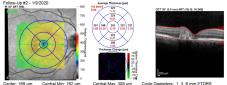

Interleaving machine learning with reasoning

Adrian Groza

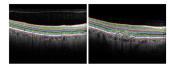
Intelligent Systems Group Department of Computer Science Technical University of Cluj-Napoca, Romania

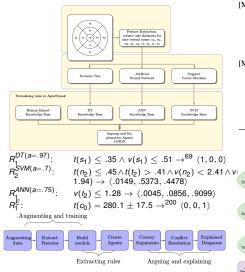


Machine learning and reasoning

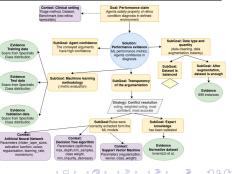
Running project (2022-2024)

New OCT Biomarkers Identified with Deep Learning for Risk Stratification of Patients with Age-related Macular Degeneration, PED616,

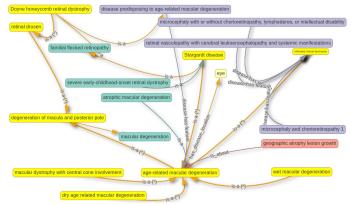

1. Predicting disease evolution or visual acuity from small-time series


How to learn from small-sized time series? How to handle different time intervals between visits? How to learn from different numbers of visits (1–5)?

2. Segmenting retinal layer: Human in the loop, not ML approach

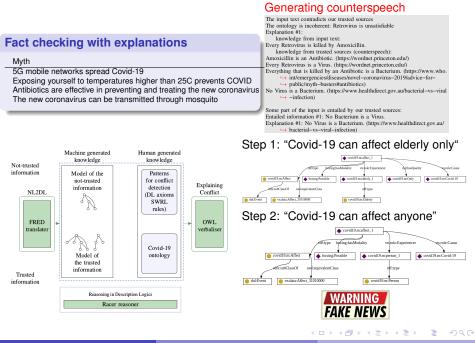

- 3. Building a support tool for ophthalmologists
 - explain algorithmic decisions to humans (e.g. by extracting rules from models)
 - include the ophthalmologist in the loop (by including expert knowledge)
 - build safety cases (by creating assurance argument patterns in GSN)

Argue on Classifications of Retinal Conditions

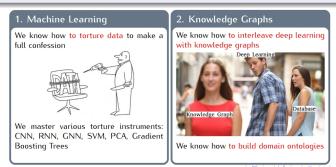


Generating explanations in NL

- - The thickness value in t_2 zone is smaller than 0.3 and The thickness value in s_2 zone is greater than 0.3 and The volume value in s_1 zone is smaller than 0.58 and The thickness value in s_1 zone is greater than 0.35.


5. Al for personalized ophthalmology residency training : Deep learning gives a presumptive diagnosis and assess case difficult, Expert sytems allocates cases6. Describing OCT biomarkers in Description Logics

- f_3 : hasDisease. WetAMD (1)
- f_3 : \exists hasBM.(Type2CNVM \sqcap isAbove.RPE \sqcap \exists hasAdjacentBM.SRF \sqcap \forall hasAdjacentBM.SRF (2)
 - $f_3 : \exists hasBM.(Exudate \sqcap isLocated.Nasal)$ (3)
 - $Type1 CNVM \sqsubseteq CNVM \sqcap \exists isBeneath.RPE \sqcap$ (4)
 - $\exists bv : appear.(Fibrovascular \sqcup HemorrhagicPigmentEpithelialDetachment (5))$
 - $\textit{Type2CNVM} \sqsubseteq \textit{CNVM} \sqcap \exists is Above_RPE \exists has AdjacentBM.SRF_{(6)}$


A. Groza (TUCN)

ISI articles (since 2021)

Groza A, Toderean L, Muntean G. A., Nicoara D. Agents that argue and explain classifications of retinal conditions. Journal of Medical and Biological Engineering. 2021 Oct;41(5):730-41

- 2 Marginean B. A., Groza A., Muntean G., Nicoara S.D. Predicting Visual Acuity in Patients Treated for AMD. Diagnostics. 2022 Jun 20;12(6):1504
- Bilc, S.; Groza, A.; Muntean, G.; Nicoara, S.D. Interleaving Automatic Segmentation and Expert Opinion for Retinal Conditions. Diagnostics 2022, 12, 22.
- Deres. I., Groza., A "The Profile": unleashing your deepfake self, Multimedia Tools and Applications, In press, 2023
 - Muntean G. A., Groza A., Marginean A., Steiu M., Muntean V., Nicoara S. D. Artificial intelligence for personalized ophthalmology residency training, J. of Clinical Medicine.
- Marginean A. N., Muntean D. D., Muntean G. A., Priscu A., Groza A., et al. Reliable Learning with PDE-Based CNNs and DenseNets for Detecting COVID-19, Pneumonia, and Tuberculosis from Chest X-Ray Images. Mathematics. 2021; 9(4)

Direction towards Neuro-symbolic integration

- Integrating domain-specific knowledge in the learning process
- XAI assessing explanations and using explanations for debugging
- Verified and trustable AI
- Minimise time-to-market by facilitating technical audits
- Natural language understating: learning meaning

Supporting AI applied by developing in the institute

- Reading center in the context of EU Data Spaces
- Certification center in the context of AI Act
- Regulatory sandbox in the context of AI Act

 $\forall x \text{ participates}(x, \text{thisSession}) \rightarrow \text{thank}(I, x)$

ntelligent Systems Group

