
*
23∨̃

Technical Report II

January 2014 -4 Decembrie 2014
Bilateral Agreement Romania-Argentina

Contract No. 731

Project tile: ARGSAFE: Using Argumentation for Justifying Safe-
ness of Complex Technical Systems

Romanian partner: Technical University of Cluj-Napoca
Argentinian partner: Universidad Nacional del Sur
Duration: 24 months: 11 Septembrie 2013 -11 Septembrie 2015)

Contents

0.1 Objectives . 2
0.2 Modeling the GSN Standard in Description Logic 4
0.3 SafeEd Tool . 6
0.4 Formal Verification of Safety Cases . 8

0.4.1 Vehicle Overtaking Scenario . 8
0.4.2 Validating the Safety Case . 9
0.4.3 Generation of Safety Case Metrics 12
0.4.4 Generating Natural Language Reports on the Safety Case 13

0.5 Interleaving Argumentation and Model Checking 13
0.6 Model Repair for an Unmanned Aircraft Vehicle 15

0.6.1 Illustrative Example . 15
0.6.2 Kripke Model for the Unmanned Aerial Vehicle 16
0.6.3 Verifying Compliance to Safety Regulations 17
0.6.4 Adapting the Model to New Specifications 18

1

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

0.1 Objectives

Objectives. The top level scientific objective regards safety assurance of software sys-
tems by means of argumentation theory.

Date Objectives Novelty Associated Tasks

Jun
2013

O1. Analysis the problem
of justifying safeness of com-
plex technical systems.

Identifying the possibilities
of integrating argumenta-
tion theory, quality stan-
dards and ontologies.

Formal analysis of quality
standards. Identifying fac-
tors affecting confidence in
safeness of software systems.

Sep
2013

O2. Developing the assur-
ance model based on argu-
mentation theory.

Justificative reasoning in
the context of heterogeneous
and contradictory evidence

Developing the defeasible
justification logic. Contex-
tualising evidence.

May
2014

O3. Developing the system
of justifying safeness of com-
plex technical system.

Automatic identification of
inconsistent justifications.

Developing a generic ontol-
ogy for hazards. Organising
the first ARGSAFE work-
shop.

Sep
2014

O4. Applying the system
for safeness assurance of au-
tonomous driving systems.

Organising evidence, build-
ing arguments and counter-
arguments.

Formalising safeness re-
quirements. Formalising
assumptions regarding op-
erating mode and specific
hazards.

Dec
2014

O5 Applying the system for
verifying correctness of fire-
wall configuration

Presenting arguments for
decision support under tem-
poral constraints

Identifying inconsistency in
security rule-based systems.
Organising the second
ARGSAFE workshop.

Mar
2015

O6. Developing a methodol-
ogy of exploiting structured
arguments in safeness assur-
ance

Re-using safety cases. Re-
engineering complex soft-
ware systems based on argu-
ments.

Defining patterns of safety
cases. Stating the principle
of building arguments when
developing complex software
systems.

Team:

• Technical University of Cluj-Napoca: Assoc. Prof. dr. .eng.Adrian Groza, Prof. dr.
eng. Ioan Alfred Letia, Phd stdeunt Anca Goron.

• Universidad National del Sur: Assoc. Prof. Sergio Alejandro Gomez, Prof. Carlos
Ivan Chesnevar

Intelligent Systems Group
Technical University of Cluj-Napoca

2

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

Publications: List of publications [8, 6, 9, 11, 7]

1. A. Groza, N. Marc - Consistency Checking of Safety Arguments in the Goal Structur-
ing Notation Standard, IEEE 10th International Conference on Intelligent Computer
Communication and Processing (ICCP2014), Cluj-Napoca, Romania, 4-6 September
2014, pp, 59-66

2. S. A. Gomez, A. Goron, A. Groza - Assuring Safety in an Air Traffic Control System
with Defeasible Logic Programming, Argentine Symposium on Artificial Intelligence
(ASAI14), 1-5 September 2014, Buenos Aires, Argentina

3. S.A. Gomez, A. Groza, C.I. Chesnevar - An Argumentative Approach to Assessing
Safety in Medical Device Software using Defeasible Logic Programming, Interna-
tional Conference on Advancements of Medicine and Health Care through Technol-
ogy (MEDITECH2014), Ed. S. Vlad, R. Ciupa, ISBN 978-3-319-07652-2, IFMBE,
Vol 44, Springer, pp. 167-172

4. S. Gomez, A. Groza, C Chesnevar, I. A. Letia, A. Goron, M Lucero - ARGSAFE:
Usando Argumentacion para Garantizar Seguridad en Sistemas Tecnicos Complejos,
WICC, Ushuaia, Tierra del Fuego, Argentina, 7-8 May 2014

5. A. Goron, A. Groza, S. A. Gomez, I. A. Letia - Towards an argumentative approach
for repair of hybrid logics models, ARGMAS@AAMAS, Paris, France, 5-9 May 2014

Deliverables:

(D1.1) Web page: http://cs-gw.utcluj.ro/∼adrian/projects/argsafe

(D1.2) Presentation poster (available on the project web page);

(D1.3) Workshop: ”Agreement Technologies in Software Engineering”:
http://cs-gw.utcluj.ro/∼adrian/workshops/ATSE2013.html

(D1.4) Ontology for the Goal Structuring Notation standard (available at project web page);

(D1.6) First year technical report (available at project web page);

(D2.1) EdSafe tool (available on the project web page);

(D2.2) Second year technical report (available on the project web page).

Novelty. We propose an argumentation approach for hybrid logics model update. Argu-
mentation theory is used to assist the process of updating the model. We view a Hybrid
Kripke model as a description of the world that we are interested in. The update on this
Kripke model occurs when the system has to accommodate some newly desired properties
or norm constraints. When the model fails to verify a property, a defeasible logic program
is used to analyze the current state. Depending on the status of the arguments, the system
can warrant four primitive operations on the model: updating state variables, adding a

Intelligent Systems Group
Technical University of Cluj-Napoca

3

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

new transition, removing a transition, or adding a new state. A running scenario is pre-
sented showing the verification of an unmanned aerial vehicle, by interleaving reasoning in
Defeasible Logic Programming and the Hybrid Logic Model Checker.

Assuring safety in complex technical systems is a crucial issue in several critical ap-
plications like air traffic control or medical devices. We developed a framework based on
argumentation for assisting flight controllers to reach a decision related to safety constraints
in an ever changing environment in which sensor data is gathered at real time.

Modern health-care technology depends to a large extent on software deployed in medi-
cal devices, which brings several well-known benefits but also poses new hazards to patient
safety. As a consequence, assessing safety and reliability in software in medical devices
turns out to be a critical issue. We developed a method for safety assessment of medical
devices based on Defeasible Logic Programming (DeLP), which provides an argumentative
framework for reasoning with uncertain and incomplete knowledge. We contend that ar-
gumentation theory as defined in DeLP can be used to integrate and contrast different
evidences for assessing the approval and commercialization of medical devices, aiming at
increasing transparency to all the stakeholders involved in their certification. The outlined
framework is validated by modeling the infamous Therac-25 accident.

Economic impact. Increasingly, safety regulatory bodies require the developers of crit-
ical software systems to provide explicit safety cases - defined in terms of structured argu-
ments based on objective evidence - in order to prove that the system is acceptable safe.
Argumentative-based safety cases are progressively adopted in the defense (UK), automo-
tive, railways, off-shore oil & gas, or medical device domains. Consequently, this research
aims i) to identify links between argumentation theory and engineering of safety systems,
ii) to develop argumentation methods to transfer confidence in safety-critical software sys-
tems. iii) to apply the developed technical instrumentation at two case studies: 1) safeness
of autonomous driving software, respectively 2) justifying correctness of firewall configu-
ration. System capabilities include 1) automatic norm checking for compliance, 2) safety
reports generation, 3) facilitating understanding and confidence transfer.

0.2 Modeling the GSN Standard in Description Logic

The relationship supportedBy , allows inferential or evidential relationships to be docu-
mented. The allowed connections for the supportedBy relationship are: goal-to-goal, goal-
to-strategy, goal-to-solution, strategy to goal. Axiom A1 specifies the range for the role
supportedBy :

(A1) > v ∀ supportedBy .(Goal t Strategy t Solution)

Axiom A2 specifies the domain of the role supportedBy , axiom A3 introduces the inverse
role supports, and A4 constraints the role supportedBy to be transitive.

(A2) ∃ supportedBy .> v Goal t Strategy
(A3) supportedBy− ≡ supports
(A4) supportedBy v supportedBy

Intelligent Systems Group
Technical University of Cluj-Napoca

4

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

Inferential relationships declare that there is an inference between goals in the argument.
Evidential relationships specify the link between a goal and the evidence used to support it.
Axioms A5 and A8 specify the range of the roles hasInference, respectively hasEvidence,
while A6 and A9 the domain of the same roles. Definitions A7 and A10 say that the
supportedBy is the parent role of both hasInference and hasEvidence, thus inheriting its
constraints.

(A5) > v ∀ hasInference.Goal
(A8) > v ∀ hasEvidence.Evidence
(A6) ∃ hasInference.> v Goal
(A9) ∃ hasEvidence.> v Goal
(A7) hasInference v supportedBy
(A10) hasEvidence v supportedBy

Goals and sub-goals are propositions that we wish to be true that can be quantified as
quantified or qualitative, provable or uncertainty.

(A11) QuantitativeGoal v Goal
(A13) ProvableGoal v Goal
(A12) QualitativeGoal v Goal
(A14) UncertaintyGoal v Goal

A sub-goal supports other high level goals. Each safety case has a top level Goal , which
does not support other goals.

(A15) SupportGoal ≡ Goal u ∃ supports.>
(A16) TopLevelGoal ≡ Goal u ¬SupportGoal

For each safety argument, the elements are instantiated and a textual description is
attached to that individual by enacting the attribute hasText with domain Statement and
range String :

(A17) > v ∀ hasText .String
(A18) ∃ hasText .Statement v >

Three individuals gt , gp, and gu of type goal and their textual descriptions are instan-
tiated by assertions f1 to f6:

(f1) gt : TopLevelGoal
(f2) (gt , “The system meets its requirements”) : hasText
(f3) gp : ProvableGoal
(f4) (gp, “Quick release are used”) : hasText
(f5) gu : UncertaintyGoal
(f6) (gu, “The item has a reliability of 95 %”) : hasText

Intermediate explanatory steps between goals and the evidence include statements,
references, justifications and assumptions:

(A20) Explanation v Statement t Referencet
Justification tAssumption

where these top level concepts are disjoint:

Intelligent Systems Group
Technical University of Cluj-Napoca

5

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

(A21) Statement ≡ ¬Reference
(A22) Statement ≡ ¬Justification
(A23) Statement ≡ ¬Assumption
(A24) Reference ≡ ¬Justification
(A25) Reference ≡ ¬Assumption
(A26) Justification ≡ ¬Assumption

The evidences or solutions form the foundation of the argument and will typically
include specific analysis or test results that provide evidence of an attribute of the system.
In our approach, the evidence consists in model checking the verification for a specification
of the system.

(A27) Evidence v ∃ hasFormula.Formula u
∃ hasSpecification.Statement u
∃ hasModel .KripkeModel u
∃ hasTestResult .>

A non-verified goal is a goal which has at least one piece of evidence that is not formally
proved.

(A28) NotVerifiedGoal ≡ Goal u ∃ hasEvidence.
NotVerifiedEvidence

(A29) NotVerifiedEvidence ≡ Evidence u
∃ hasTestResult .
(False uUnknown)

0.3 SafeEd Tool

Our tool consists of a set of Eclipse plugins. The tool is structured on layers (Fig. 1). At
the bottom, there is the layer consisting of the core framework of the tool.

The second layer consists of several eclipse plug-ins used to implement the tool. The
Eclipse Modelling Framework (EMF) was used for developing the model part. The Graph-
ical Modelling Framework (GMF) and the Graphical Editing Framework (GEF) were used
to implement the graphical user interface of the tool. Epsilon was used to construct the
plug-ins for model management tasks.

The third layer contains the GSN and ARM metamodels, plus tool plug-ins through
which all tool functionality is provided. This layer consists of: GSN plug-ins, which im-
plements the GSN editor functionality, ARM plug-ins, which implements the ARM editor
functionality, ONTOLOGY plug-ins, provides semantic reasoning facility.

The user interface layer consists of the GSN editor, the ARM editor and the model
management tools: i) GSN to ARM transformation, ii) GSN validation using ontology-
based reasoning, iii) safety case transformation in ABOX, iv) querying the safety case, v)
various GSN editing wizards.

The main aim of the tool is to enhance end-user capabilities to build reliable assurance
cases. The system supports management and assessment of the safety case, the Ontology
plugin being responsible for this.

Intelligent Systems Group
Technical University of Cluj-Napoca

6

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

Figure 1: System Architecture

Based on the description logic, we developed an ontology that formalises the Goal
Structuring Notation. The resulted GSN ontology is loaded from the Ontology plugin onto
RacerPro engine using the jRacer library. The Ontology plugin provides also the engine
used for translating the safety case diagram into an Abox. Furthermore, a connection to
the RacerPro [10] reasoning engine is established in order to load the Abox in the GSN
tbox so that the users could validate the abox against GSN tbox and query the safety case
from the console.

An advantage is the possibility for the user to load many diagrams into the ontology
and set the current safety case to be analyzed and query it from the console. Having the
abox and tbox loaded in RacerPro, the user can select from the editor to create the OWL
ontology of the safety case used to generate a documents containing description of the
safety case in natural language or other reports.

The workspace of the system is presented in Fig. 2. A safety project (top-left) consists
of several assurance cases, developed either as a graphical diagram (files with gsn extension)
or as an abox in description logic (files with racer extension). In case of need the system
automatically translated between these two input formats. For a selected diagram file the
user can transform into abox, validate the diagram and generate reports.

The main window (top-cencer) depicts the active gsn diagram. The elements of the GSN
standard are represented as follows: goals with rectangular, strategies with paralelograms,
evidence and solutions are represented by circle, assumptions and justifications with ellipse,
context by a rectangular with rounded corners, the supportedBy relation is an arrow with
the head filled, while the inContextOf is represented by an arrow with empty head.

The title and description of a node can be entered by clicking on the node in the
head part for the title, and in the field with the placeholder ‘description‘. The diagram is
constructed by using a drag-and-drop pallet (top-right).

The command console (bottom-center) shows the reasoning performed on the active
diagram above. In the command line, specific queries for interrogating ontologies can be
added and the reasoning engine will return the results for each query. The syntax of the
queries corresponds to the RacerPro tool. In Fig. 2, the four queries exemplified are: i)
retrieving all the goals in the diagram, ii) identifying the top level goal, iii) listing all pieces

Intelligent Systems Group
Technical University of Cluj-Napoca

7

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

of evidence supporting the goal g2, and iv) checking the consistency of a diagram with
respect to the GSN standard encoded as axioms in description logic.

In the bottom-left corner the red rectangle represent the view part of the diagram
visible in the main window.

Figure 2: Application Interface.

0.4 Formal Verification of Safety Cases

0.4.1 Vehicle Overtaking Scenario

A GSN diagram built in our SafeEd tool is represented in Fig. 3. The considered safety
scenario is taken from the autonomous driving domain. The top level goal g1 states that
any autonomous vehicle should ensure safety when operating in the environment. The
goal holds in two contexts: the existence of an environment formalisation (context c1),
respectively the existence of a mechanism providing situation awareness. One solution for
ensuring safety is dynamic risk assessment approach [12]. The corresponding strategy s1
used to support the goal g1 is to dynamically assess the risk. The sub-goals g2, g3, g4, and
g5 are used to fulfill the strategy s1. For instance, the sub-goal g2 claims the correctness
of the model, statement that is supported by various pieces of evidence, including formal
verification e2

The diagram in Fig. 3 is translated into the Abox represented in Fig. 4. Here, the
facts f51 to f54 assert the individuals to their corresponding GSN core elements. The struc-
ture of the GSN diagram based on the two relationships supportedBy and inContextOf

Intelligent Systems Group
Technical University of Cluj-Napoca

8

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

Figure 3: Autonomous vehicle scenario.

is formalised by the facts f55 to f62. The natural language text describing claims, solu-
tions, contexts or evidences are encapsulated as concrete attributes [10] in Racer syntax
(assertions f63 to f70).

The ISO 26262 standard states that any electrical/electronic product must ensure an
acceptable level of safety and requires building a safety case, but it does not tell you the
steps of building it [2]. Fig. 5 shows how such an analysis is performed in order to comply to
the ISO26262 requirements, according to [4]. The figure presents only the “hazard analysis
and risk assessment” component. The top level goal Goal1 is to show if the product ensures
a sufficient and acceptable level of safety.

The user should structure the safety case into product assurance cases and process
related assurance cases.

In figures 5, 6, 7 only the hazard analysis and risk assessment claim of the product is
developed and shown the corresponding process-based (Goal 2) and product-based(Goal
6) arguments.

The process-based goal Goal2 in refined in Fig. 6. The goal claims that the pro-
cess adopted to develop the product is correct and successfully completed. Goal2 is di-
vided, taking in account the roles (Strategy1) and activity steps(Strategy2), in 3 sub-goals:
Goal3 ,Goal4 and Goal5 . Goal4 claims that the hazards regarding the adapted process
of building the product have been identified and classified, using the Hazard identifica-
tion and analysis using HAZOP technique(HAZard and Operability analysis) to provide
the evidence, representing Evidence2 node, while Goal5 claims that all the hazard have
been carefully analyzed backward and forward, providing as solution hazard identifica-
tion and analysis using HAZOP technique(HAZard and Operability analysis) represented
as Evidence3 and Failure Modes and Effects Analysis (FMEA) procedure and Fault Tree
Analysis technique (FTA) as Evidence4 .

The product-based goal Goal6 is justified in Fig 7. This claims that the system has the
required safe behavior, if something fails then the system should be able to fail in a safe
way.The goal is divided in two goals: Goal7 and Goal8 . Goal7 claims that all the hazards
regarding the product have been found, while Goal8 states that the the effects and causes
of hazardous events have been analyzed. The goals have as solution techniques the same
nodes Evidence2 , Evidence3 , Evidence4 .

0.4.2 Validating the Safety Case

The RacerPro [10] reasoning engine is used by a tool to query and validate the Abox against
the GSN tbox. When analysing the diagram by querying the RacerPro engine the safety
engineer can simply identify the goals from the diagram that are still undeveloped or not
supported by evidence, goal descriptions or retrieve explanation why a goal belongs to a

Intelligent Systems Group
Technical University of Cluj-Napoca

9

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

(f51) g1 : Goal , g2 : Goal , g3 : Goal , g4 : Goal , g5 : Goal
(f52) c1 : Context , c2 : Context , c3 : Context
(f53) e1 : Evidence, e2 : Evidence,

e3 : Evidence, e4 : Evidence
(f54) s1 : Context , c2 : Context , c3 : Context
(f55) (g1, s1) : supportedBy
(f56) (g1, c1) : inContextOf
(f57) (g1, c2) : inContextOf
(f58) (g2, c3) : inContextOf
(f59) (g2, e1) : hasEvidence
(f60) (g2, e2) : hasEvidence
(f61) (g2, e3) : hasEvidence
(f62) (g2, e4) : hasEvidence
(f63) (g1 , “Autonomous Vehicle maintains safety when

operating in the environment”) : hasText
(f64) (g2 , “SAW model is correct , sufficient and

assures vehicle safety”) : hasText
(f65) (g3 , “Vehicle maintains situation

awareness”) : hasText
(f66) (g4 , “Vehicle performs optimal (safe) actions

”according to the vehicle policy”) : hasText
(f67) (g5 , “Environment profile assumptions are not

violated”) : hasText
(f68) (s1 , “Argument by application of dynamic risk

assessment”) : hasText
(f69) (e1 , “Hazard analysis results : analysis of

kinematic model and accident sequence”) : hasText
(f70) (e2 , “Evidence based on simulation”) : hasText
(f70) (e3 , “Evidence based on the analysis of

simulated and recorded real scenarios”) : hasText
(f70) (e4 , “Evidence based on operational system

performance statistics”) : hasText
(f70) (c1 , “Environment profile definition”) : hasText
(f70) (c2 , “Situation awareness (SAW) model”) : hasText
(f70) (c3 , “Situation awareness (SAW) model”) : hasText

Figure 4: Translating the GSN diagram in a description logic Abox.

Intelligent Systems Group
Technical University of Cluj-Napoca

10

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

Figure 5: Partial goals structure

Figure 6: Goal structure for the process based argument.

specific concept, check the consistency of the Abox. In this way, the safety engineer can
repair the problems and validate.

In our running scenario, after analysing the diagram, the engineer observers that
g3, g4, g5 are undeveloped goals that needs evidences or have to be divided into sub-goals.
If the engineer provides evidence for g3 then the goal will no longer be part of undeveloped
goals.

The following formal verifications are provided by the SafeEd system:

1. Every node can be traced back to the top-level claim. That is, there are no “dangling”
nodes or sets of nodes.

2. Each “leaf” node should either evidence or a reference to some previously reviewed
assurance case

3. Circular reasoning: identified by the RacerPro engine in the form of cycle concepts

Intelligent Systems Group
Technical University of Cluj-Napoca

11

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

Figure 7: Goal structure for the product based argument.

Table 1: Retrieving information about the safety case.

Query RacerPro query RacerPro an-
swer

Top level goal (concept − instances TopLevelGoal) g1
Support goals (concept − instances SupportGoal))) g2, g3, g4, g5
Evidence supporting goal
g2

(retrieve − individual − fillers g2 hasEvidence) e1, e2, e3, e4

Undeveloped Goals (concept − instances UndevelopedGoals) g3, g4, g5
Generate OWL (save − kb“PATH /kb.owl ′′ : syntax : owl)
Check if Abox is consistent (abox − consistent?)
Get all contexts of a specific
goal

(individual − fillers g1 inContextOf) c1, c2

0.4.3 Generation of Safety Case Metrics

Complementarily to supporting semantic reasoning, our system provides also quantitative
assessment of a safety case through several metrics developed.

The metrics are developed with the LISP API of RacerPro system. For instance, the
number of non-verified goals for safety case given as the ABox sc1 is computed with:

(length (concept − instances NotVerifiedGoal))

The main use case of metrics is to assess the progress during different stages of validating
the safety case. Given large safety cases, one can monitor the rate to which the number
individuals of type NotVerifiedGoal decreases.

Intelligent Systems Group
Technical University of Cluj-Napoca

12

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

0.4.4 Generating Natural Language Reports on the Safety Case

The tool supports the generation of documentation and reports for the safety case. As
technical instrumentation, we use use the RacerPro engine to further translate the ontology
from description logic syntax into Web Ontology Language (OWL). The OWL file is fed
to NaturalOWL [3] engine to transform the owl ontology into natural language and save
the files as pdf. The generated files will contain texts describing individuals or classes of
individuals from owl ontology.

Also reports with what still needs to be done or a report containing the assessment
and validation of the safety case can be generated. An example can be found in figure 8
representing a validation report generated by our tool for the car overtaking safety case
represented in Fig. 3. The report includes:

• nodes that do not have a description;

• elements that are not linked directly or indirectly through other elements of the
diagram to the top level goal;

• goals that do not have evidence or solution;

• incomplete goals that have undeveloped sub-goals.

The report provides also quantitative information of the diagram, in terms of number of
nodes and their types. With this report the safety engineer knows at any moment what
still needs to be added to the safety case to have a complete and well-build safety case.
Having the diagram and diagram documentation facilitate the work of the safety engineer
or certification auditors.

Figure 8: Example of a validation report.

0.5 Interleaving Argumentation and Model Checking

Given a Kripke structure M and a formula φ, with M¬ � φ, the task of model repair is
to obtain a new model M′ such that M′ � φ. We consider the following primitive update
operations [15].

[Primitive update operations] GivenM = (S ,R,L), the updated modelM = (S ′,R′,L′)
is obtained from M by:

Intelligent Systems Group
Technical University of Cluj-Napoca

13

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

1. (PU1) Adding one relation element: S ′ = S , L′ = L, and R′ = R ∪ {(si , sj)} where
(si , sj) 6∈ R for two states si , sj ∈ S .

2. (PU2) Removing one relation element: S ′ = S , L′ = L, and R′ = R \ {(si , sj)} where
(si , sj) 6∈ R for two states si , sj ∈ S .

3. (PU3) Changing labeling function in one state: S ′ = S , R′ = R, s
∗ ∈ SL′(s∗) 6= L(s∗),

and L′(s) = L(s) for all states s ∈ S \ {s∗}.

4. (PU4) Adding one state: S ′ = S ∪ {s∗}, s 6∈ S , R′ = R, ∀ s ∈ S ,L′(s) = L(s).

Our task is to build an argumentative based decision procedure that takes as input
a model M and a formula φ, it outputs a model M′ where φ is satisfied. The task ad-
dressed here focuses on a situation on which the specification of the model is not consistent.
Consider the following two “rules of the air” [13]:

R3: Collision Avoidance – “When two UAVs are approaching each
other and there is a danger of collision, each shall change its
course by turning to the right.”

R4: Navigation in Aerodrome Airspace – “An unmanned aerial ve-
hicle passing through an aerodrome airspace must make all
turns to the left unless [told otherwise].”

Let

A2 =


alter course(uav1 , right) −≺ aircraft(uav1), aircraft(uav2)

collision hazard(uav1 , uav2)
collision hazard(uav1 , uav2) −≺ approaching head on(uav1 , uav2),

distance(uav1 , uav2 ,X),X < 1000


in the argument 〈A2, alter course(uav1 , right)〉, a collision hazard occurs when two aerial
vehicles uav1 and uav2 approach head on, and the distance between them is smaller than
a threshold. The collision hazard further triggers the necessity to alter the course to the
right, according to the R3 specification. Let

A3 =


alter course(uav1 , left) −≺ aircraft(uav1),nearby(uav1 , aerodrom),

change direction required(uav1)
change direction required(uav1) −≺ collision hazard(uav1 , uav2)


in the argument 〈A3, alter course(uav1 , left)〉, if a change of direction is required in the
aerodrome airspace, the direction should be altered to the left. A possible conflict occurs
between arguments 〈A2, alter course(uav1 , right)〉 and 〈A4,∼ alter course(uav1 , right)〉
where:

A4 =
{
∼alter course(uav1 , right) −≺ alter course(uav1 , left)

}
.

The command 〈A5,∼alter course(uav1 , left)〉 conveyed from the ground control system
to change direction to the right acts as a defeater for the argument A3, where (notice that

Intelligent Systems Group
Technical University of Cluj-Napoca

14

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

strict rules should not form part of argument structures as they are not points of attack,
we abuse the notation here just for emphasis):

A5 =
{
∼alter course(uav1 , left) ← conveyed command course(uav1 , right)

}
Assume that the current model M satisfies the specification R3. The problem is how

to repair M with the model M′ which also satisfies R4. Our solution starts by treating
rules R3 and R4 as structured arguments. The conflict between them are solved by a
defeasible theory encapsulated as DeLP program, which outputs a dialectical tree of the
argumentation process. The information from this tree is further exploited to decide which
primitive update operations PUi are required to repair the model.

Firstly, consider the uav1 is in the obstacle detect od ∈ S state, where S is the set
of states in M with the labeling function L(od) = {uav2,¬a}. It means that uav1 has
detected another aerial vehicle uav2. Assume that in this state the DeLP program will
warrant the opposite conclusion a. This triggers the application of the primitive operation
PU3 which updates the labeling function L(od) = {uav2,¬a} with L′(od) = {uav2, a}.

Secondly, assume that the DeLP program based on the state variables uav2, and ¬a
and the nominal od infers a relation ri between od and another nominal i ∈ N of the
model. The repair consists of applying the operation PU1 on M, where the relation set
R′ is extended with a relation between the two states ob and i : R′ = R ∪ {(od , i)}. The
reasoning mechanism is possible because hybrid logic provides the possibility to directly
refer to the states in the model, by means of nominals.

Thirdly, the program can block the derivation of a relation r between the current
state and a next state. For instance, if L(od) = {uav2 , a} and the argument A3 suc-
ceeds, the transition between state od and state turn right can be removed. Formally,
R′ = R \ {(od , turn right)}.

Fourthly, if the DeLP program warrants, based on the current state variable and avail-
able arguments, a nominal i which does not appear in S , the set of states is extended with
this state: S ′ = S ∪ {i}.

These four heuristics are illustrated in the following section, by verifying the specifica-
tions in hybrid logics on the updated models.

0.6 Model Repair for an Unmanned Aircraft Vehicle

0.6.1 Illustrative Example

We consider the scenario presented in [14], referring to the safe insertion of an Unmanned
Aircraft Vehicle (UAV) into the civil air traffic. The scope is to demonstrate that safety
requirements are being met by such an UAV so that they do not interfere or put in danger
human controlled aircrafts. A mission is considered safe if all the major risks for the UAV
are identified and managed (e.g. collision with other objects or human-piloted aircrafts and
loss of critical functions). An UAV comes equipped with an autonomous control system,
responsible for decision making during the mission and keeps a communication link open
with a ground-base system (GBS), which provides all the required coordinates for the UAV.

Intelligent Systems Group
Technical University of Cluj-Napoca

15

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

The autonomous decision making performed by the UAV control system must consider the
general set of safety regulations imposed to a UAS during a mission at all times.

We propose a solution for modeling such Unmanned Aircraft Systems (UASs) in com-
pliance to the set of safety regulations. We will zoom over the following subset of the
“Rules of the Air” dealing with collision avoidance:

R1: Obstacle Detection – “All obstacles must be detected within
an acceptable distance to allow performing safely the obstacle
avoidance maneuver”

R2: Obstacle Avoidance – “All obstacles must be avoided by per-
forming safely a slight deviation from the preestablished path
and an immediate return to the initial trajectory once all colli-
sion risks are eliminated.”

R3: Collision Avoidance – “When two UAVs are approaching each
other and there is a danger of collision, each shall change its
course by turning to the right.”

The first rule states that all obstacles (e.g. human-controlled aircrafts, other UAVs,
etc.) that are interfering with the initial trajectory of the UAV must be signaled within a
certain limit of time such that to allow avoidance maneuvers to be performed by the UAV
in safe conditions. The avoidance maneuver as shown by rules R2 and R3 consists of a
slight change of the initial path to the right such that to allow the safe avoidance of the
approaching UAV followed by a repositioning on the initial trajectory.

0.6.2 Kripke Model for the Unmanned Aerial Vehicle

We will further represent the behavior of the UAV noted by uav1 captured in an obstacle
avoidance scenario. The following states will be considered in constructing the Kripke
model: path-following (pf), obstacle detection(od), turn left(tl) and turn right(tr). To
each state we will attach the boolean state variable uav2, which will indicate the presence
or absence of another approaching UAV. In the path-following state pf , the UAV uav1
performs a waypoint following maneuver, which includes periodical turns to the left or to
the right. The appearance of an obstacle (uav → >) leads to the transition of the UAV
into obstacle detection state od and from there in turn right tr state as part of the obstacle
avoidance maneuver, followed by a return to the initial path-following state.

The initial model M0 is presented below:

M0 = 〈{od , tr , tl , pf },

{r0, r1, r2, r3, r4, r5, r6},

{(pf , {¬uav2}), (od , {uav2}), (tr , {¬uav2}), (tl , {¬uav2})}〉

The corresponding hybrid Kripke structure is illustrated in Figure 9.

Intelligent Systems Group
Technical University of Cluj-Napoca

16

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

pf L0{¬uav2} od L1{uav2}

tl L2{¬uav2} tr L3{¬uav2}

r0

r1

r2
r3

r4

r5

r6

Figure 9: Kripke Model for the UAV.

0.6.3 Verifying Compliance to Safety Regulations

Once the modeling of the UAS is done, we have to verify whether the mentioned safety
regulations hold for this model. To be able to perform model checking, we will further
express the two safety regulations using hybrid logics:

R1 : [Next](od)→ tr (1)

The above formula corresponds to the first safety regulation R1 and states that once
the od (ObstacleDetect) state is reached then the immediate transition step should be done
towards an avoidance maneuver state, for our case here, state tr , meaning that the obstacle
was detected in time and it allowed the avoidance maneuver to be safely performed.

R2 : [Next](tr ∨ tl)→ pf (2)

The formula corresponding to safety regulation R2 states that all the next transitions
from the TurnRight or TurnLeft state should always lead to the PathFollow state.

The formula below corresponding to safety regulation R3 states that if another UAV is
detected in the od (ObstacleDetect) state then all next transitions should be done towards
the state tr (TurnRight):

R3 : • oduav2 → ([Next]od → tr) (3)

Intelligent Systems Group
Technical University of Cluj-Napoca

17

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

Model checking is performed to verify whether the formulas hold or not for that model.
To perform the model checking automatically, the Kripke structure corresponding to the
UAS model is translated into an XML file and given as input for the Hybrid Logic Model
Checker (HLMC) [5]. Each formula in HL is also given as input to the HLMC. Once
the tests are performed for each formula against the Kripke model, we can complete the
verification of the model. The result confirms that the modeled Kripke structure of the
UAS complies with the defined safety regulations.

0.6.4 Adapting the Model to New Specifications

We consider again the UAV scenario and we will present a solution for modeling the existing
UAS to include the introduction of new rules. For this, we will consider the initial set of
rules extended by a newly adopted norm for UAVs navigating in an Aerodrome Airspace:

R4: Navigation in Aerodrome Airspace – “An unmanned aerial ve-
hicle passing through an aerodrome airspace must make all
turns to the left [unless told otherwise].”

As a first step we will check whether the existing UAS model complies to the new
regulation R4. For this we will express the new rule as a HL formula and we will add to
each possible state the boolean variable a, which will become true when the UAV enters
an aerodrome airspace:

R4 : @ia → ([Next]i → (¬tr)) (4)

The formula states that all transitions from the states in which the state variable
aerodrome a holds should not lead to the tr (TurnRight) state, the only state which is
forbidden when navigating inside the aerodrome space. Since the only states from which
turns are possible are pf and od , we will consider only this subset for model checking. One
can observe that the formula does not hold for the existing model. Considering that the
aerodrome a state variable is true in the od (ObstacleDetect) state, one can observe that
the only allowed transition in the current model is to the tr (TurnRight) state. Therefore,
the existing model does not comply to the new regulation. Moreover, from the pf state
transitions are possible to the tl (TurnLeft) state, but also to the tr (TurnRight) states.
We argue that the existing model could be extended to include also the new rules without
having to construct a new model from the beginning. Although different solutions were
proposed for Kripke Model repairing [1], we propose a solution based on argumentation for
extending the model such that it complies to the updated set of regulations.

As a first step in our approach, we represent several possible extensions to the Kripke
Model as defeasible arguments and include them in DeLP for choosing the best possible
solution between different conflicting arguments. The proposed solution does not only
eliminate the complexity of proposed repair/updating algorithms [1], but it allows the
system to adapt to new information in a faster and more efficient manner.

Going back to our example, one can observe that there is no possibility for the UAV to
go into the tl state once it has reached the od state, but only to the tr state. Since inside

Intelligent Systems Group
Technical University of Cluj-Napoca

18

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

the aerodrome space, only turns to the left are permitted, then the link connecting od and
tr (r4) should be taken out from the model.

We will consider a new argument 〈A6, alter course(uav1 , left)〉, which suggests updating
rule R3 by allowing the obstacles to be avoided to the left, instead of to the right when
inside the aerodrome space, where:

A6 =


alter course(uav1 , left) −≺ aircraft(uav1), aircraft(uav2)

collision hazard(uav1 , uav2)nearby(uav1 , aerodrom)
collision hazard(uav1 , uav2) −≺ approaching head on(uav1 , uav2),

distance(uav1 , uav2 ,X),X < 1000

 .

We argue that for compliance to the new regulations, we only need to change all the
links in the model to point from the od and pf states only to the tl state instead of tr state
to avoid the collision.

Therefore, we need to perform the following PU operations for updating the model:

1. (PU2) Remove the relation elements (od , tr) and (pf , tr) such that we have: S ′ = S ,
L′ = L, and R′ = R \ {(od , tr), (pf , tr)}

2. (PU1) Add the relation element (of , tl) such that we have: S ′′ = S ′, L′′ = L′, and
R′′ = R′ ∪ {(od , tl)}

However, the remove operation should be necessary only when that specific relation
element causes a conflict between two arguments. In our case, if we consider arguments
A2, sustaining the application of the initial rule R2 and A6, sustaining a slight modifi-
cation of the rule R2 for navigation in aerodrome space, one can see that they do not
attack each other as they offer solutions for different contexts: the A2 argument refers to
collision avoidance outside the aerodrome space, while the A6 argument considers the case
of collision avoidance when the UAV is nearby an aerodrome. A similar reasoning applies
for the transition (pf , tr), which will be possible only when the state variable a does not
hold at pf . Therefore, the PU2 step can be left out and the updating of the model can be
done only through a PU1 operation. The decision to turn left or turn right will be taken
in accordance to the value of the state variable a, which indicates the presence or absence
of an aerodrome in the vicinity of the UAV.

We illustrate the update operation by adding a link r7 from the od state to the tl state.
Additionally, we attach to each state the boolean state variable a, such that it allows the
UAV to perform only those transitions that comply to the set of regulations in different
contexts, respectively inside or outside the aerodrome space. One can observe that if the
UAV reaches the od state, then it will decide to perform the transition to the next state
that has the same value for the state variable a as the od state. Therefore, if the UAV
uav1 detects another approaching UAV uav2 and it is outside the aerodrome space (¬a),
it will look for the next possible state that has the same value for the a state variable. As
one can see from Figure 10, the state that complies to this condition is tr . Also, if uav1 is
in the pf state and the state variable a holds at that state, then the possible transitions
will be tl or od .

Intelligent Systems Group
Technical University of Cluj-Napoca

19

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

If uav1 reaches the od state, while in the vicinity of an aerodrome, it will perform a
transition to the tl state, where the state variable a also holds. If uav1 reaches pf then it
will perform a transition to either tl or od states. The other transitions from the model
are not dependent on the state variable a, therefore they will remain the same as in the
initial model. By adding the condition ¬a for reaching state tr , we can avoid transitions
to that state when a holds for the model.

The updated model M1 is presented below:

M∞1 = 〈{od , tr , tl , pf },

{r0, r1, r2, r3, r4, r5, r6, r7},

{(pf , {¬uav2}), (od , {uav2}), (tr , {¬uav2,¬a}), (tl , {¬uav2})}〉

pf L0{¬uav} od L1{uav}

tl L2{¬uav} tr L3{¬uav ,¬a}

r0

r1

r2
r3

r4

r5

r6

r7

Figure 10: Extended Kripke model for the UAV compliant with the new regulation.

By checking next the R1, R2, R3 and R4 formulas against M∞, the results returned
by HLMC showed that they hold for the updated model.

The illustrated example captures a simple scenario for UAV missions, but we argue
that more complex conflicting situations can be handled by the presented argumentation
framework.

Intelligent Systems Group
Technical University of Cluj-Napoca

20

Bibliography

[1] George Chatzieleftheriou, Borzoo Bonakdarpour, ScottA. Smolka, and Panagiotis Kat-
saros. Abstract model repair. In AlwynE. Goodloe and Suzette Person, editors, NASA
Formal Methods, volume 7226 of Lecture Notes in Computer Science, pages 341–355.
Springer Berlin Heidelberg, 2012.

[2] Mirko Conrad, Patrick Munier, and Frank Rauch. Qualifying software tools according
to ISO 26262. In MBEES, pages 117–128, 2010.

[3] I. Androutsopoulos D. Galanis. Generating multilingual descriptions from Linguisti-
cally Annotated OWL Ontologies: the NaturalOWL system. 2007.

[4] Raghad Dardar, Barbara Gallina, Andreas Johnsen, Kristina Lundqvist, and Mat-
tias Nyberg. Industrial experiences of building a safety case in compliance with ISO
26262. In Software Reliability Engineering Workshops (ISSREW), 2012 IEEE 23rd
International Symposium on, pages 349–354. IEEE, 2012.

[5] Massimo Franceschet and Maarten de Rijke. Model checking hybrid logics (with an
application to semistructured data). Journal of Applied Logic, 4:279–304, 2006.

[6] Sergio Alejandro Gómez, Anca Goron, and Adrian Groza. Assuring safety in an air
traffic control system with defeasible logic programming. In XLIII Jornadas Argenti-
nas de Informática e Investigación Operativa (43JAIIO)-XV Argentine Symposium on
Artificial Intelligence (ASAI)(Buenos Aires, 2014), 2014.

[7] Anca Goron, Adrian Groza, Sergio Alejandro Gómez, and Ioan Alfred Letia. Towards
an argumentative approach for repair of hybrid logics models.

[8] Adrian Groza and Nicoleta Marc. Consistency checking of safety arguments in the goal
structuring notation standard. In IEEE 10th International Conference on Intelligent
Computer Communication and Processing (ICCP2014), Cluj-Napoca, Romania, 4-6
September 2014, pages 59–66. IEEE, 2014.

[9] S.A. Gómez, A. Groza, and C.I. Chesñevar. An argumentative approach to assessing
safety in medical device software using defeasible logic programming. In Simona Vlad
and Radu V. Ciupa, editors, International Conference on Advancements of Medicine
and Health Care through Technology; 5th – 7th June 2014, Cluj-Napoca, Romania,

21

ARGSAFE: Using Argumentation for Justifying Safeness of Complex
Technical Systems

volume 44 of IFMBE Proceedings, pages 167–172. Springer International Publishing,
2014.

[10] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The RACER Pro
knowledge representation and reasoning system. Semantic Web, 3(3):267–277, 2012.

[11] Carlos Chesñevar Ioan Letia Anca Goron Mauro Gómez Lucero Sergio Alejan-
dro Gómez, Adrian Groza. Rgsafe: Usando argumentación para garantizar seguridad
en sistemas técnicos complejos. In XVI Workshop de Investigadores en Ciencias de la
Computación (WICC 2014)Ushuaia, Tierra del Fuego, Argentina, 5 y 6 de mayo de
2014, pages 86–90. 2014.

[12] Andrzej Wardziński. Safety assurance strategies for autonomous vehicles. In Computer
Safety, Reliability, and Security, pages 277–290. Springer, 2008.

[13] Matt Webster, Michael Fisher, Neil Cameron, and Mike Jump. Formal methods
for the certification of autonomous unmanned aircraft systems. In Computer Safety,
Reliability, and Security, pages 228–242. Springer, 2011.

[14] Matt Webster, Michael Fisher, Neil Cameron, and Mike Jump. Model checking and
the certification of autonomous unmanned aircraft systems. Technical Report ULCS-
11-001, Department of Computer Science, University of Liverpool, Liverpool, United
Kingdom, 2011.

[15] Yan Zhang and Yulin Ding. CTL model update for system modifications. J. Artif.
Intell. Res.(JAIR), 31:113–155, 2008.

Intelligent Systems Group
Technical University of Cluj-Napoca

22

	Objectives
	Modeling the GSN Standard in Description Logic
	SafeEd Tool
	Formal Verification of Safety Cases
	Vehicle Overtaking Scenario
	Validating the Safety Case
	Generation of Safety Case Metrics
	Generating Natural Language Reports on the Safety Case

	Interleaving Argumentation and Model Checking
	Model Repair for an Unmanned Aircraft Vehicle
	Illustrative Example
	Kripke Model for the Unmanned Aerial Vehicle
	Verifying Compliance to Safety Regulations
	Adapting the Model to New Specifications

