
mutual entailment between a text and its paraphrased
version.  In  information  extraction,  the  extracted
information  should  be  entailed  by  the  text  content,
whereas  in  machine  translation,  the  automatic
translation should be entailed by the golden standard
of human translation. 

Recognising  textual  entailment  challenge  has
started in 2005 as an attempt to promote an abstract
generic  task  that  captures  major  semantic  inference
needs across applications [5], [6], [7]. Participants are
provided with pairs of  short  texts,  which are called
text-hypothesis to learn or tune their models. Then, a
test  dataset  is  provided  to  run  the  systems and  the
performances  are  gathered.  The  collected  examples
represent  a  range  of  different  levels  of  entailment



reasoning,  based  on  lexical,  syntactic,  logical  and
world knowledge at different levels of difficulty.

Different  approaches  have  been  proposed  to
recognize  textual  entailment:  from  unsupervised,
language independent methodologies [8], [9], [10] to
deep linguistic analyses [11], [12], [13]. Perez et al.
have used in [9] the BLEU algorithm [14], that is an
unsupervised language-independent approach. Byer et
al.  have  treated  in  [10]  the  entailment  data  as  an
aligned  translation  corpus.  The  GIZA++  toolkit  is
used in [15] to induce alignment models.  However,
the alignment scores alone have been proved of small
importance  for  the  RTE-1  development  data:  the
predicted  entailment  has  been  only  slightly  above
chance.  As  a  consequence,  Bayer  et  al.  have
introduced in [10] a combination of metrics intended
to  measure  translation  quality.  Pais  et  al.  have
proposed  in  [16]  an  unsupervised,  language
independent, threshold free methodology to recognize
textual  entailment  by  generality.  The  Asymmetric
InfoSimba similarity measure has been used to assess
whether a sentence is more specific or more general
than another one.

We also applied textual  entailment in the climate
change domain in [17], [18]. The chatbot in [17] uses
textual  entailment  machinery  and  ontologies  to
identify the best answer for a statement conveyed by a
human agent. The work in [18] focuses on including
domain knowledge into the searching for entailment
or  non-entailment.  Ontologies  in  description  logics
are translated into lexical  rules  suitable for existing
textual  entailment algorithms. Difficulties arise both
in [17] and [18], when the text to analyses in large.
These difficulties have lead us to the current work, in
which  we  try  to  reduce  large  texts  through
summarisation.

Text summarization began in the late sixties, when
Luhn [19] and Edmundson [20] started to to produce
summaries automatically. Since then, many different
techniques  have  been  developed  [14].  A  point  of
reference  is  the  work  of  Jones  et  al.  [21].  Their
classification is based on the level of processing that
each  system  performs.  From  this  perspective,
summarisation  can  be  characterized  as  approaching
the problem at the surface,  entity, or discourse level
[10].  Riloff et al. have carried out [22] a review of
summarisation  in  the  last  decade.  Furthermore,
Alonso  et  al.  in  [4],  [23]  have  gave  a  general
overview of summarization systems, providing also a
description of their main features and techniques. One
observation  is  that  most  systems  combine  several
features  instead  of  using  only  one.  For  example,
NeATS  [15]  combines  techniques  such  as  sentence
position,  term  frequency,  topics  signature,  whereas
MEAD [24] relies on centroid score or overlap with
the first sentence [25,26].

III. MATERIALS AND METHOD

Our method requires three resources: i) a corpus of
textual entailment pairs to build the language model
for  textual  entailment;  ii)  the  Excitement  Open
Platform  tool  for  computing  entailments;  and  iii)
various tools for text summarisation. Fig. 1 shows the
interleaving  of  these  resources.  We  used  three
summarisers:  Classifier4J.Jar,  SummaryApp,  and
CNGL.  Training  pairs  that  contain  the  summarised
text  are  given to  textual  entailment  machinery.  The
corpus of arguments, the summarsers and the textual
entailment method are detailed next:

A. Corpus of Arguments on Global Warming 

We  use  the  debate  corpus  related  to  climate
change  available  at  users.utcluj.ro/
~agroza/projects/argclime.  The  corpus  contains  142
debate  topics  with  877  pro  and  against  arguments
extracted  from  three  debate  sites:  Debatepedia
(http://www.debatepedia.org),  debate.org
(http://www.debate.org),  and  For  and  Against
(http://www.forandagainst.com).  The  advantage  of
using  debate  sites  is  that  arguments  are  already
annotated by their creators with “pro” or”against“. We
used this corpus of annotated arguments to train the
textual  entailment  machinery.  That  is,  we  build  a
language model for the entailment relationship in the
climate change domain.

The  corpus  is  used  by  the  machine  learning
component  of  the  entailment  algorithms  to  learn
entailment  and  non-entailment  relations  between
sentences.  Each argument  contains  of  pairs  of  texts
and  hypothesis.  The  pairs  are  annotated  with  two
relations:  entailment  or  contradiction  (non-
entailment).

Example 1 (Entailment relation):
T: Arctic vegetation zones are affected by the climate
    changes.
h: The polar desert is affected by the global warming.

Example 2 (Non-entailment relation):
T: Global warming is not caused by human activity.
h: Climate change is manmade.

B. Excitement Open Platform

Excitement  Open  Platform  (EOP)  is  a  generic
architecture  implementing  textual  inferences  in
several  languages  [27].  The  platform  provides
entailment  algorithms  and  facilitates  connection
various lexical knowledge bases. The EOP takes <T,
h>  pairs  as  input  and  the  output  is  an  entailment
decision. EOP enacts modularization with pluggable
components. The EOP’s architecture is formed of: the
Linguistic  Analysis  Pipeline  (LAP),  the  Entailment
Decision Algorithm (EDA), and knowledge resources.

http://www.debatepedia.org/
http://users.utcluj.ro/~agroza/projects/argclime
http://users.utcluj.ro/~agroza/projects/argclime


Figure 1. Our method uses a corpus of arguments, three summarisers and textual entailment machinery

The  Linguistic  Analysis  Pipeline  (LAP)  is  a
collection of annotation components (i.e. Tokenizing,
POS  Tagging,  Dependency  Parsing),  where
component integration is based on the Apache UIMA
framework [28]. 

The  Entailment  Decision  Algorithm  (EDA)
computes an entailment decision based on entailment
algorithms  or  knowledge  resources.  The  available
algorithms are grouped in three types: transformation-
based,  edit-distance  based,  and  classification  based.
For our experiments, we will use the transformation
based BIUTEE algorithm.

Knowledge resources are crucial to recognize cases
where T and h use different textual expressions while
preserving entailment [18]. The EOP includes a wide
range of knowledge resources (WordNet, Verb Ocean,
Wikipedia),  but  also including lexical  and syntactic
resources  (i.e.  paraphrasing  corpus),  where  some of
them are grabbed from dictionaries,
while others are learned automatically.

C. Tools of Summarisation

A summary is produced from one or more texts
and it contains a significant portion of the information
in the original text(s). Hovy et al. have argued that the
summary should be no longer than half of the original
text(s)  [29].  Following  the  Sparck’s  approach  [21],
there  are  three  context  factors  that  influence
summaries:  input,  purpose and output factors.  Also,
there  are  two  approaches  for  automatic
summarization:  extraction  and  abstraction.
Summarisation by extraction  consists  of  selecting a
subset of existing phrases in the original text, to form
the summary. Summarisation by abstraction builds a
semantic internal representation, and then uses natural
language-generating techniques to create a summary
that  is  (arguable)  closer  to  what  a  human  could
generate.  Such a synthesis could contain words that
are not explicitly present in the original text.
The  following  summarisers  were  used  for  our
experiments:  Classifier4j  [30],  SummaryApp  [31],
and CNGL summarizer [32], [33]. 

Classifier4j generates a quality summary compared
to other tools, (e.g. MS Word summarizer), based on
the  following  steps:  i)  deleting  HTML,  stopwords,
etc; ii) sorting unique words by popularity in text; iii)

displaying the initial text after the sentences bounds;
iv) including in each sentence that first mentions of
the most popular word until  the required  maximum
length is met [30]. 

SummaryApp  splits  the  original  text  into
paragraphs,  and  then  picks  the  best  sentence  from
each paragraph according to the sentences dictionary
[31]. The sentences dictionary calculates a score for
each input sentence in a two-steps process: First, the
intersection  value  between  each  two  sentences  is
stored in a matrix. That is, the text is converted into a
fully  connected  weighted graph.  Each sentence  is a
node  in  the  graph  and  the  two-dimensional  array
holds the weight of each edge. Second, an individual
score for each sentence is calculated by summing up
all  its  intersections  with  the  other  sentences  in  the
text. The intersection function receives two sentences
and returns a score for the intersection between them.
We just  split  each  sentence  into tokens,  count  how
many  common  tokens  we  have,  and  then  we
normalize  the  result  with  the  average  length  of  the
two sentences. 

CNGL summariser  provides  a  sentence  extracted
summary  [32],  [33].  There  are  three  stages  in  the
summarization pipeline: i) tokenization: a structurer is
used  to  tokenize  and  structure  the  content  by
sentences  and  paragraphs;  ii)  weighting:  using  the
content  structure  and  chosen  features  weights  are
assigned  to  each  sentence;  iii)  aggregation:  an
aggregator combines the weights from each feature -
it may decide to completely discount those negatively
weighted, combine them linearly,  logarithmically, or
in any other fashion. The sentences are then ranked.
The  summarizer  outputs  the  number  of  sentences
desired according to their score.

IV. INTERLEAVING TEXTUAL ENTAILMENT AND

SUMMARISATION 

A. Designing Experiments

Let  Ti
sum the  text  summarised  with  the  sum

summariser. The upper index indicates the amount of
summarization  performed  on  the  initial  text  T.  For
instance,  T2

C4J states  that  the  C4J  summariser  was
used to summarise T into two sentences.



Similarly,  T70%  
C4J

 states  that  C4J  tool  was  used  to
summarise T with a  70% percent  of the number of
sentences from the original text.

Our  experiments  aim  to  assess  the  impact  of
summarization  with  respect  to  time  and  entailment
performance. The top-level design of our experiment
is:

1) Measuring  the  running  time  and  entailment
performance on initial pairs <T, h>

2) Measuring  the  running  time  and  entailment
performance on pairs formed by the summarised text
and the original hypothesis< Ti

sum, h>.
The variables that we change during experiment are:
1)  the  summarisation  tool,  2)  the  percentages  of
summarisation, 3) the size of the training corpus. The
results  of  this  experiment  are  valuable  for  cases  in
which  T is  large,  h  is  small,  and  when the  corpus
contains enough pairs for training.

V. ASSESSING THE IMPACT OF SUMMARISATION

ON TEXTUAL ENTILMENT

We  were  interested  to  measure  the  impact  of
summarisation  on  textual  entailment.  The  research
hypothesis  was  that  the  processing  time  will  be
improved,  while  the  accuracy  may  decrease  with
some percent.  First,  we measured running time and
entailment performance on initial pairs <h,T>. Then
we  measured  the  running  time  and  entailment
performance on pairs formed by the summarized text
and  the  original  hypothesis  <Ti

sum h>.  During  the
experiment we changed the summarisation tools, the
percentages  of  summarisation  and  the  size  of  the
training corpus. The experiments were run on an Intel
i7CPU  with  2.30GHz,  6GB RAM,  8  cores/64.  We
made two experiments: one with a small number of
training  corpus  (i.e.  50  pairs)  and  the  other
experiment with a larger number (i.e. 1000 pairs). The
results are depicted in Tables I and III. 

The  measuring  parameters  can  be  defined  as
follows: accuracy is a ratio of correctly items detected
to  the  total  instances;  precision  is  the  fraction  of
relevant  instances  among  the  retrieved  instances.
Recall is the fraction of relevant instances that have
been  retrieved  over  the  total  amount  of  relevant
instances and the F1 measure is the is the harmonic
mean of precision and recall. 

In  case  of  small  training  corpus  (50  pairs),  the
processing  time  of  the  original  pairs  is  about  45
minutes (line 1 in Table I). By reducing the original
text  T  to its  summary  of  only  one  sentence,  the
processing  time drops to  5 minutes  in  case  of  C4J
summariser, to 4 minutes for SumApp, respectively to
7 minutes for CNGL. That is an average of (5’25” +
4’32”+7’17”)/3=5’74”. Hence, the processing time is
reduced  with  87%.  For  this  benefit,  we  expect  a
decreasing in accuracy. For this small training corpus,
the initial  accuracy  is 0.56. This small  value is  not
surprising, as 50 pairs for training are not enough for
building an accurate language model in the given 
domain. However, when applying summarisation the
accuracy has dropped to the best value of 0.54 in case
of the CNGL summariser. 

Interestingly,  the F1 measure increases from 0.56
to 0.62 in case of the same CNGL tool. Note that this
behavior  did  not  occur  for  the  C4J  and  SumApp
summarisers.  Observe  also that  the  processing  time
for the summary outputted by CNGL is higher than
the other  two summarisers.  This  might  indicate  the
the  summary  T1

CNGL  of CNGL  is  larger  than  the
summaries T1

SumApp or T1
C4J.

We  see  two  possible  conclusions  for  this
experiment.  If  the  user  somehow  trusts  the
summariser (CNGL in our case), then the decreasing
time drops significantly (from 44’30” to 7’7”), while
the accuracy decreases with two percentages. If there
is no assessment of the summariser, the average result
shows that, after summarisation in one sentence, the
entailment  decision  is  close  to  random  guess  (i.e,
0.509 accuracy). 

As C4J seems to provide more relevant summaries
than the other tools for the computing entailment, we
performed  a  further  experiment  on this  summarizer
only.  We  were  interested  in  the  entailment
performance,  when  the  summary  is  not  reduced  to
only  one  sentence,  but  it  can  have  different
percentages from the initial text. Table II shows the
performance  metrics  when  the  summary  represents
50%,  60%,  and  70%  from  the  initial  text.  The
processing  time  decreases  with  20%.  The  accuracy
decreases,  but  the  F1  measure  remains  the  same.
However,  experiments on larger  corpus are required
to investigate which would be the best summarisation
percentage such that the textual entailment decision to
be accurate. 

We did the same analyses  for  a  larger  corpus of
1000 training pairs. For a corpus of 1000 pairs, the



processing time is 16 hours and 20 minutes (line 1 in
Table III). After applying summarisation, the required
time  drops  significantly  in  the  range  of  2-5  hours,
depending  on  each  summariser.  Actually,  the
processing  time  for  pairs  <  Ti

sum,h> is  at  least  four
times smaller than the initial time of 16 hours and 20
minutes.  The initial  accuracy  of  0.54  is  still  small,
leading the conclusion that 1000 training pairs is still
a small number for the textual entailment machinery.
Interestingly,  the  F1  measure  increased  after
summarisation,  from  0.6  to  0.66-0.67.  And  this
happened  for  all  three  summarisers,  as  depicted  in
Fig.  2).  One  possible  interpretation  is  that  the
irrelevant  text  for  textual  entailment  has  been
removed during summarisation. That is, Ti

sum contains
sufficient relevant information to infer the hypothesis
h. From this perspective, summarisarion acts as a data
preprocessing  step,  in  which  irrelevant  text  for
inferring h is removed before searching for entailment
between T and h. 

Fig. 3 shows that the accuracy does not have major
fluctuations,  decreasing  with  0.1  and  0.2  from  the
initial values. From the point of view of recall, CNGL
has the highest value, 0.74 and from the precision part
the SummaryApp has the maximum 0.57. 

Based on the experiments with 1000 pairs of global
warming  arguments,  Fig.  2  that  the  CNGL
summariser  has  the  best  outcome  for  the  accuracy
(0.52). In Table III, the recall has maximum value of
0.992  for  the  Classifier4J,  being  followed  by  the
CNGL with  0.984.  This  means  that  the  number  of
correct  entailment proposed are equal with the total
number  of  the  entailments  that  should  have  been
returned. Also, the precision outcome (see Table III)
for CNGL is 0.516, that  are the instances that have
been  retrieved  over  the  total  amount  of  relevant
instances.

Fig. 2: F1-measure is better in case of summarisation for a corpus
of 1000 training pairs.

Fig. 3: Results on the training corpus <T,Tsummarise>.

VI. CONCLUSIONS

We investigated here how textual entailment
can  be  influenced  by  text  summarization.  We  run
various experiments on pairs of texts and hypotheses
from the climate change domain.

We investigated how summarisation can be
used  to  decrease  the  processing  time  of  textual
entailment. The results did indicate a large decrease of
processing time, with a small decrease in accuracy.

Two limitations of our experiments are: First,
the  experiment  were  limited  to  1000  pairs.  That
number is still small for building a relevant language
model, given the search space of textual entailment.
We plan to re-run the experiments with larger corpus
on  a  more  powerful  hardware.  Second,  we  limited
here  to  three  summarising  tools.  We  also  need  to
investigate  other  summarisers  and  to  compare  our
ranking of summarisers with similar rankings in the
literature.  Based  on  the  above  two  limitations,  the
experiments  are  rather  preliminary.  Still  these
preliminary  results  suggest  that  interleaving  textual
entailment and summarisation could bring benefits to
both domains.  On the one hand, summarisation can
help  to  compute  entailment  decisions  more  quickly
with  a  quite  similar  accuracy.  On  the  other  hand,
textual entailment can be used to automatically assess
the quality of the generated summaries.
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