
FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

JUSTIFYING SOFTWARE SYSTEMS SAFETY USING ARGUMENTS

LICENSE THESIS

Graduate: Nicoleta Catalina MARC
Supervisor: Lect.dr.eng Adrian GROZA

2014

FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

DEAN, HEAD OF DEPARTMENT,
Prof. dr. eng. Liviu MICLEA Prof. dr. eng. Rodica POTOLEA

Graduate: Nicoleta Catalina MARC

JUSTIFYING SOFTWARE SYSTEMS SAFETY USING ARGUMENTS

1. Project proposal: In safety-critical applications it is necessary to justify the soft-
ware conformance with specifications and standards. Certification bodies require the
construction of assurance cases, that contain claims supported by evidence obtained
during development and testing of the system. It is important to build well-structured
and coherent safety cases, because wrong construction and reasoning in safety argu-
ments can undermine system’s safety claims and lead to failures. We developed a
tool that facilitate the construction and assessment of safety cases. The tool sup-
ports the Goal Structuring Notation standard for creation of safety arguments. The
GSN diagrams are translated in description logic, in order to formally check various
properties of the safety case.

2. Project contents: Presentation page, Introduction, Project Obectives and Specifica-
tions, Bibliographic research, Analysis and Theoretical Foundation, Detailed Design
and Implementation, Testing and Validation, UserâĂŹs manual Conclusions and
Further Work, Bibliography, Appendices

3. Place of documentation: Technical University of Cluj-Napoca, Computer Science
Department

4. Consultants: Lect.dr.eng. Adrian Groza

5. Date of issue of the proposal: November 1, 2014

6. Date of delivery: July 3, 2014

Graduate: Nicoleta Catalina Marc

Supervisor: Lect.dr.eng. Adrian GROZA

FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

Declaraţie pe proprie răspundere privind
autenticitatea lucrării de licenţă

Subsemnata Marc Nicoleta Catalina , legitimat(ă) cu seria AX nr. 377045 CNP
2911205012661, autorul lucrării Justifying software systems safety using arguments

elaborată ı̂n vederea susţinerii examenului de finalizare a studiilor de licenţă la
Facultatea de Automatică şi Calculatoare, Specializarea Calculatoare in limba Engleza
din cadrul Universităţii Tehnice din Cluj-Napoca, sesiunea Iulie a anului universitar 2013-
2014, declar pe proprie răspundere, că această lucrare este rezultatul propriei activităţi
intelectuale, pe baza cercetărilor mele şi pe baza informaţiilor obţinute din surse care au
fost citate, ı̂n textul lucrării şi ı̂n bibliografie.

Declar, că această lucrare nu conţine porţiuni plagiate, iar sursele bibliografice au
fost folosite cu respectarea legislaţiei române şi a convenţiilor internaţionale privind drep-
turile de autor.

Declar, de asemenea, că această lucrare nu a mai fost prezentată ı̂n faţa unei alte
comisii de examen de licenţă.

În cazul constatării ulterioare a unor declaraţii false, voi suporta sancţiunile admin-
istrative, respectiv, anularea examenului de licenţă.

Data Nume, Prenume

Semnătura

List of Tables

2.1 Problem Statement and Solution . 18

4.1 Syntax and semantics of ALC. 34
4.2 Retrieving information about the safety case. 39

6.1 Retrieving some information about the safety case represented in figure 6.1. 54
6.2 Retrieving some information about the safety case represented in figure 6.4. 57
6.3 Retrieving some information about the safety case represented in figure 6.6. 59
6.4 Tools Comparison Table . 62

List of Figures

2.1 System’usecase . 20

3.1 Acedit tool screenshot . 22

3.2 AdvoCATE tool screenshot . 23

3.3 D-case editor tool screenshot . 24

4.1 Elements of a safety case . 29

4.2 Goal Structuring Notation elements . 30

4.3 Partial goals structure . 30

4.4 Goal structure for the process based argument. 31

4.5 Goal structure for the product based argument. 32

4.6 Example of safety case represented using GSN. 33

4.7 System Architecture . 37

4.8 Flow Chart Querying the diagram . 41

4.9 Flow Chart for validating the diagram . 42

5.1 System Archtecture . 43

5.2 Component Diagram . 44

5.3 Component Diagram . 45

5.4 Class diagram for console plug-in. 47

5.5 Class diagram for ontology actions plug-in. 48

5.6 Class diagram for parser plug-in. 49

5.7 Class diagram for ontology plug-in. 50

5.8 Application Interface . 52

6.1 Autonomous vehicle scenario. 54

6.2 Translating the GSN diagram in a description logic Abox. 55

6.3 Translating the GSN diagram in Abox using our tool. 56

6.4 Therac 25 safety case. 58

6.5 Translating the Therac 25 safety case in a description logic Abox. 59

6.6 Airspace-system safety case. 60

6.7 Airspace-system safety case translated in Abox using our tool 61

11

7.1 Autonomous vehicle scenario. 65
7.2 Command Console. 66

Contents

List of Tables 9

List of Figures 11

Chapter 1 Introduction 16
1.1 Organization of the paper . 17

Chapter 2 Project Obectives and Specifications 18
2.1 Problem Statement and Solution . 18
2.2 Goals and Objectives . 18

2.2.1 Bussiness Goals and Objectives . 18
2.2.2 Project Goals and Objectives . 19

2.3 Functional requirements . 19
2.4 Non-functional requirements . 20

Chapter 3 Bibliographic research 22

Chapter 4 Analysis and Theoretical Foundation 28
4.1 Safety Case . 28

4.1.1 ISO26262 standard . 29
4.2 Goal Structuring Notification . 31

4.2.1 Elements of GSN . 31
4.3 Description Language . 34
4.4 Modeling the GSN Standard in Description Logic 35
4.5 Functionality . 37

4.5.1 Diagram translation and Reasoning in safety arguments 37
4.5.2 Validating the Safety Case . 38
4.5.3 Generation of Safety Case Metrics 40
4.5.4 Generating Natural Language Reports on the Safety Case 40

Chapter 5 Detailed Design and Implementation 43
5.1 System Architecture . 43

5.1.1 GSN editor . 44

14

5.2 Implementation details . 45
5.2.1 GSN plug-ins . 45
5.2.2 GSN ontology plug-ins . 46

5.3 User Interface . 50

Chapter 6 Testing and Validation 53
6.1 Testing the tool . 53

Chapter 7 User’s manual 63
7.1 System Installation . 63
7.2 User’s Manual . 64

Chapter 8 Conclusions 67
8.1 Contributions and Achievements . 67
8.2 Further Work . 68

Bibliography 69

Appendix A Published papers 71

15

Chapter 1

Introduction

Chapter 1 describes the problem statement and its solution.

In the past few years the number of safety critical systems has grown, the question is
how do we know if they are safely-made and secure, any system that presents a certain level
of risks must prove that its behavior should be trusted. Nowadays software safety assurance
is often demonstrated by compliance with national or international safety standards. The
assurance cases are used to decide if the system is safe and secure solely from the provided
evidence. Their usage has grown in the last years and in certain domains, like the nuclear
field, it is mandatory to build a safety case. This proves that, currently, assurance cases
are the answer to our question. Assurance cases have evolved from the concept of safety
cases and they contain claims supported by the evidence obtained during development and
testing of the system. It is very important to build well-structured and coherent safety cases
because wrong construction and reasoning in safety arguments can undermine a systems
safety claims and lead to failures of the system. Over the last years, many documents have
appeared about how to describe and graphically structure an assurance case. One of these
documents is the Goal Structuring Notation, also known as GSN. The Goal Structuring
Notation is an argumentation notation used to structure and graphically represent a safety
argument. Even though we have a solid standard for representing safety cases, it doesn’t
reduce the risk of building incomplete and bad-structured assurance cases because of bad
assessment of tha safety case, i.e the number of claims could be very high and therefore
will be hard to follow by the safety engineer. A solution to this problem is to develop a
tool that facilitates the construction and assessment of safety cases. The main feature of
the tool is to translate the GSN graphical notation into description logic in order check
the GSN model for consistency. Hence, the GSN model for a safety critical application can
be specified both in graphical notation and in description logic. The advantage is that the
specific reasoning services of description logic are enacted to verify the compliance of the
case with the GSN standard and also to signal possible argumentation flaws.

16

1.1. ORGANIZATION OF THE PAPER 17

1.1 Organization of the paper

Chapted I presents an introduction in arguing software safety domain.
In Chapter II we introduce the theme and the objectives of our system.
In Chapted III are presented all the references for the project within the project

domain and related work.
Chapter IV presents the elements of a safety argument, introduces the techincal

instrumentation used: the Goal Structuring Notation plus description logic.
Chapter V details the architecture of the system and implementation.
In Chapter VI are presented the needed resources and steps for installing the appli-

cation, and how to use it.
Chapter VII focuses on methods for testing and validating our tool.
Finally, in Chapter VIII we present the conclusion and further work.

Chapter 2

Project Obectives and Specifications

2.1 Problem Statement and Solution

For many systems that present a certain level of resk safety is a good practice to
justify, prior to deployment, if and why the sofware behavior should be trusted. Because
structured and evidence-based arguments are more and more used to describe the assurance
of the system, many international standard adopted this strategy.

As explained in table 2.1, the problem arises in assessing complex safety cases and
proving that the system is sufficiently secure through the sufficient solutions and evidence
are provided for each stated claim in the safety case. The found solution is using ontology
reasoning serivices because the ontology provides a source of well-defined terms that can
be used in descriptions of safety case nodes. The safety case knowledge can be represented
as a ontology and after queries can be run on that ontology.

Table 2.1: Problem Statement and Solution
The problem of building incomplete safety cases because

of bad safety case assessment
affects system’s safety and the safety engineer
the impact of which is incomplete description of systems assurance
a successful solution would be improve the assement of the tool using

reasoning services

2.2 Goals and Objectives

2.2.1 Bussiness Goals and Objectives

Nowadays many international standards require for systems that present a certain
level of risk to justify, prior to deployment, why software behavior is to be trusted. Because

18

2.3. FUNCTIONAL REQUIREMENTS 19

of this, the bussiness goals and objectives for this project will focus on implementing a
tool that:

• improves assement of safety cases

• reduces the risks of not building well-structured and complete assurance cases

• is easy to use

• eases the work of the safety engineer

• enables the evaluation of the realism of the cases

2.2.2 Project Goals and Objectives

The project main goal is to develop a system that:

• accomplish project business goals and objectives

• supports automated construction and assessment of safety cases

• that can be used to justify the correctenes of the users critical systems and if systems
obeys the international standards

• translates the safety case into description logic

• uses reasoning services for better assesment of safety cases

• validates the safety case

• generates documentation and reports for the safety case

2.3 Functional requirements

In the use case diagram from figure 2.1 we have captured the requirements of the
system. Using our tool, the user should be able to:

1. build and edit safety case diagram

2. export any diagram as image (jpg or png)

3. get a file conatining the translated the diagram into A-box

4. load or set the current Abox for querying

5. query the diagram from a special console used only for this

20 CHAPTER 2. PROJECT OBECTIVES AND SPECIFICATIONS

Figure 2.1: System’usecase

6. validate his safety case and get a file with the status of the validation

7. Generate documentation and reports

2.4 Non-functional requirements

Usability:

The user interface shall be very easy to use and intuitive. Two goals should be
strived for one click away functionality intuitive interface - zero training. Also the system
should prevent the user before making errors and if the errors are made the the user will
we notified about the errors.

Extensibility:

Take into consideration further work, extending and adding product features.

Documentation:

An Administration Guide and a User Guide should be developed in .pdf format.

2.4. NON-FUNCTIONAL REQUIREMENTS 21

Operating constraints:
Reasoning engine RacerPro are needed in querying the safety case, plus java jRacer

library for creating a java racer client connection to the engine. NaturalOwl engine is used
to generate documentation of de description logic in natural language.

Reusability:
Ontology code should be in a separate plug-in so that it can be reused. Do the same

for the command console code.

Chapter 3

Bibliographic research

In order to build the tool we have studied several tools used for building safety cases,
among them ACedit [1] and AdvoCATE [2] Both tools are used to create safety cases and
use the GSN for structuring the safety arguments.

ACedit [1] is an open-source editor used to create Assurance Cases based on the
Goal Structuring Notation standard and the OMG Argumentation Metamodel. The tool
can be used only for creating and editing a safety case, it lacks at the assessment of the
safety-case. Out tool is an improvement of this tool, being added new features like the
option of querying the diagram using ontologies, better validation, creation of reports and
documentation, usage of safety metrics for the assessment of the safety cases. Figure 3.1
represents a screenshot of this tool.

Figure 3.1: Acedit tool screenshot

AdvoCATE [2] is an Assurance Case Automation ToolsEt, to support the auto-
mated construction and assessment of safety cases. The tool is more complex then ACedit.

22

23

AdvoCATE is an assurance case automation toolset, and has been build to support the
automated construction and assessment of safety cases. The main features of the tool are:
i) create and edit of assurance cases; ii) import and export of a variety of safety case for-
mats currently those produced from the ASCE, CertWare, and D-Case tools; iii) assemble
automatically fragments of safety cases; iv) Computation of metrics, direct measurement
and evaluation of the safety case

Figure 3.2 represents a scrrenshot of this tool.

Figure 3.2: AdvoCATE tool screenshot

The novelty of our approach is that the assurance case is automatically translated in
description logic. The advantage is that the specific reasoning services of description logic
are enacted to verify the compliance of the case with the GSN standard and also to signal
possible argumentation flaws. The difference between our tool and this one is the fact that
using ours the user will be able to build simple or complex queries for interrogating the
diagram at any time during the development and not being limited only to metrics, this
is a plus at the assessment of the diagram. D-case Editor is another tool for constructing

safety cases, developed by DEOS(Dependeble Embedded Operating System for Practical
Uses). Similar to our tool, it is an Eclipse plugin based on the Eclipse GMF framework
and supports GSN standard. It is a prototype of a dependability case editor and has a

24 CHAPTER 3. BIBLIOGRAPHIC RESEARCH

GSN pattern library function and ptototype checking function. Figure 3.3 represents a
scrrenshot of this tool.

Figure 3.3: D-case editor tool screenshot

A tool for integrating informal and formal reasoning has been proposed in [3]. The
focus is on tracing requirements from natural language representation towards formal prop-
erties verified using model checking. The tool is a plugin for Eclipse developed on top of
ProR plugin for tracing natural language requirements and Rodin for modelling properties
in the Event-B language.

For implementing the reasoning feature of our system we studied about descrip-
tion logics from the book [4].It presents description logic plus modelling and technical
details, the syntax of knowledge bases of the description logic SROIQ, presents the ALC
description logic.

In paper [5] is presented the RacerPro system, a knowledge representation system
based that implements a highly optimized tableau calculus for a very expressive description
logic. Advantages of using this engine is that it offers reasoning services for multiple T-
boxes and for multiple A-boxes as well and it provides us an API with Racer Client for
Java.

For safety cases building and assesment we studied the following articles: [6] and
[7]. In the paper [6] is presented a new way to structure assurance cases using assured
safety arguments. According to the authors any safety arguments has two components:

25

• a safety argument that documents the arguments and the evidence used to establish
direct claims of system safety

• a confidence argument that justifies the sufficiency of confidence in this safety argu-
ment.

This decomposition gives greater clarity of purpose and helps avoiding the introduction
of unnecessary arguments and evidence. Many difficulties are encountered when having
a single argument elements that documents both direct arguments of risk mitigation and
supporting arguments, for example:

• Because there is too much information in just one argument, the arguments will
become to large and and unwieldy, leading to difficulty in reviewing them because
of the size and lack of focus.

• It is more difficult to see the incompleteness or poor structure in the safety argument

• Arguments tend to be indirect and unfocused, and the link between elements of the
argument and risk is often lost.

• Arguments become difficult to build, and weaknesses of the argument are sometimes
not evident and so are easily overlooked.

These difficulties are serious since they all detract from the basic purposes of us- ing
safety cases. Linking the two arguments provides a mechanism for guiding analysis of the
interrelationship between safety and confidence. Both papers [6] and [7] claim that any
safety argument should focus on identification, management and mitigation of hazards
associated with the system. All the elements of a safety case are part of the causal chain
of hazard. The safety case is based on claims, any claim is broken into sub-claims until
is reached a point when the claims can be proved by the development or assessment of
an artefact as evidence. Every claim and strategy adopted tu support the claim shoulf be
very clearly formulated and state the context in which the argument is made. The solution
proposed by the authors for this is to represent graphically the safety argument because it
is clearer than through narrative text because in a narrative text is more difficult for the
reader to identify the individual elements and structure of the argument. In paper [8] the

authors propose a method for assessing software safety and security standards by capturing
and criticising their arguments. This method assumes following three steps: argument
capture, argument criticism, and issue sentencing. In the first step, argument capture,
the standard requirements are ideentified through analysis and also the specific claims
assumed by those requirements and the evidence supporting the claims.The standard’s text
should be used in the captured argument as much as practical.Throughout this process, the
standard should be captured as accurately as possible. The second step called argument
criticism, focuses on reviewing the fragments of argument by following the next phases:

1. Take into consideration misinterpretations of the argument

26 CHAPTER 3. BIBLIOGRAPHIC RESEARCH

2. Try to draw out implicit or explicit assumptions

3. Judge the necessity of each assumption

4. Search for errors the argument

5. Identifies where ”independent”lines of reasoning depend upon common sub-arguments

6. Take into account strengthening the argument

7. Determines whether negative experience with similar systems might provide coun-
terevidence

8. Judges the strength of the argument

In the last step, issue sentencing, the analyst shoul re-examines each identified issue to de-
termine what hazards from the standard are reflected More about safety argument strategis

have been studied from paper [9]. In his papers he investigates the issues of autonomy for
safety-critical systems, the ways of safety assurance and the structure of safety arguments.
He proposes two approches for autonomous vehicle safety. The first one is the classical one
uses hazard analysis approach and is based on safety barriers. This solution aims to iden-
tify event sequences leading to accidents and ways to control risks, the safety is perceived
in a binary way. The second solution is based on the dynamic risk assesment approach, i.e.
design a system which is able to perceive and interpret risk factors and evaluate if foward-
ing will lead to a safe state or ends with an accident. Autonomous systems rise problems

for safety analysis and safety assurance, and therefore for certification. ISO 26262 stan-
dard and safety cases of systems obeying this standard have been studied in papers [10]
and [11] The standard for vehicles requires building a safety case for electrical/electronic
that presents a certain level of risks in order to prove that the system requirements are
complete and satisfied by evidence.

In the paper [12] the user presents the case study of Therac 25 machine that had
massively overdosed six people. Therac 25 is a computer controlled therapy machine that
can treat the patient with relatively low energy electron beams or with X-ray. From the
safety analysis of the system, it can be seen that the developers focus more on the tech-
nology from olders versions of this machine than on the changes introduced by the new
machine, they didn’t go throug all phases of the project development, residual software
errors have been omitted from the analysis, many hardware safety stops were removed
because they thought that the software was better. Another bad practice commited by
them: not performing risk assessment for the software, reuse of older machine’s software
without checking for faults and making the system hard to use by the others (the error
messages were very difficult to understand because they didn’t specified the exact cause,
they were like “MALFUNCTION 47” OR “VILT” and therefore the errors were ignored
by the practitioners). The case presented by the author is just a start because it doesn’t

27

contain very detailed the system requirements, hazard identification and a risk analysis
haven’t been performed, but a top level safety case can be build. The most important
requirements established by the author are: more detailed error messages, the maximum
limit for MeV electron treastments should be set,occurence of errors should stop the ma-
chine, the computer should select the correct energy and modes.

Chapter 4

Analysis and Theoretical Foundation

4.1 Safety Case

Safety cases are used in risk safety domain, in case of systems that presents a certain
level of risks in order to prove that the system requirements are complete and satisfied by
evidence.

In this thesis the safety case is defined in the following terms:
“ A safety case should communicate a clear, comprehensive and defensible argument

that a system is acceptably safe to operate in a particular context “
Assurance cases are build using safety arguments, each safety arguments should

focus on identifying and reducing the hazards associated with the system. The safety
argument is based on claims, any claim is broken into sub-claims until is reached a point
when the claims can be proved by the development or assessment of an artefact as evidence.
Every claim and strategy adopted to support the claim shoulf be very clearly formulated
and state the context in which the argument is made so that the graphical representation
of the safety case will be well structured.

The elements of any safety case are represented in figure 4.1, they are:

• Claim: the statement or assertion

• Evidence: represents the provided evidence, facts assumptions or subclaims to sup-
port the claim

• Argument: it is the linkage between the claim and the evidence

• Inference: the mechainsm providing the transformational rules for the argument

The most important aspects of an safety case are:

• argument: any safety case builds an argument based on the provided evidence, ac-
cording to this argument someone can reasonably determine that the system is rela-
tively safe

28

4.1. SAFETY CASE 29

Figure 4.1: Elements of a safety case

• clear: any safety case must be clear because all the information provided must be
understood by unexperienced people.

• system: a safety case can be build for any system

• acceptably: it is very hard to prove that a system is 100% safety, the goal of an
assurance cases goal is to convince the others that the system is safety enough to be
used.

• context: The context of using the system must be specified in the safety case, because
context-free safety is impossible to argue.

4.1.1 ISO26262 standard

Many safety standards require now the construction of safety cases for systems that
may present a certain level of risk.

THe ISO 26262 standard states that any electrical/electronic product must ensure
an acceptable level of safety and requires building a safety case, but it does not tell you
the steps of building it [13]. Fig. 4.3 shows how such an analysis is performed in order
to comply to the ISO26262 requirements, according to [14]. The figure presents only the
“hazard analysis and risk assessment” component. The top level goal Goal1 is to show if
the product ensures a sufficient and acceptable level of safety.

The user should structure the safety case into product assurance cases and process
related assurance cases.

In figures 4.3, 4.4, 4.5 is developed only the “hazard analysis and risk assessment”
claim of the product and is shown the corresponding process-based (Goal 2) and product-
based(Goal 6) arguments.

The process-based goal Goal2 in refined in Fig. 4.4. The goal claims that the
process adopted to develop the product is correct and successfully completed. Goal2 is di-
vided, taking in account the roles (Strategy1) and activity steps(Strategy2), in 3 sub-goals:

30 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

Figure 4.2: Goal Structuring Notation elements

Figure 4.3: Partial goals structure

Goal3 ,Goal4 and Goal5 . Goal4 claims that the hazards regarding the adapted process
of building the product have been identified and classified, using the Hazard identifica-
tion and analysis using HAZOP technique(HAZard and Operability analysis) to provide
the evidence, representing Evidence2 node, while Goal5 claims that all the hazard have
been carefully analyzed backward and forward, providing as solution hazard identification
and analysis using HAZOP technique(HAZard and Operability analysis) represented as
Evidence3 and Failure Modes and Effects Analysis (FMEA) procedure and Fault Tree
Analysis technique (FTA) as Evidence4 .

The product-based goal Goal6 is justified in Fig 4.5. This claims that the system
has the required safe behavior, if something fails then the system should be able to fail in
a safe way.The goal is divided in two goals: Goal7 and Goal8 . Goal7 claims that all the
hazards regarding the product have been found, while Goal8 states that the the effects
and causes of hazardous events have been analyzed. The goals have as solution techniques

4.2. GOAL STRUCTURING NOTIFICATION 31

Figure 4.4: Goal structure for the process based argument.

the same nodes Evidence2 , Evidence3 , Evidence4 .

4.2 Goal Structuring Notification

Our tool uses Goal STRucturing Notation to represent assurance cases structure,
mainly because inn last years, GSN has been more and more used in risk-based safety
domain. GSN presents a new argumentation notation for structuring and representing
graphically safety arguments

4.2.1 Elements of GSN

Having a well defined structured, GSN standard increases the chance of identifying
gaps in proving the goal and providing evidence.

According to GSN standard, the main elements of an safety argument are: goal,
strategy, solution, context, assumption, justification. The Goal represents the statement
that needs to be proved, it can be divided in sub-goals until its reached the level where the

32 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

Figure 4.5: Goal structure for the product based argument.

sub-goal can be supported by evidence. Strategy element is used to describe the method
aproached by the system to prove the claim.

A Solution node provides the evidence or references to the evidence supporting the
goal. Context element provides information relevant for the corresponding goal, while the
assumption element will provide statements that are already true. Justification elements
is used to explain why the provided evidence is enough to prove the goal. These elements
can be related to each other using two relations: inContextOf , only between goal and
context, and solvedBy. Figure 4.2 contains elements of the GSN standard represented as
follows: goals with rectangular, strategies with paralelograms, evidence and solutions are
represented by circle, assumptions and justifications with ellipse, context by a rectangular
with rounded corners.

The supportedBy relation is rendered as an arrow with the solid and allows inferen-
tiol or evidential relationships to be documented. It is used to establish the following con-
nections: goal-to-goal, goal-to-strategy, goal-to-solution, strategy-to-goal, goal-to-solution,
goal-to-justification. The inContextOf relation is represented by an arrow with empty head
and is used to declare a contextual relationship. This relation permits connection between
goal or strategies with context, justification or assumption elements.

In figure 4.6 we have an example of goal structure composed with GSN elements.
It can be seen that we have a main goal, the top level goal, which is solved by other goals,
the support goals, and strategies. Each goal,in turn, can happen in different contexts or
different assumptions about the goal can be made, and the goal could be divided in ther
sub-goals, strategies or could be supported by evidence

4.2. GOAL STRUCTURING NOTIFICATION 33

F
ig

u
re

4.
6:

E
x
am

p
le

of
sa

fe
ty

ca
se

re
p
re

se
n
te

d
u
si

n
g

G
S
N

.

34 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

4.3 Description Language

DLs are based on a vocabulary, also called signature, containing individual names,
concept names (unary predicates) and role names (binary predicates).

In the description logic ALC, concepts are built using the set of constructors formed
by negation, conjunction, disjunction, value restriction, and existential restriction [4], as
shown in table 4.1. Here, C and D represent concept descriptions, while r is a role name.
The semantics are defined based on an interpretation I = (∆I , ·I), where the domain ∆I

of I contains a non-empty set of individuals, and the interpretation function ·I maps each
concept name C to a set of individuals CI ∈ ∆I and each role r to a binary relation
rI ∈ ∆I × ∆I . The last column of table 4.1 shows the extension of ·I for non-atomic
concepts.

Table 4.1: Syntax and semantics of ALC.
Constructor Syntax Semantics
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

existential restriction ∃r.C {x ∈ ∆I |∃y : (x, y) ∈ rI ∧ y ∈ CI}
value restriction ∀r.C {x ∈ ∆I |∀y : (x, y) ∈ rI → y ∈ CI}
individual assertion a : C {a} ∈ CI

role assertion (a, b) : r (a, b) ∈ rI

An ontology consists of terminologies (or TBoxes) and assertions (or ABoxes).

Definiţie. A terminology TBox is a finite set of terminological axioms of the forms C ≡
D or C v D.

Definiţie. An assertional box ABox is a finite set of concept assertions a:C or role as-
sertions (a,b):r), where C designates a concept, r a role, and a and b are two individuals.
Usually, the unique name assumption holds within the same ABox .

A concept C is satisfied if there exists an interpretation I such that CI 6= ∅. The
concept D subsumes the concept C, represented by C v D , if C I ⊆ D I for all interpre-
tations I. Constraints on concepts (i.e. disjoint) or on roles (domain, range of a role,
inverse roles, transitive properties), number constraints (max, min), role inheritance
(parent role) can be specified in more expressive description logics1.

1This paper provides only some basic terminologies of description logics to make it self-contained. For
a detailed explanation about families of description logics, the reader is referred to [4].

4.4. MODELING THE GSN STANDARD IN DESCRIPTION LOGIC 35

4.4 Modeling the GSN Standard in Description Logic

The relationship supportedBy , allows inferential or evidential relationships to be
documented. The allowed connections for the supportedBy relationship are: goal-to-goal,
goal-to-strategy, goal-to-solution, strategy to goal. Axiom A1 specifies the range for the
role supportedBy :

(A1) > v ∀supportedBy .(Goal t Strategy t Solution)

Axiom A2 specifies the domain of the role supportedBy , axiom A3 introduces the
inverse role supports , and A4 constraints the role supportedBy to be transitive.

(A2) ∃supportedBy .> v Goal t Strategy
(A3) supportedBy− ≡ supports
(A4) supportedBy v supportedBy

(define-primitive-role supportedBy :domain (or Goal Strategy)

:range (or Goal Strategy Solution) :inverse supports :transitive t)
(define-primitive-role inContextOf :domain (or Goal Strategy)

:range (or Context Justification Assumption))

Inferential relationships declare that there is an inference between goals in the ar-
gument. Evidential relationships specify the link between a goal and the evidence used
to support it. Axioms A5 and A8 specify the range of the roles hasInference, respectively
hasEvidence, while A6 and A9 the domain of the same roles. Definitions A7 and A10

say that the supportedBy is the parent role of both hasInference and hasEvidence, thus
inheriting its constraints.

(A5) > v ∀hasInference.Goal
(A8) > v ∀hasEvidence.Evidence
(A6) ∃hasInference.> v Goal
(A9) ∃hasEvidence.> v Goal
(A7) hasInference v supportedBy
(A10) hasEvidence v supportedBy

(define-primitive-role has-inference :parent supportedBy :domain Goal

:range Goal)
(define-primitive-role has-evidence :parent supportedBy :domain Goal

:range (or Evidence solution))

Goals and sub-goals are propositions that we wish to be true that can be quantified
as quantified or qualitative, provable or uncertainty.

(A11) QuantitativeGoal v Goal
(A13) ProvableGoal v Goal
(A12) QualitativeGoal v Goal
(A14) UncertaintyGoal v Goal

36 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

A sub-goal supports other high level goals. Each safety case has a top level Goal ,
which does not support other goals.

(A15) SupportGoal ≡ Goal u ∃supports.>
(A16) TopLevelGoal ≡ Goal u ¬SupportGoal

(equivalent SupportGoal (and Goal (some supports *top*)))

(equivalent TopLevelGoal (and Goal (not SupportGoal)))

For each safety argument, the elements is instantiated and a textual description is
attached to that individual by enacting the attribute hasText with domain Statement and
range String :

(A17) > v ∀hasText .String)
(A18) ∃hasText .Statement v >

Three individuals gt, gp, and gu of type goal and their textual descriptions are
instantiated by assertions f1 to f6:

(f1) gt : TopLevelGoal
(f2) (gt , ”The system meets its requirements”) : hasText
(f3) gp : ProvableGoal
(f4) (gp, ”Quick release are used”) : hasText
(f5) gu : UncertaintyGoal
(f6) (gu, ”The item has a reliability of 95 %”) : hasText

Intermediate explanatory steps between goals and the evidence include statements,
references, justifications and assumptions:

(A20) Explanation v Statement t Referencet
Justification tAssumption

where these top level concepts are disjoint:

(A21) Statement ≡ ¬Reference
(A22) Statement ≡ ¬Justification
(A23) Statement ≡ ¬Assumption
(A24) Reference ≡ ¬Justification
(A25) Reference ≡ ¬Assumption
(A26) Justification ≡ ¬Assumption

The evidences or solutions form the foundation of the argument and will typically
include specific analysis or test results that provide evidence of an attribute of the system.
In our approach, the evidence consists in model checking the verification for a specification
of the system.

A not verified goal is a goal which has at least one piece of evidence that is not
formally proved.

(A27) NotVerifiedGoal ≡ Goal u ∃hasEvidence.
NotVerifiedEvidence

4.5. FUNCTIONALITY 37

(A28) NotVerifiedEvidence ≡ Evidence u
∃hasTestResult .
(False uUnknown)

4.5 Functionality

4.5.1 Diagram translation and Reasoning in safety arguments

The main idea of translating the builded safety case diagram into A-box is presented
in figure 4.7.

Figure 4.7: System Architecture

We translate the GSN standard into description language, representing the Tbox
and for each diagram builded the user can transform the diagram into description language,
representing the A-box part. Both parts are loaded in the RacerPro reasoning engine which
will be used used by our tool to query and validate the Abox against the GSN Tbox.

Querying the Diagram Scenario

The flow of this action is represented in figure 4.8

Below is presented the steps necessary, without interruptions, for querying from
console a selected diagram.

Happy flow:

1. User opens or creates a diagram

2. Select translating the diagram in abox

3. System returns the racer file contaning the abox

4. User loads the diagram

38 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

5. User selects the command console

6. User enters query in console

7. System displays the results in the console

In the extended flow are presented the interruptions that might occur when trying
to complete this action.

Extended flow:

4.1 Racer engine is not found

4.1.1. System notifies the user that RacerPro was not found

4.1.2. The user starts manually the engine

6.1 Console is not visible

6.1.1 User open window->show perspectives->console

6.1.2 System displays the console view

6.1.3 User selects Command Console from the console view

6.1.4 System displays the command console

6.1 Racer engine stopped working

6.1. System notifies the user that RacerPro was not found

6.2. The user starts manually the engine

6.1 Query is incorrect!

6.1. System notifies in the console the user to re-enter the query

6.2. User re-enters query

4.5.2 Validating the Safety Case

When analysing the diagram by querying the RacerPro engine the safety engineer
can simply identify the goals from the diagram that are still undeveloped or not supported
by evidence, goal descriptions or retrieve explanation why a goal belongs to a specific
concept, check the consistency of the Abox. In this way, the safety engineer can repair the
problems and validate.

The following formal verifications are provided by the SafeEd system:

1. Every node can be traced back to the top-level claim. That is, there are no ”dangling”
nodes or sets of nodes.

4.5. FUNCTIONALITY 39

Table 4.2: Retrieving information about the safety case.
Query RacerPro query

Top level goal (concept − instances TopLevelGoal)

Support goals (concept − instances SupportGoal)))

Evidence supporting goal g2 (retrieve − individual − fillers g2 hasEvidence)

Undeveloped Goals (concept − instances UndevelopedGoals)

Generate OWL (save − kb”PATH /kb.owl” : syntax : owl)

Check if Abox is consistent (abox − consistent?)

Get all contexts of a specific
goal

(individual − fillers g1 inContextOf)

2. Each ”leaf” node should either evidence or a reference to some previously reviewed
assurance case

3. Circular reasoning: identified by the RacerPro engine in the form of cycle concepts

Validating the Diagram Scenario

The flow of this action is represented in figure 4.9

Below is presented the steps necessary, without interruptions, for validating using
Racer the selected diagram.

Happy flow:

1. User opens or creates a diagram

2. User select from ProjectExplorer tab the selected diagram

3. Selects validation of the wanted diagram

4. Systems returns the results in validation.log file

In the extended flow are presented the interruptions that might occur when trying
to complete this action.

Extended flow:

3.1 File containing diagram translation is not found

3.1.1. System notifies the user that racer file was not found

3.1.2. The user selects translating the diagram

3.1.3. User ree-selects validation

3.2 Racer engine is not started

3.2.1. System notifies the user that RacerPro was not found

40 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

3.2.2. The user starts manually the engine

3.2 Diagram is not loaded

3.2.1. System notifies the user that diagram is not loaded

3.2.2. The user loads the diagram in racer engine

4.5.3 Generation of Safety Case Metrics

Complementarily to supporting semantic reasoning, our system provides also quan-
titative assessment of a safety case through several metrics developed.

The metrics are developed with the LISP API of RacerPro system. For instance,
the number of not verified goals for safety case given as the ABox sc1 is computed with:

(length (concept− instances NotV erifiedGoal))

or the number of undeveloped goals:

(length (concept− instances UndevelopedGoal))

The main use case of metrics is to assess the progress during different stages of
validating the safety case. Given large safety cases, one can monitor the rate to which the
number individuals of type NotVerifiedGoal decreases.

4.5.4 Generating Natural Language Reports on the Safety Case

Our tool supports the generation of documentation and reports for the safety case.
There will be generated three types: validation report, to do or assement report and
diagram documentation.

The to-do reports contains things that still needs to be done, assessment and vali-
dation of the safety case. The validation report includes:

• nodes that do not have a description;

• elements that are not linked directly or indirectly through other elements of the
diagram to the top level goal;

• goals that do not have evidence or solution;

• incomplete goals that have undeveloped sub-goals.

With this report the safety engineer knows at any moment what still needs to be added
to the safety case to have a complete and well-build safety case. The assessment report
provides also quantitative information of the diagram, in terms of number of nodes and
their types. The documnation file will include the assessment report and description of
every goal node of the diagram, including attributes and relations. Having the diagram and
diagram documentation facilitate the work of the safety engineer or certification auditors.

4.5. FUNCTIONALITY 41

Figure 4.8: Flow Chart Querying the diagram

42 CHAPTER 4. ANALYSIS AND THEORETICAL FOUNDATION

Figure 4.9: Flow Chart for validating the diagram

Chapter 5

Detailed Design and Implementation

Out tool is an improvement of Acedit [1] tool. New features like the option of
querying the diagram, generation of reports and documentation, usage of safety metrics
for the assessment of the safety cases have been added and others tool features have been
improved, for example the validation of a diagram.

5.1 System Architecture

The tool consist of a set of Eclipse plug-ins.

Figure 5.1: System Archtecture

As presented in figure 5.1, the tool is structured on layers as follows:

• first layer: is the one at the bottom and consists of the core framework of the tool;

43

44 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

• second layer: consists of several eclipse plug-ins used to implement the tool (EMF,
GMF, GEF) plus the libraries used for establishing connections with RacerPro engine
and NaturalOwl engine;

• third layer: contains the GSN and ARM metamodels, plus tool plug-ins through
which all tool functionality is provided;

• last layer: represents the user interface layer and consists of the GSN editor and
the model management tools(GSN editing wizards);

From figure 5.2 can be seen that we kept the main component of the ACedit,
consisting of the GSN plug-ins regarding the graphical editor, eliminated the validation
plug-in and we added a new set of plug-ins which provides the semantic reasoning facility,
validation and the others features.

Figure 5.2: Component Diagram

5.1.1 GSN editor

The GSN editor has two views:

• the diagram view: deals with creation of GSN diagram accordingly to the mapping
between metamodels and their graphical notation

• the model view: deals with creation of GSN metamodels

5.2. IMPLEMENTATION DETAILS 45

For communication between this two views it has been used the Model View Controller
pattern as follows: the model part of the MVC is represented by the model view and is
the GSN model instance created by the user, the view part is represented by the diagram
view,i.e. the editor’s GUI, and the controller represents the logic implemented in the others
plug-ins. This communication is alsoo represented in figure 5.3

Figure 5.3: Component Diagram

5.2 Implementation details

5.2.1 GSN plug-ins

In this set of plug-ins is implemented GSN editor functionality and interface using
specific eclipse frameworks designed for this:

Eclipse Modeling Framework (EMF) is a Java framework and code generation
facility provided by Eclipse for building tools based on a domain model. The framework
provides the EMFatic language with which the domain models can be turned into efficient,
correct and easily customizable code. EMFatic language is similar to Java syntax and
is designed to support navigation and editing of Ecore models. In our case, the GSN
metamodels are defined using the EMFatic language.

Graphical Editing Framework (GEF) is a framework provided by Eclipse for
creating graphical editors for various diagrams. It is used to represent graphically a safety
case and also it permits the addition and manipulation of a safety case, providing a visual
representation of the relationships between the safety case model elements.

Graphical Modelling Framework (GEF) is an Eclipse framework used for de-
veloping graphical editors based on EMF and GEF. This has been used to develop the
runtime infrastructure of our tool.

46 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

5.2.2 GSN ontology plug-ins

The GSN console plug-in contains the implementation of the console used to run
queries on the diagram called Command Console. It consist of two packages, gsn1.console
is the package implementing the console and gsn1.racercommands is the one which deals
with the processing and execution of the commands.

We create a new type console called ”Commands Console” implemented in class
CommandConsole. This class extends the IOConsole class provided in org.eclipse.ui.console
package. The console will display text from the I/O streams. It can have multiple output
streams connected to it and only one input stream connected to the keyboard.

In the plugin.xml file we declare a new extension point that contributes to the
org.eclipse.ui.console.consoleFactories factory, extending that plug-in with the console fac-
tory class called Factory. The console factory extension is responsible for openining a
console in the console view. Extensions appear on a menu in the console view and are
opened when their openConsole method is called. The gsn.console package that contains
the console was developed so that it can be re-used by developers for building I/O consoles
having other purposes.

For processing the commands and queries from the console we applied the Factory
pattern. There is the factory class called CommandFactory and the interface ICommand
implemented by each command. The StartCommand class deals with starting a new
RacerPro process if at that moment there’s no process of the engine. The QueryCommand
class is used to send a query to the racer engine and process the results.

The class diagram of this plug-in can be seen in figure 5.4.

The GSN actions plug-in adds in the diagram’s file menu all the actions that
can be done with the file: transforming into A-box, validate it, load it in the racer engine,
generate to-do report and documentation. It is composed of two packages, one is containing
the popup actions and the second one contains their core functionality of the popup actions
from the menu. The actions have a corresponding class from the gsn.actions.package
and action in the extension point extending the org.eclipse.ui.popupMenus class from the
plugin.xml file in order to be visible in the view. Their core functionality has been separated
from the interface, all classes being implemented in the package gsn.actions.core. All the 3
types of actions for creating reports use the same class DocumentationActionCore which
has a separated method for each one of them because they don’t have the same template.
All the others actions are linked to a class implementing the action functionality.

In figure 5.6 are represented all the classes and the relations between them from
this plug-in.

The GSN parser plug-in is the eclipse plug-in used to translate the builded safety
case diagram into the A-box part. We have a class called XMLparser that has methods
for parsing each node from the diagram-model file(which is a xml file) transforms it into
a concept instance or relation between two instances or adds an attribute and at the end
saves all data into a file representing the an A-box. Because each node of the diagram is

5.2. IMPLEMENTATION DETAILS 47

Figure 5.4: Class diagram for console plug-in.

represented through generated ids at not by the node identifier from diagram, when we
parse the diagram model file create Shape objects and save only the nodes that are shape
or shape attribute, if we find connectors that depending on the ids representing the targets
we search for those shapes and add the connection at the parent shape. This class uses
org.w3c.dom and javax.xml.parsers libraries for parsing the XML file.

The Ontology class is contains methods that build the syntax to be added in the
Abox file, depending on the node type.

In figure 5.6 are represented all the classes and the relations between them from
this plug-in.

The GSN ontology plug-in is implementing the communication of our tool with
the RacerPro engine.

The class called OntologyConnection is build following Singleton pattern, and is
used to create a racer client and establish a connection to the racerPro reasoner using the
JRacer java library provided by Racer.

For creating the connection we need to check if the engine is started, for this we
have the class RacerProcess which checks if there exist any process of the engine, if not
then locates the execution file of the racer and starts a new process. If no file has been
found then the user will be shown a message with the location from where he can download
the engine.

This OntologyConnection class makes it possible interrogating the buid A-box file,
mainly by receiving the text command from the console and calling answerQuery(String

48 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

Figure 5.5: Class diagram for ontology actions plug-in.

command) method which will return the result of the sent query. Also this class has the
method getTboxFile() which instantiates an GSNTbox object and aks for creating the
t-box file modeled on GSN standard.

5.2. IMPLEMENTATION DETAILS 49

Figure 5.6: Class diagram for parser plug-in.

The GSNTbox class is a class that builds the T-box part of the ontology. It has
static methods where all the concept, roles and attributes are defined, returning list of
strings that are merge in the getContent() method of the class. A new file is generated
with all this info and it will be saved at running in the eclipse main folder.

In figure 5.7 are represented all the classes and the relations between them from
this plug-in. This plug-in is used in all the other plug-ins excepting the parser plug-in.

The GSN reporting plug-in contains three types of reports: validation, ToDo
and documentation reports generated in natural language. All three reports are pdf type
and are generated using iText library. This library is used to creare, adapt, inspect and
maintain pdf files.

The data from the reports is taken using Lisp Racer Cilent library provided by
Racer is used for generating metrics in the reports and by directly interogating the A-box
with fixed queries depending on each report type. Each report has a different template.

The validation report contains the same output of the validation action, the differ-
ence is that it is saved in a new file and not in a log file.

The To do report contains what has been done, what still needs to be done and
what is missing from the safety case diagram.

50 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

Figure 5.7: Class diagram for ontology plug-in.

5.3 User Interface

The workspace of the system is presented in Fig. 5.8. A safety project (top-left)
consists of several assurance cases, developed either as a graphical diagram (files with gsn
extension) or as an abox in description logic (files with racer extension). In case of need the
system automatically translated between these two input formats. For a selected diagram
file the user can transform into abox, validate the diagram and generate reports.

The main window (top-cencer) depicts the active gsn diagram. The elements of the
GSN standard are represented as follows: goals with rectangular, strategies with paralel-
ograms, evidence and solutions are represented by circle, assumptions and justifications
with ellipse, context by a rectangular with rounded corners, the supportedBy relation is an
arrow with the head filled, while the inContextOf is represented by an arrow with empty
head.

The title and description of a node can be entered by clicking on the node in the
head part for the title, and in the field with the placeholder ‘description‘. The diagram is
constructed by using a drag-and-drop pallet (top-right).

The built-in actions performed on the diagram are visible when clicking right on
the diagram or model file.

The command console (bottom-center) shows the reasoning performed on the active

5.3. USER INTERFACE 51

diagram above. In the command line, specific queries for interrogating ontologies can be
added and the reasoning engine will return the results for each query. The syntax of the
queries corresponds to the RacerPro tool. In Fig. 5.8, the four queries exemplified are:

• retrieving all the goals in the diagram,

• identifying the top level goal,

• listing all pieces of evidence supporting the goal g2, and

• checking the consistency of a diagram with respect to the GSN standard encoded as
axioms in description logic.

In the bottom-left corner the red rectangle represent the view part of the diagram
visible in the main window.

52 CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION

F
ig

u
re

5.
8:

A
p
p
li
ca

ti
on

In
te

rf
ac

e

Chapter 6

Testing and Validation

6.1 Testing the tool

To test if the application has the desired behaviour and it is well build, we have taken
well structured or incomplete safety cases from different domains, builded and validated
within our tool. More details about each safety case can be found in the Bibliographic
research chapter.

The first safety scenario is taken from from the autonomous driving domain and
represents in the case is claimed that any autonomous vehicle should ensure safety when
operating in the environment. A GSN diagram built in our SafeEd tool is represented in
Fig. 6.1.

The top level goal g1 states that any autonomous vehicle should ensure safety when
operating in the environment. The goal holds in two contexts: the existence of an environ-
ment formalisation (context c1), respectively the existence of a mechanism providing situ-
ation awareness. One solution for ensuring safety is dynamic risk assessment approach [9].
The corresponding strategy s1 used to support the goal g1 is to dynamically assess the
risk. The sub-goals g2, g3, g4, and g5 are used to fulfill the strategy s1. For instance, the
sub-goal g2 claims the correctness of the model, statement that is supported by various
pieces of evidence, including formal verification e2

The diagram from Fig. 6.1 is translated into the description language in Figure 6.2
and the result of translation into Abox using Racer syntax by our tool is shown in figure
Figure 6.3. Here, the facts f61 to f64 assert the individuals to their corresponding GSN core
elements. The structure of the GSN diagram based on the two relationships supportedBy
and inContextOf is formalised by the facts f65 to f72. The natural language text describing
claims, solutions, contexts or evidences are encapsulated as concrete attributes [5] in Racer
syntax (assertions f73 to f80).

The table 6.1 contains the results of some basic queries run on the abox from 6.2. It
can be seen that the obtained results are very helpful because it spares the safety engineer
time which has to look for manually for them if such an assesment feature, like querying
the diagram, is not available.

53

54 CHAPTER 6. TESTING AND VALIDATION

Figure 6.1: Autonomous vehicle scenario.

Table 6.1: Retrieving some information about the safety case represented in figure 6.1.
Query RacerPro query RacerPro

answer

Top level goal (concept − instances TopLevelGoal) g1
Support goals (concept − instances SupportGoal))) g2, g3, g4, g5
Evidence supporting goal g2 (retrieve − individual − fillers g2 has − evidence) e1, e2, e3, e4
Undeveloped Goals (concept − instances UndevelopedGoals) g3, g4, g5
Check if Abox is consistent (abox − consistent?)

Get all contexts of a specific
goal

(individual − fillers g1 inContextOf) c1, c2

The second safety case is taken from medical industry and refers to the Therac 25,
a case study in safety failure. In figure 6.4 is a diagram build wit our tool representing
the case of Therac 25 presented in [12].

6.1. TESTING THE TOOL 55

(f61) g1 : Goal , g2 : Goal , g3 : Goal , g4 : Goal , g5 : Goal
(f62) c1 : Context, c2 : Context, c3 : Context
(f63) e1 : Evidence, e2 : Evidence, e3 : Evidence, e4 : Evidence
(f64) s1 : Context, c2 : Context, c3 : Context
(f65) (g1, s1) : supportedBy
(f66) (g1, c1) : inContextOf
(f67) (g1, c2) : inContextOf
(f68) (g2, c3) : inContextOf
(f69) (g2, e1) : has− evidence
(f70) (g2, e2) : has− evidence
(f71) (g2, e3) : has− evidence
(f72) (g2, e4) : has− evidence
(f73) (g1 , ”Autonomous Vehicle maintains safety when operating in the environment”) : hasTex t
(f74) (g2 , ”SAW model is correct , sufficient and assures vehicle safety”) : hasText
(f75) (g3 , ”Vehicle maintains situationawareness”) : hasText
(f76) (g4 , ”Vehicle performs optimal (safe) actions according to the vehicle policy”) : hasText
(f77) (g5 , ”Environment profile assumptions are not violated”) : hasText
(f78) (s1 , ”Argument by application of dynamic risk assessment”) : hasText
(f79) (e1 , ”Hazard analysis results : analysis ofkinematic model and accident sequence”) : hasText
(f80) (e2 , ”Evidence based on simulation”) : hasText
(f81) (e3 , ”Evidence based on the analysis of simulated and recorded real scenarios”) : hasText
(f82) (e4 , ”Evidence based on operational system performance statistics”) : hasText
(f83) (c1 , ”Environment profile definition”) : hasText
(f84) (c2 , ”Situation awareness (SAW) model”) : hasText
(f85) (c3 , ”Situation awareness (SAW) model”) : hasText

Figure 6.2: Translating the GSN diagram in a description logic Abox.

56 CHAPTER 6. TESTING AND VALIDATION

Figure 6.3: Translating the GSN diagram in Abox using our tool.

The main statement is represented by top level goal Goal1 and states that the ma-
chine is fault free and can be used. Two strategies have been adopted for proving this goal:
the first strategy represented by Strategy1 proposes argumentation by satisfaction of sys-
tem’s safety, while the second strategy represented by Strategy2 proposes argumentation
by omission of all identified software hazards supposing we have identified the software
hazards, context represented by node Context1. The first strategy is divided into two
sub-claims: the system will halt in case of errors, statement represented by Goal2, and
that exceeding radions limit will abort the operation, statement represented by Goal3.
Goal2 is supported by Goal4 which claims that when a fault occurs the system cannot be
resumed, a solution to this would be Black Box testing(Solution1) Both Goal2 and Goal3
are supported by the Goal5 which claims that any failure operation will include explana-
tory error message, a solution for this is declaring and using safe states(Solution2). The

6.1. TESTING THE TOOL 57

second adopted strategy is solved by two statements: computer giving a wrong amount of
energy occurs as a result of component failure, Goal6, and computer selecting wrong mode
can only occur as a result of component failure, Goal7. Both goals are solved by: making
fault tree analysis, Solution3 and analysing the results of hazard test, Solution4.

This case could have been applied when developing the Therac 25 system, leading
to discovering of several faults that could have saved lives.

The diagram in Fig. 6.5 is translated into the Abox represented in Fig. 6.2. Here, the
facts assert the individuals to their corresponding GSN core elements. The structure of the
GSN diagram based on the relationships has − evidence, supportedBy and inContextOf .
The natural language text describing claims, solutions, contexts or evidences are encapsu-
lated as concrete attributes [5] in Racer syntax.

The table 6.2 contains the results of some basic queries run on the abox from 6.5. It
can be seen that the obtained results are very helpful because it spares the safety engineer
time which has to look for manually for them if such an assesment feature, like querying
the diagram, is not available.

Table 6.2: Retrieving some information about the safety case represented in figure 6.4.
Query RacerPro query RacerPro answer

Top level goal (concept − instances TopLevelGoal) goal1
Support goals (concept − instances SupportGoal))) goal2, goal3, goal4,

goal5, goal6, goal7
Evidence supporting (retrieve − individual − fillers solution3,
goal goal7 goal7 has − evidence) solution4

Undeveloped Goals (concept − instances UndevelopedGoals) nil

Check if Abox is consistent (abox − consistent?) t

Get all contexts of a specific
goal

(individual − fillers strategy2 inContextOf) context1

58 CHAPTER 6. TESTING AND VALIDATION

F
ig

u
re

6.
4:

T
h
er

ac
25

sa
fe

ty
ca

se
.

6.1. TESTING THE TOOL 59

(in − abox default .racer GSN) (instance Goal6 Goal)
(instance Goal1 Goal) (related Goal6 Solution3 has − evidence)
(related Goal1 Strategy1 supportedBy) (related Goal6 Solution4 has − evidence)
(related Goal1 Strategy2 supportedBy) (instance Goal4 Goal)
(instance Strategy1 Strategy) (related Goal4 Solution1 has − evidence)
(related Strategy1 Goal2 supportedBy) (instance Goal7 Goal)
(related Strategy1 Goal3 supportedBy) (related Goal7 Solution3 has − evidence)
(instance Strategy2Strategy) (related Goal7 Solution4 has − evidence)
(related Strategy2 Goal6 supportedBy) (instance Goal5 Goal)
(related Strategy2 Goal7 supportedBy) (related Goal5 Solution2 has − evidence)
(related Strategy2 Context1 inContextOf) (instance Solution1 Evidence)
(instance Context1 Context) (instance Solution2 Evidence)
(instance Goal2 Goal) (instance Solution3 Evidence)
(related Goal2 Goal4 supportedBy) (instance Solution4 Evidence)
(related Goal2 Goal5 supportedBy)
(instance Goal3 Goal)
(related Goal3 Goal5 supportedBy)

Figure 6.5: Translating the Therac 25 safety case in a description logic Abox.

The third safety case is for a whole-airspace system divided into several georgraph-
ical regions plus a region of en-route airspace for which ATM rules are applied and imple-
mented on an are-by-area basis. Georgraphical regions that interacts with each other and
also with the airspace-wide system. The safety case structure for the system is represented
in figure 6.6. The main goal represented as Goal1 states that the airspace is safe for using,
in the context of defining the safe term in case of the system. The strategy adopted by
proving the goal is to prove that ATM rules are safe, respectively that the rules have been
implemented safely. The second strategy is also divided in two: it is state that the rules
are implemented safely in every area and each area assumption can’t be violated. Evidence
for each sub-goal is provided, as is shown in the diagram.

Figure 6.6 represents the translated Abox into Racer syntax, it can be seen that
the goal structure is keep in the A-box.

Table 6.3: Retrieving some information about the safety case represented in figure 6.6.
Query RacerPro query RacerPro answer

Top level goal (concept − instances TopLevelGoal) g1

Support goals (concept − instances SupportGoal))) g2, g3, g4, g5, g6, g7

Evidence supporting (retrieve − individual − fillers e3
goal goal7 goal7 has − evidence)

Undeveloped Goals (concept − instances UndevelopedGoals) nil

Check if Abox is consistent (abox − consistent?) t

Get all contexts of a specific
goal

(individual − fillers strategy2 inContextOf) nil

60 CHAPTER 6. TESTING AND VALIDATION

Figure 6.6: Airspace-system safety case.

In table 6.4 we presents the conclusion after building the safety cases presented
above in our tool and two other tools. More detailed comparison between our tool and
other tool can be found in Bibilographic Research Chapter. From the table we can resume
that our tool is better at the management of a safety case, having a plus at validation,

6.1. TESTING THE TOOL 61

Figure 6.7: Airspace-system safety case translated in Abox using our tool

assesment, evaluation and reports generation. A minus would be the weak graphically
representation of elements and importing/exporting diagrams from our tool.

The difference between our tool and this one is the fact that using ours the user will
be able to build simple or complex queries for interrogating the diagram at any time during
the development and not being limited only to metrics, this is a plus at the assessment of
the diagram.

62 CHAPTER 6. TESTING AND VALIDATION

Table 6.4: Tools Comparison Table
Functionality Acedit AdvoCATE Our Tool

Creating GSN models must be GSN elements GSN models must be
diagram differentiated better are better represented differentiated better

in the interface (color is a plus) in the interface
Edit can edit only can edit other can edit only
diagram diagrams build diagrams diagrams build

with the tool type with the tool
Import/Export can’t import other can import other can’t import other
other diagram diagrams types diagrams types diagrams types
types from: D-case, Asce
Metrics not Limited available using

available computation of metric Racer lisp library
Diagram not all diagram nodes Reasoning services used.
Assesment and available are saved on columns Better,dynamic and
evaluation in CSV based on more flexible solution

their type than limitation of
their type displaying on columns

Diagram based only on based only on based only on
Validation constraints constraints constraints plus

digram consistency and
missing elements

Reporting not CSV with nodes Three pdf reports:
available structured on validation, to-do
available columns and documentation

Chapter 7

User’s manual

7.1 System Installation

For using the tool, the user needs to have installed on the PC the following:

• Eclipse Distribution with Epsilon, this can be downloaded from here:

http://www.eclipse.org/epsilon/download/

• RacerPro knowledge base reasoner on 32 bits

• NaturalOwl engine

To install the tool through eclipse updates:

1. Open the wizard and select from Eclipse top menu Install/Update->Availbale Soft-
ware Sites

2. Click the Add.. button

3. If the sofware site is in your local file system click Local.. to specify tyhe directory
location of the file.

4. If the software site is in your local file but packaged as a jar or zip, click Archive...
to specify the name of the file.

5. Select Add Site...

6. Select all checkboxes

7. Click next

8. Accept Sofware license

9. Click finish

63

64 CHAPTER 7. USER’S MANUAL

7.2 User’s Manual

Creating a project and add diagram to it - steps:

1. select File->New->Projectselect General-> Project

2. select next and give a name to your project

3. select finish

4. press right click in the created project

5. select New->Other

6. in the pop up wizard type GSN

7. select GSN1 diagram

8. select Next-> Finish

This action will add a new project to the workspace and the diagram in it.

Transform diagram in A-box(after diagram file is created):

1. select diagram file

2. press right click on files

3. select Ontology

4. next select Transform A-box

The output of this action will be a new file having the same name as the diagram and the
extension .racer located in the same project folder as the diagram. The file is not loaded
in the Racer engine!

Load diagram (only if the racer file has been generated):

1. select diagram file

2. press right click on files

3. select Ontology

4. next select Load A-box

This action adds the A-box to the T-box in the Racer and will set it as main A-box.

Validate diagram:

1. select diagram file

7.2. USER’S MANUAL 65

2. press right click on files

3. select Ontology

4. next select Validate A-box

The action will write the results of the validation in validate.log file, this file will also
contain the results of the previous validations of this or other files. An example of this
report is shown in figure 7.1

Figure 7.1: Autonomous vehicle scenario.

Generate Validation report:

1. select diagram file

2. press right click on files

3. select Reports

4. next select Validation report

The action is similar to validation action, the difference is that the report contains info
only about this file.

The generation of documentation and todo reports is the same as this. The gener-
ated file are of pdf type.

Generate ToDo report:

1. select diagram file

2. press right click on files

3. select Reports

66 CHAPTER 7. USER’S MANUAL

4. next select ToDo report

Generate Documentation:

1. select diagram file

2. press right click on files

3. select Reports

4. next select Documentation

The user can query a diagram by following the next steps:

1. if the command-console is not visible then add it in the view

• select window->perspective->other

• select console from the view

2. Write start and press enter to activate the console

3. select Ontology->Load Abox (to be sure that the diagram si loaded)

or write (set − current − abox diagramName)

4. write the query and press enter

The console will look like this:

Figure 7.2: Command Console.

Chapter 8

Conclusions

8.1 Contributions and Achievements

From this paper we can deduce that it is very necessary to be sure that a system
has a correct behavior and can be operately successfully so it is very important to build a
safety case that describes the real level of safety that the system assures.

Assurance cases have evolved from the concept of safety cases being a requirement
in many international standards. It is very important to build well-structured and coherent
safety cases because wrong construction and reasoning in safety arguments can undermine
a systems safety claims and lead to failures of the system. Like in case of Therac25, not
building a simple assurance case (that would have lead to discover several faults) resulted
in death of people.

All the elements of a safety case are part of the causal chain of hazard. The safety
case is based on claims, any claim is broken into sub-claims until is reached a point when
the claims can be proved by the development or assessment of an artefact as evidence.
Every claim and strategy adopted to support the claim shoulf be very clearly formulated
and state the context in which the argument is made so that the graphical representation
of the safety case will be well structured.

It’s a good practice to develop the safety cases prior to development because in
this way you find the risks and faults before starting the development so you’ll have the
solution to mitigate them.

This paper described our tool that can not only be used to build safety arguments
according to the Goal Structuring Notation standard but it also provides a better manage-
ment and assesment of the safety case. The novelty of our approach is that the assurance
case is automatically translated in description logic. The advantage is that the specific
reasoning services of description logic are enacted to verify the compliance of the case
with the GSN standard and also to signal possible argumentation flaws. The tool was
demonstrated when developing safety all the safety cases presented in Chapter Testing
and Validation. The main advantage of our the tool is that it can reduce the risks of not
building well-structured safety cases or not provide evidence for all the statements from

67

68 CHAPTER 8. CONCLUSIONS

the safety case.
Another big advantage is that our tool is extensible and can integrate with other

corporate applications developed based on the Eclipse platform. In this line, ongoing work
regards enhancing the tool with other.

8.2 Further Work

There are some improvements that can be done in the future to improve the tool
and add new functionality. Being build as a set of eclipse plug-ins that need the eclipse
platform to run on, the bigest improvement would be to get rid of this and run the tool
as a standalone application by creating a Rich Client Platform(RCP) application for the
tool. We choose this because it will improve the protability of the tool. RCP can run as
standalone applications by including a minimal set of eclipse plugin Other future improve-
ments:

• reverse the process of translation, from an A-box build accordingly to the T-box the
user should be able to transform it into diagram. This will ease a lot more the work
of the safety engineer.

• import and export diagrams from other editors

• improve the user interface: the metamodels should be colored distinctly from the
start

• the generated reports should provide more information

• add the possibility to extend the metamodels

Bibliography

[1] G. Despotou, A. Apostolakis, and D. Kolovos, “Assuring dependable and critical
systems: Implementing the standards for assurance cases with acedit,” Department of
computer Science University of York, UK, 2012.

[2] E. Denney, G. Pai, and J. Pohl, “Advocate: An assurance case automation toolset,”
in Computer Safety, Reliability, and Security. Springer, 2012, pp. 8–21.

[3] S. Hallerstede, M. Jastram, and L. Ladenberger, “A method and tool for tracing
requirements into specifications,” Science of Computer Programming, 2013.

[4] F. Baader, The description logic handbook: theory, implementation, and applications.
Cambridge university press, 2003.

[5] V. Haarslev, K. Hidde, R. Möller, and M. Wessel, “The racerpro knowledge represen-
tation and reasoning system,” Semantic Web, vol. 3, no. 3, pp. 267–277, 2012.

[6] J. K. Richard Hawkins, Tim Kelly and P. Graydon, “A new approach to creating clear
safety arguments,” 2011.

[7] T. P. Kelly, “Arguing safety – a systematic approach to managing safety cases,” 1998.

[8] T. P. K. Patrick J.Graydon, “Using argumentation to evaluate software assurance
standards,” Information and Software Technology, vol. 55, no. 9, pp. 1551–1562, 2013.

[9] A. Wardziński, “Safety argument strategies for autonomous vehicles.”

[10] R. Palin, D. Ward, I. Habli, and R. Rivett, “Iso 26262 safety cases: compliance and
assurance,” 2011.

[11] J. Birch, R. Rivett, I. Habli, B. Bradshaw, J. Botham, D. Higham, P. Jesty,
H. Monkhouse, and R. Palin, “Safety cases and their role in iso 26262 functional
safety assessment,” in SAFECOMP, 2013, pp. 154–165.

[12] E. M. B. Melkild, “Goal and evidence based dependability assessment,” p. 53, 2013.

[13] M. Conrad, P. Munier, and F. Rauch, “Qualifying software tools according to iso
26262.” in MBEES, 2010, pp. 117–128.

69

70 BIBLIOGRAPHY

[14] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, and M. Nyberg, “Industrial experi-
ences of building a safety case in compliance with iso 26262,” in Software Reliability
Engineering Workshops (ISSREW), 2012 IEEE 23rd International Symposium on.
IEEE, 2012, pp. 349–354.

Appendix A

Published papers

1.Nicoleta Marc, Adrian Groza,“A formal model of Goal Structuring Notation”,
Computer Science Student Conference, Cluj-Napoca, 2014 Won first prize at the Confer-
ence.

2. Adrian Groza, Nicoleta Marc “Consistency Checking of Safety Arguments in the
Goal Structuring Notation Standard”, 2014 Paper submitted at ICCP2014

71

