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Chapter 2. Real-time system models  

1. Introduction 

The main difference between a real-time application and a general-purpose one is that the developer 

must demonstrate not only the logical correctness of the application but also the fulfillment of a set of 

predefined time restrictions (e.g. deadlines, periodicity, etc.). In many real-time systems, exceeding the 

time limits is critical and it may cause accidents (including human injuries) or significant material 

loses. Therefore, a so-called “best effort” approach typical for non-real-time applications is not 

applicable for those with time restrictions.  

Evaluating, controlling and analytically demonstrating the time-behavior of a system is usually not 

a trivial task. Any analytical (mathematical) approach requires an abstract model of the real system, 

which necessarily introduces a number of abstractions and simplifying assumptions. Without such a 

model, the attempt to demonstrate the timely behavior of a reasonably complex system is impossible 

[1]. Like in any other science, modeling a physical system is an important step in the process of 

understanding and controlling its behavior.  

In real-time systems, models allow us to predict different time parameters of a system (e.g. 

execution or response time, delays, transmission times, periodicity, etc.) without the need for 

experimental measurements and tests. In many cases, experimental validation of a real system is not 

possible or it is not relevant. For example, if the application is controlling an industrial process, a 

longer delay in the system’s response to a critical event may cause accidents. On the other hand, 

experiments may not reveal the “worst-case response time”. 

A model is a simplified, abstract representation of a complex reality. The model introduces a set of 

concepts and relations (e.g. equations) between them that may be used for analytical evaluation of the 

system’s behavior [1]. The model introduces, as well, a set of assumptions that have the role of 

simplifying its analysis. 

The following are some simplifying assumptions that are encountered in real-time systems theory: 

• Discrete time. Time variables (e.g. execution time, repetition period) are discrete. 

• Predictable execution. The executable instances of a task will have the same execution 

time. 

• Preemptivity. The executable instances of a task are preemptable if they can be interrupted 

at any time during execution or non-preemptable if not. 

• Uni/Multi processor. The workload will be executed by a single or by multiple processing 

resources. 

• Sequential or parallel execution. The executable instances of a task will be executed by at 

most one processor at the same time. Otherwise, it will be executed by more than one 

processor, in parallel.  
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• Task independence. Tasks don’t influence each other’s execution. Data or precedence 

dependencies are not considered. 

• Communication time. Communication time between application components and hence 

communication-related delays are not considered in the model.  

• Other restrictions (e.g. mutual exclusion, synchronization).  

As presented in [2], the model of a real-time system may be divided into three sub-models: 

• The workload model – describes the applications that are executed on the system’s 

platform 

• The resource or platform model – describes the system resources available to the 

applications 

• A set of scheduling and resource management algorithms – describe how the applications 

use the available resources 

In this chapter, we make a presentation of the most representative theoretical models used in real-

time systems research. Starting from the presented models, we discuss the status of real-time 

theoretical analysis and identify some directions that, in our opinion, need attention from the research 

point of view. Moreover, we present our representation approach, for each model component. 

2. Workload models 

A real-time application is composed of periodic and non-periodic tasks. The real-time task is a 

concept used for modeling a software program that has an execution requirement and a deadline. A 

particular execution instance of a task is called a job; a job is in fact program executed on a given 

processing platform. A periodic task will issue a sequence of jobs that will be released at equal 

distances in time one after the other. A non-periodic task will issue a single job or a sequence of jobs, 

but not at equal distances in time. Tasks execution may be correlated or not. If tasks are correlated 

with a precedence relation, then the set of correlated tasks form a transaction. A transaction may have 

a linear (no branches), tree or graph structure.  In our approach, a real-time application may contain a 

set of transactions or a set of independent tasks. 

There are many approaches to real-time workload modeling. The main categories of models we 

intend to investigate are the following: 

• Sequential tasks  

• Parallel tasks  

• Transactions 

 Some of the most representative approaches in these categories will be presented below. 

2.1. Sequential tasks 

Many real-time applications are represented as sets of sequential tasks. A task is sequential if each 

job can execute on exactly one processor at a time. The task models presented as follows assume that 

job execution is sequential. 



13 | Real-time system models 

 

2.1.1. Periodic task models 

The workload model that, for a long time, received the most attention from researchers is the 

periodic task model, also known as the Liu and Layland model [27]. Most of the later workload 

models are generalizations of this model.  

The real-time workload is modeled as a set of periodic tasks. A periodic task is a sequence of jobs 

with identical parameters that occur at constant intervals over time. Periodic tasks have the following 

important parameters: 

• Period p – the length of the interval between release times of consecutive jobs. In [27] 

these intervals are constant.  

• Execution time e – the maximum execution time of all the jobs in the task. 

• Phase �– the release time of the first job in the task. In many cases, it is assumed that the 

phase is equal to zero for all tasks. A task set is called synchronous if the phase is equal 

for all its tasks; otherwise, the task set is asynchronous. 

• Deadline D – the relative deadline.  

The most representative parameter of a real-time task is the deadline. The deadline of a task is 

defined as the time (relative to job release time) before each job in the task has to finish its execution. 

There are three main deadline types used in real-time task models: 

• Implicit – deadline is equal to the task’s repetition period. 

• Constrained – deadline is less than the task’s repetition period. 

• Arbitrary – deadline can have any value, independent of the task’s repetition period. 

The task deadline type influences the task set feasibility analysis method in terms of complexity (the 

most complex analysis is for arbitrary deadlines). 

The job mostly inherits the parameters of the task; some of its parameters are computed based on 

the task’s parameters. The parameters of a job (J) are the following [2]: 

• Release time (r) – the instant in time at which the job is available for execution. The 

release time can be fixed, meaning that the exact time instant of the release is known, or 

can be jittered, meaning that only the time interval [rmin, rmax], in which the release can 

occur, is known.    

• Absolute deadline (d) – the instant in time by which the execution of the job must be 

completed (d=r+D). 

• Relative deadline (D) – if a job is released at r, job execution must be completed D units 

of time after r. The term deadline is usually used when referring to the relative deadline.   

• Execution time (e) – the amount of time required to complete the execution of the job, 

when it executes without being interrupted and all resources needed are available. The 

execution time of a job may be variable, meaning that the exact value can be any, in the 

interval [emin, emax].  
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• Preemptivity – a job is preemptable if its execution can be interrupted at any time, to allow 

other jobs to be executed. Later, the execution is resumed from the point of suspension. If 

a job is nonpreemptable, its execution can’t be interrupted.  

The utilization factor (ui) of a periodic task is the fraction of processor time spent in the execution 

of that task [27] (ui=ei/pi). The total utilization (U) of a task set is the sum of all task utilizations 

(U=∑ui). 

In Liu and Layland’s model, a periodic task is represented as a tuple τ(e, p) which contains the 

worst case (maximum) execution time and the period of the task. It is also assumed that: 

• Tasks are preemptable 

• Tasks have implicit deadlines 

• Tasks are independent, meaning that they do not have any precedence constraints or other 

type of dependencies (e.g. data). 

The periodic task model has some strong restrictions: 

• Tasks have constant period, even though in real-world cases the inter-release time may be 

variable. 

• It is assumed that tasks have constant execution time, which rarely happens. In fact, tasks 

usually contain conditional and repetitive sequences of code, which cause variable 

execution time in consecutive releases.    

• It is assumed that tasks are independent. However, it is highly probable that tasks will 

depend on the availability of data or other operating system on hardware resources that 

influence the execution behavior of task sets.  

Even though these restrictions reduce the model’s expressiveness, the less complex analysis 

methods encouraged many researchers to use it in their work.  Therefore, the periodic task model was 

intensively studied for many years and it is still used for the analysis and validation of uniprocessor 

and multiprocessor scheduling algorithms. 

2.1.2. Sporadic and aperiodic task models  

Aperiodic and sporadic tasks are used to model responses of the real-time system to external events 

that may occur at any time. Aperiodic tasks have random interarrival times, and in many cases, their 

deadlines are either soft, or they do not have deadlines. In the case of sporadic tasks [28], job releases 

will not occur periodically but there is a minimum interval between any two consecutive job releases. 

Sporadic tasks may have hard deadlines. 

 The multiframe task model is presented by Mok in [29]. This model generalizes the periodic 

task model, by relaxing the conditions on task execution time and task period. In the multiframe 

model, it is assumed that:  

• Jobs in a task may have variable execution time, but the variation follows a certain 

recurrent pattern 
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• Tasks are sporadic, which means that they have a minimum occurrence period 

• Task deadline is implicit 

• Tasks are independent and preemptable 

 A multiframe real-time task is represented as a tuple τ(E, p), where E is a finite list of n (n ≥1) 

execution times (e
0
, e

1
,…, e

n-1
) and p is the minimum separation time between two consecutive frames 

(jobs). The execution time of the i
th

 frame of the task is e
i mod n

. The deadline of each frame is equal to p 

(implicit deadline). In the particular case when n=1 and p is a constant separation time between 

frames, the multiframe task model reduces to a periodic task model.  

 The generalized multiframe task model (GMF) presented in [30] extends Mok’s multiframe 

model. In the GMF model, deadline and separation time assumptions change: 

• Deadlines are explicit, meaning that they differ from the minimum separation time 

• Deadlines are not equal for all frames 

• Frames have different minimum separation time 

A GMF task is represented as a tuple τ(E, D, P), where E, D and P are finite lists of n (n ≥1) 

elements. E contains execution times (e
0
, e

1
,…, e

n-1
), D contains deadlines (D

0
, D

1
,…, D

n-1
) and  P 

contains minimum separation times (p
0
, p

1
,…, p

n-1
). According to this model, for the i

th
 frame of task T, 

the execution time is equal to e
i mod n

, the deadline is D
i mod n

 and the next frame will have the release 

time ri+1
≥ ri + p

i mod n
. 

The most general model (at this time) which uses multiframe tasks to describe real-time workload is 

the non-cyclic GMF model presented in [31]. The term “non-cyclic” comes from the fact that there is 

no recurrent pattern for task activations, like in the previous multiframe task models (Mok’s 

multiframe model and GMF model). A non-cyclic GMF task consisting of n frames is defined by a 

sequence of tuples ((e
0
, D

0
, p

0
), (e

1
, D

1
, p

1
),…, (e

n-1
, D

n-1
, p

n-1
)). Any frame can be activated at the end 

of the minimum separation time of the previous frame. The non-cyclic GMF model is used for event-

triggered systems, for which the task activation pattern cannot be predicted. 

A different approach, of using graphs in real-time workload modeling is presented in [32]. The 

recurring real-time task (RRT) model starts from the idea that, for many event-triggered real-time 

applications, timing requirements may change at runtime as result of conditional branches that depend 

on the system state or on environment parameters. In these cases, periodic or multiframe models can 

be used only to describe the worst case behavior of task systems. But it may be sometimes very 

difficult to predict the worst case behavior. The RRT model allows the representation of conditional 

real-time code. A RRT is represented as a task graph. A task graph is a directed acyclic graph (DAG) 

in which vertices are subtasks and edges are possible flows of control. 

A real-time task τ is formally represented by a task graph G(τ) and a period P(τ). G(τ) has a unique 

source vertex and a unique sink vertex. Each vertex u represents a subtask and is labeled with a pair 

(e(u), d(u)), where e(u) is the execution time and d(u) is the relative deadline of the subtask. Each time 

a subtask u is triggered, a job is generated with (e(u), d(u)) timing requirements. Each edge (u, v) is 
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labeled with p(u, v), which represents the minimum separation time between the triggering of u and v 

(v can be triggered as early as p(u,v) time units after u was triggered). The source vertex of the task 

graph can be initially triggered at any time. Then, the source vertex can be triggered only after the sink 

vertex was triggered and minimum P(τ) time units after its previous triggering. Fig. 1 is an example of 

RRT. 

 

Figure 1. An example of recurring real-time task [32] 

 An event is a tuple (τ, t, u) that denotes that a subtask u of task τ is triggered at time t. The 

sequence of events of task τ, �(�)=[(τ, t1, u1), (τ, t2, u2),...] may be infinite and is said to be legal if the 

following conditions are satisfied: 

• If ui is not the sink vertex of G(τ), then (ui, ui+1) is an edge, and ti+1-ti ≥p(ui,ui+1) 

• If ui is the sink vertex of G(τ), then ui+1 is the source node of G(τ), and if exists an event (τ, 

tj, uj), j<i in the event sequence for which ui=uj, then  ti+1-ti ≥ P(τ)  

 A system of recurring real-time tasks Γ consists of independent recurring real-time tasks that 

are preemptively scheduled on a single processor. A legal event sequence for a task system σ(Γ) is 

obtained by merging one legal event sequence for each task in Γ. 

Starting from the example in Fig. 1, σ(Γ)=[(τ, 0, u0), (τ, 11, u1), (τ, 35, u3), (τ, 53, u0), (τ, 58, u2), (τ, 

80, u3), (τ, 103, u0), (τ, 110, u2) (τ, 130, u3)] is an example of a legal sequence of events. 

 The non-cyclic recurring real-time model presented in [33] generalizes the initial RRT model 

by removing the task period P(τ) and allowing multiple sink vertices, in this way being able to 

represent non-cyclic behavior. The difference from the RRT model is that:  

• A real-time task τ is formally represented only by a task graph G(τ)  

• The task graph has a unique source vertex and one or more sink vertices 

• Sink vertices are labeled with a value p(u, src(τ)), which denotes the minimum separation 

time between the triggering of the sink vertex and the triggering of the source vertex. If 

the sink vertex was triggered at time ti, than the source vertex will be triggered at ti+1
≥ ti+ 

p(u, src(τ)).   

u0 

u1 

u2 

u3 
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The digraph real-time task model (DRT) presented in [34] is a generalization of the non-cyclic RRT 

model. The workload is defined by a system of N independent tasks. Each task is represented by a 

directed graph G(τ). The set of vertices represent the types of jobs that can be released by the task. 

Each vertex is labeled with a pair (e(u), d(u)), where e(u) is the execution time and d(u) is the relative 

deadline of the job. The edges represent the order in which jobs can be released. Each edge is labeled 

with p(u, v), the minimum separation time between jobs. In contrast with the RRT models, DRT model 

allows cycles in G(τ) and does not require a source vertex (any vertex can be the first to be released).  

Multiframe and graph-based models, in their most general form, are able to represent independent 

sporadic tasks that contain conditional and repetitive code. They are able to model the cases when 

subsequent executions of the same code have different execution times, with the condition that the 

execution behavior has to generate a pattern.  

The task automata model [35] is a very expressive way of representing sequential non-periodic real-

time workload. Task automata can describe complex tasks, which have the following characteristics: 

• Non-deterministic generation according to timing constraints  

• Interval execution times  

• Completion times may influence the releases of other task instances (there may be 

dependencies between tasks) 

A task is defined as a tuple P(emin, emax, D), where P is the name of the task, emin is the best case 

execution time, emax is the worst case execution time and D is the relative deadline. 

A task automaton is obtained by extending a timed automaton [36] with real-time tasks. It is 

assumed that Act={a, b, c, …} is a set of actions, C={x1, x2, …} is a set of clocks and B(C) is a set of 

clock constraints. A task automaton over actions Act, clocks C, and tasks P is a tuple (N, l0, E, I, M, 

xdone) where: 

• N is a finite set of locations 

• l0
∈N is the initial location 

• E ⊆ N×B(C) × Act×2
C ×N is the set of edges 

• I is a function assigning each location with a clock constraint 

• M is a partial function that assigns a task to a location 

• xdone is the clock which is reset every time a task finishes 

The state of a task automaton is a tuple (l, u, q), where l is the location, u is the clock value and q is 

the task queue, which contains pairs of remaining computation times and deadlines for all released 

task instances that did not finish their execution. There are two types of transitions. Delay transitions 

correspond to the execution of the running task. Discrete transitions correspond to the release of new 

task instances.  

Task automata model can express precedence dependencies between tasks as well as between task 

instances (jobs), non-periodic job release and non-deterministic task behavior. However, this model is 

not used very often in real-time systems analysis due to the complexity of its scheduling analysis 
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methods that, in some cases (e.g. task preemption, dependencies between jobs), do not converge to a 

result [35].   

2.2. Parallel tasks 

Most research work that involves real-time multiprocessor systems use sequential task models (e.g. 

models in which it is assumed that jobs execute on a single processor at a time instant). Recent work 

[37] [38] [39] introduces models of parallel tasks as a response to the problem of modeling execution 

parallelism (e.g. multithreading and other parallel programming constructions with finer granularity 

than threads). A job generated by a parallel task can execute at the same time instant on more than one 

processor. In [39] the authors classify parallel recurrent (periodic or sporadic) tasks as: 

• Rigid – the number of processors assigned to the jobs is fixed (does not change throughout 

its execution) and is specified a priori and externally to the scheduler.  

• Moldable – the number of processors assigned to the jobs is determined by the scheduler 

(for each job) and does not change throughout the job’s execution. 

• Malleable – the number of processors assigned to the jobs can be changed by the 

scheduler during the execution. 

A model of sporadic malleable tasks is presented in [37]. A task system, which executes on m 

identical processors, consists of n tasks. A task is represented as a 3-tuple τ(e, p, Γ), where e is the 

worst case execution time, p is the minimum separation time (the relative deadline is equal to p) and 

Γ = (�	 , �� , … , �
) is an m-tuple of execution ratios that satisfies �	 < �� < ⋯ < �
. A job that 

executes t time units on j processors completes �� ∗ � units of execution. The utilization ratio of the 

task is U=e/p. To complete its execution, a task requires k+1 processors simultaneously, where: 

� = 0	��	� < �	; ����, � = ��� !	

 {�|� < � } 

Both models presented in [38] and in [39] define periodic parallel tasks as 4-tuples τ(v, e, d, p), 

where v is the number of required processors, e is the worst case execution time, p is the period and d 

is the relative deadline. It is assumed that d ≤ p. However, the two groups of authors do not seem to 

agree on the definitions of rigid and moldable tasks. In [38] the authors consider moldable tasks (even 

if they do not explain the mechanism the scheduler uses for determining the number of required 

processors for a task) and in [39] the authors consider rigid tasks. 

Recent work presented in [40] and [41] considers the fork-join model for parallel real-time tasks. 

This model assumes that a task is composed of sequence of sequential and parallel execution regions. 

The task always starts and ends with a sequential execution region. A fork-join task is represented as a 

tuple ((Ci
1
,Pi

2
,…,Pi

s-1
,Ci

s
), mi,Ti), where Ci

s
 is the worst case execution time of a sequential execution 

region, Pi
s 

is the worst case execution time of each thread in the parallel execution region, mi is the 

number of parallel threads in each parallel region and Ti is the repetition period of the task. 

2.3. Real-time transactions 

Distributed applications are composed of several software components that run on different 

computers and that interact to achieve a common goal. The main problems in modeling distributed 

real-time applications are: 
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• Representing the interaction between tasks (e.g. network communication, execution 

dependencies) 

• The specification of time constraints  (e.g. deadlines) in the distributed context     

The network communication between two processing tasks is represented as a message. The 

message is a special type of task that has a transmission time and a deadline. The release time of the 

message depends on the execution of the emitting task. A precedence relation is thus created between 

the message and the emitting and receiving tasks. The message’s repetition period is closely related to 

that of its predecessor task. In many cases, there are no differences between the representations of 

tasks and messages in a distributed real-time system’s model. 

There are different modeling approaches for distributed real-time systems. From among these, the 

most representative is the real-time transaction model. Many other models are its variants, even if the 

terminology is different.  

Transactions [51] can be described, in their most general form, as directed acyclic graphs in which 

nodes are tasks or messages and the edges are precedence relations between tasks and messages. In a 

simplified form, the transaction is a chain of tasks. Each task has at most one predecessor and at most 

one successor. Chain transactions are frequently used to validate scheduling methods because they 

contain the smallest number of dependencies between tasks.  

Transactions can be periodic or sporadic and have end-to-end deadlines, meaning that the 

transaction’s deadline is equal to the deadline of its last task. Intermediate tasks do not have explicit 

deadlines. However, in some models, intermediate tasks have their own deadlines [52]. A real-time 

periodic transaction has the following defining elements: 

• Task graph (G) – a DAG that describes the dependencies between tasks and messages and 

determines the execution order. Nodes are tasks or messages, while graph edges represent 

precedence dependencies. 

• Period (T) – the repetition period of a transaction. 

• Deadline (D) – the deadline of a transaction, relative to its release time. 

In many cases, messages are treated as tasks that are handled by nodes representing network 

segments, and their transmission time is treated as task execution time. 

Another approach similar to chain transactions is the end-to-end tasks model [2]. An end-to-end task 

is a chain of atomic actions that execute in a pipeline fashion, each action on a different processor. If τ 

is a task that contains n actions, action i+1 will be ready to execute only if action i has finished its 

execution. V={V1, …, Vn} is the visit sequence for task τ, meaning that Vi is the processor on which 

action i executes. The end-to-end release time of a task is the release time of its first action. The end-

to-end deadline of a task is the deadline of its last action. As long as end-to-end timing constraints 

(deadline) are satisfied, it is not important when other actions finish their execution. 

Other approaches for expressing task dependencies are presented in [42] and in [43]. In [42], 

dependent periodic and sporadic tasks are modeled as port-based objects, meaning that a task has a set 
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of input ports and a set of output ports through which it communicates (sends or receives data) with 

other tasks. A task also has a set of possible behaviors. Different events combined with some input 

data can trigger different behaviors and some output data. A set of tasks is modeled as a directed 

graph, in which tasks are nodes and the edges represent data flows (links) from output ports to input 

ports of tasks. There can be synchronous and asynchronous links. A synchronous message triggers the 

execution of the receiver task. An asynchronous message is buffered until the receiver task is 

activated. There are a few constraints on this model:  

• Synchronous links can’t create cycles  

• Each task can have at most one synchronous link 

The work in [43] describes a model for dependent periodic tasks. The authors make the distinction 

between simple and extended precedence. A simple precedence is defined as a relation between two 

tasks �% 	
→ ��, which means that task τi, must execute before task τj. The graph that represents the 

precedence constraints of a task set has to be acyclic. An extended precedence is defined as a set of 

precedences between task instances (jobs) �%
'(,)
*+, �� , where ∀(., ./) ∈ 1%,� , �%[.] 	

→��[./]. 

Few approaches for modeling task dependencies are different from the real-time transaction model. 

The previously presented task automata model can express precedence dependencies between tasks 

(e.g. a task can be released only if another task finishes its execution).  

2.4. The proposed workload model 

We propose the SPD-RT workload model that allows the representation of a variety of real-time 

applications that include sequential, parallel and distributed (with network communication).   

We define a task model that is general enough to represent: 

• Periodic and a-periodic behavior 

• Parallel execution  

In the most simplified case, our task model is able to represent sequential independent tasks that 

have a repetition period.  

The expressiveness of the proposed task model, in the context of the previously presented task 

models, is depicted in Fig. 2. Because of the far too complex feasibility analysis [34], we chose not to 

cover the most complex aspects of sequential execution. However, the strength of our model is that it 

covers at the same time sequential and parallel execution requirements. 
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Figure 2. The expresiveness of the proposed task model in the context of the reviewed task models 

We consider that tasks may have execution constraints introduced by the execution of other tasks. 

We represent precedence dependencies between tasks through transactions. Our transactions take the 

form of DAGs, as presented in Section 2.3. 

A task is represented by the following parameters: 

� = (ɸ, 5, 6, 78, 9, :, ;) 

Where: 

• Phase (Ȉ) – the time when the task releases its first job. 

• Execution (E) – a sequence of execution segments, that describe the task’s execution 

requirements: 

5< = {(�% , =%)|� > 0} , e – segment execution time, = - degree of parallelism 

• Deadline (d) – time limit relative to the release of the job. 

• Priority (pr).  

• Consumed and produced events (P, C). Events are used to model precedence 

dependencies.  

• CPU affinity (A) – list of processors on which the task can be executed. 

A periodic task has one more parameter, the repetition period (T). In the case of periodic tasks, 

phases can be equal to zero or can be set according to user’s requirements. Tasks are preemptive. 

To represent parallel execution using our model, we describe the task’s execution requirements 

through a sequence of execution segments. Applications usually have portions that are inherently 

sequential, and other portions that can be parallelized. An execution segment may be a sequential 

portion of a task or it can be executed in parallel on a number of processors. The execution segment 
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has two parameters: the execution time and the degree of parallelism (number of threads that may run 

in parallel). Between two execution segments, there is a synchronization point, such that an execution 

segment will begin only if the previous execution segment is completed. At the beginning of each 

execution segment, a number of parallel threads equal to the degree of parallelism will be created. 

Each thread will have the execution time of the segment to which it belongs. The constraint imposed 

by this model is that all threads generated by an execution segment have the same execution time. If a 

task contains only one execution segment with a parallelism degree equal to 1, its jobs will be single 

threaded (sequential).  

To be able to represent the dependencies between tasks, we propose a mechanism based on the 

producer-consumer model. A task can produce events, which are consumed by other tasks, hence 

creating an execution dependency between producer and consumer. Events produced by executing 

jobs are stored in the global event queue. Producing an event is a non-blocking action. On the other 

hand, consumer jobs extract the expected events from the global queue. If the expected event is not in 

the queue (it has not been produced), the job’s execution will be blocked until the expected event is 

produced. 

Tasks that are part of transactions do not have predefined periods and deadlines. However, their 

period is equal with the transaction’s period and the deadline of the last task is equal to the 

transaction’s deadline.  The deadlines of intermediate tasks have to be determined using some specific 

method. 

We will use the proposed task and transaction models in the next chapters of the thesis that deal 

with problems related to real-time scheduling and real-time systems analysis.   

3. Platform models 

The platform model describes the system resources available to the applications. Applications 

require processors in order to execute, networks for communication, and sometimes they need to use 

other resources during execution, such as storage devices, memory, locks and others. 

In [2] two types of system resources are distinguished: 

• Active resources, which are usually called processors (e.g. CPUs, transmission links, 

disks) 

• Passive resources (e.g. shared data objects, buffers, locks) 

The model of active resources is of greater importance because it describes the availability of 

processors, for the execution of the workload. For the rest of this document, the terms resource and 

processor will be considered synonyms. 

3.1. Classification 

3.1.1. Uniprocessor platforms 

Platforms that provide only one processor for the execution of applications are called uniprocessor 

platforms. Uniprocessor platforms are intensively studied because the system validation mechanisms 
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are much easier to use than for multiprocessor platforms. Many real world real-time applications are 

executed on one dedicated uniprocessor (e.g. control applications). In cases in which the system is 

composed of more concurrent applications, each is executed on a dedicated processor in isolation (e.g. 

avionics software).  

3.1.2. Multiprocessor platforms 

Multiprocessor platforms contain more than one processor, π={π1,π2,…,πm} where m>1. 

Multiprocessor platforms are further classified by [7] in three categories:  

• Homogeneous  

• Uniform  

• Heterogeneous  

In homogeneous multiprocessor platforms, the processors are identical, meaning that the execution 

rate of all tasks is the same on all processors. 

A uniform multiprocessor platform contains processors characterized by their speed = =

{�	, ��, … , �
}. The execution rate of a task depends only on the speed of the processor.  

In heterogeneous multiprocessor platforms, the processors are different. Task execution rates 

depend on both the task and the processor. A task execution rate si,j≥0 is associated with each pair 

(Ti,πj), where Ti is a task.  

Distributed platforms can be modeled as a multiprocessor: both nodes and network links between 

nodes are represented as processors. For simplicity, the multiprocessor can be homogeneous, but the 

most accurate representation would be the heterogeneous multiprocessor. 

3.2. Virtual resource models 

Many hard real-time systems require the execution of the real-time application on a dedicated 

processing resource. This constraint simplifies the representation of the processing resource’s 

availability, since the resource is used by a single real-time application. More complex resource 

models have been introduced in the context of open real-time systems, in which more applications that 

have different timing requirements share the same processing resource. 

Open real-time systems have received lately an increased attention from the real-time research 

community. Some of the main issues addressed in research work are: 

• Resource sharing between applications that have different timing requirements 

• Guaranteeing that applications that are validated in isolation, have the same timing 

parameters while executing on a platform which is shared with other applications 

The concept of virtual resource in real-time systems research was first introduced by [16], in the 

context of open systems. It provided an abstraction for the availability of a single resource shared 

between different applications. In the same paper, the concept of supply function is presented, to 

measure the amount of time the virtual resource is available.  
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The virtualization of computing resources is applied to uniprocessors as well as to multiprocessors 

(Fig.3). There are a number of different approaches in modeling virtual resources. The most 

representative will be presented as follows.  

 

Figure 3. Open real-time system architecture that includes virtual platforms 

3.2.1. Virtual uniprocessor models 

The resource partition model was proposed by [16] as a solution for resource sharing in open real-

time systems. The main problem addressed was that, in open systems, each task group (application) 

assumes exclusive access to the physical resource, and hence their scheduling policies may conflict. 

The authors presented the idea that each task group should have access to a virtual resource that 

represents a fraction of the shared physical platform. In this way, each individual application can use 

its specific scheduling policy without conflicts, while a second-level scheduler handles the service 

requests received from the virtual resources.  

A static resource partition is defined as a pair Π=(Θ,P), where Θ is an array of n time pairs {(a1,b1), 

(a2,b2),…, (an,bn)} and P is the partition period. The time pairs represent the time intervals during 

which the physical resource is available for the partition and have to satisfy the following condition: 

0≤ a1 ≤ b1 ≤ … ≤ an ≤ bn ≤ P. The availability factor and the supply function characterize the partition. 

The availability factor of a partition is expressed as: 
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The supply function S(t) of a partition is the total amount of available time in the partition starting 

from time 0 to time t. 

The static resource partition has a degree of rigidity because it assumes an exact knowledge of the 

available time intervals on the physical platform. That is why, in the same work [16], the authors 

provide a more flexible representation of the resource partition, the bounded delay partition. The 
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the amount of resource supplied to the application and the delay represents the worst-case service 

delay. 

In the resource partition approach, each application is independently scheduled to meet real-time 

requirements on its own partition. Application scheduling depends only on the partition parameters 

and it is independent of how the partitions are scheduled on the physical resource.  

According to the resource reservation paradigm, the capacity of a processor can be partitioned into a 

set of reservations. Each reservation is equivalent to a virtual processor that provides a fraction of the 

available computing power.  

The Constant Bandwidth Server (CBS) presented in [44] is an example of resource reservation 

model designed for the integration of soft and hard real-time systems. In this approach, it is assumed 

that all hard real-time applications run directly on the physical processor and that they are scheduled 

according to an algorithm which insures that all their deadlines are met. The remaining fraction of 

processor time will be used for soft real-time applications execution. This fraction of processor time is 

modeled by the CBS.  

A CBS is defined by a budget qs and a pair (Qs, Ps), where Qs is the maximum budget and Ps is the 

period of the server. The server bandwidth is: Us = Qs/Ps. The server has a fixed deadline ds,k, at each 

time instant. It is assumed that ds,0=0. When a job is served (executed), the budget qs is decreased with 

the execution time of that job. When qs=0, the budget is recharged at the maximum value Qs and 

ds,k+1=ds,k+Ps. If a job arrives and the server is active, the job is put in the queue of pending jobs and 

served according to a non-preemptive algorithm (e.g. FIFO). If a job arrives and the server is idle, then 

if qs
≥ (ds,k-ri ,j)Us, the server generates a new deadline ds,k+1=ri,j+Ps and qs is recharged at the maximum 

value, otherwise the job is served using the current budget and deadline.  

The CBS model guarantees that if Us is the fraction of processor time (or bandwidth) assigned to a 

server, the server’s contribution to the total processor utilization factor is at most Us, even in the 

presence of overloads. The CBS has the temporal protection property, which means that: 

• The temporal behavior of a task can’t be affected by other tasks’ overruns 

• The timing parameters of an application allocated to a virtual resource can be guaranteed 

in isolation and do not depend on other applications that run on the same physical 

platform. 

The periodic resource model presented in [45] describes a partitioned resource that each period 

allocates a part of the total resource capacity, to an application modeled as a periodic task. A periodic 

resource model Π=(Θ,P) guarantees a resource allocation of Θ time units every P time units. The 

resource availability is described by two parameters: 

• The resource supply – the amount of resource allocations that the resource provides during 

a time interval. 

• The service time – the amount of time needed by the resource to provide a specified 

resource supply. 
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A recent development of the periodic resource model is the Explicit Deadline Periodic (EDP) 

resource model presented in [46]. The initial periodic resource model assumes an implicit deadline for 

the resource allocation, equal to the resource period. The EDP model introduces an explicit deadline 

∆. As a consequence, the resource model Π=(Θ,P,∆)  provides a resource allocation of Θ time units 

within ∆ time units, every P time units. The motivation for using an explicit deadline is that a demand 

which can’t be scheduled on a periodic resource because the length of the interval with no supply is 

larger than the earliest deadline in demand, could be scheduled on a periodic resource with the same 

capacity by lowering the resource deadline.  

3.2.2. Virtual multiprocessor models 

In [26] the authors present a multiprocessor bandwidth reservation scheme in which tasks are 

grouped in containers (an abstraction that allows isolation between task groups). Containers in a 

system form a hierarchy. The amount of resource (multiprocessor) which has to be allocated to a 

container is described by a parameter called bandwidth. Given a container C and its bandwidth w(C), 

C will receive ?@(:)A fully available processors and at most one partially available processor. This 

way, the model enforces a minimum degree of parallelism on the resource supply. The supply function 

of a processor k, over a time interval t, is computed as follows: 

))(ˆ,0max()(
kkk

tutS σ−=
 

where B C is the processor bandwidth and σk is the maximum interval when the processor does not 

provide any supply. The resource supply for a container is characterized by a collection of such supply 

functions. If m is the number of processors (and also supply functions), for 1≤ k ≤ m-1processors the 

supply functions will be Sk(t)=t, as all of them will be fully available for the container. 

The multiprocessor periodic resource model is presented in [5] in the context of virtual clustering 

of multiprocessors. Clustering is an approach used in multiprocessor scheduling, which assumes that 

processors in a multiprocessor system are statically grouped into clusters, to reduce task migration 

during execution. Tasks are assigned to clusters and then they are globally scheduled on the 

corresponding cluster. In the virtual clustering approach, physical processors are dynamically assigned 

to clusters, and a processor can be part of two virtual clusters. To express the resource supply of a 

virtual cluster, the multiprocessor periodic resource (MPR) model is defined as Π=(Θ,P,m’). An MPR 

specifies that an identical multiprocessor platform provides Θ time units in every period P, with the 

maximum degree of concurrency of m’. The model is feasible if Θ ≤ m’P.  For m’=1 the MPR model 

reduces to the periodic resource model presented in [45]. 

In [47] the authors propose to represent a parallel machine as a virtual platform which contains m 

virtual processors D = {E%}%F	

 . Each virtual processor provides computing time according to a 

uniprocessor bounded delay partition, as in [16]. Given this virtual platform model, a Multi Supply 

Function (MSF) is a set of m supply functions GHI(J%F	



, one for each virtual processor. 

In the context of a time partition P, a supply function is the minimum amount of time allocated by 

the partition in every interval of time of length 0≥t : 
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Given the set of partitions that can be allocated by a virtual processor, legal(v), the supply function 

of the virtual processor is: 
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A delay bounded model (α,∆) can be derived for each virtual processor from its supply function

)(tZv : 

t

tZv

t

)(
lim

∞>−
=α

    









−=∆
≥ α

)(
sup

0

tZ
t v

t
 

The approach presented in [47] can be used to implement parallel real-time applications 

independently of the physical platform. The virtual processors are implemented using reservations, as 

sequential servers.  

The Parallel Supply Function (PSF) proposed in [18] is used as the interface of a virtual platform, 

and expresses the computing capacities of a virtual platform implemented on a multiprocessor. The 

authors extend the resource partition model presented in [16] to multiprocessors through multi-

partitions.  

A multi-partition is the aggregation of all time partitions defined for each individual processor. The 

multi-partition is formally defined as a multi-set of time intervals. In a multi-set, individual elements 

may occur multiple times, as the same time interval may appear on two different processors. The 

characteristic function of a subset A is defined as: 
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The characteristic function of a multi-partition P is: 
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The maximum degree of parallelism of a multi-partition is: 
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The level-j supply function Yj,P(t) expresses the minimum amount of computing capacity provided 

by a multi-partition every interval of length t ≥ 0 by at most j intervals in parallel: 
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To define the PSF of a virtual platform Π, implemented on m identical processors, the authors first 

extend the multi-partition level-j supply function to the set of multi-partitions that can be allocated by 

Π, legal(Π): 

)(min)( ,
)(

tYtY Pj
legalP

j
Π∈

=
 

Finally, the PSF of a platform Π is defined as the set of level-j supply functions {K�}�F	

 . The PSF is 

used to derive a delay bounded model (α,∆) for the virtual platform, as in [47]. 

3.3. Discussion and proposed platform model 

For the rest of this thesis, we will refer to multiprocessor platforms in both their forms: 

• Without network communication 

• Distributed (with network communication) 

We will mainly use the homogeneous multiprocessor model, in which tasks execute at the same 

speed on all processors (processors are identical). 

In Chapter 3, we use the resource reservation approach to model the availability of open network 

segments that allow the transmission of real-time traffic at the same time with non-real-time traffic.   

In Chapter 4, we use a platform availability modeling approach similar to the resource partition 

approach in [16]. We find this model suitable to express the availability of execution time in a certain 

discrete time interval that has been partially “occupied” by a number of tasks, to build cyclic schedules 

for real-time transaction sets.   

4. Scheduling models 

The time at which each tasks finishes the execution is essential for the correctness of a real-time 

system. To guarantee that the system response does not exceed the requested deadline, the use of 

appropriate scheduling techniques is necessary. A scheduling technique establishes a set of rules used 

to impose the execution order of all released jobs. The component of a computing system that applies 

the rules imposed by the scheduling technique is called scheduler. Each hardware platform that has to 

be shared between a set of jobs needs a scheduler or a set of schedulers that have the role of 

establishing jobs’ execution order.  

Two main approaches are used in real-time scheduling [2]: 

• Clock-driven 

• Priority-driven 

In the clock-driven approach, scheduling decisions are made at specific time instants. These time 

instants are chosen before the system is started. The schedule of the jobs is computed off-line and 



29 | Real-time system models 

 

stored. The scheduler uses the pre-computed schedule at run time, at each scheduling decision time, to 

choose which job will be executed next. The schedule used by a clock-driven scheduler has to contain 

all scheduling decisions that have to be made since system start to its stop. This is possible only if all 

parameters of the workload are known a-priori and fixed (do not change over time). The schedule of a 

workload that contains only periodic tasks, is periodic and it repeats with the task set’s hyper-period. 

The hyper-period of a task set is equal to the least common multiple (LCM) of the tasks’ repetition 

periods. A periodic static schedule is called a cyclic schedule. If a cyclic schedule can be computed 

before system start, the scheduler will restart the same schedule at the beginning of each hyper-period. 

The clock-driven approach has the following main advantages: 

• The static schedule can be represented by a table of job start times and completion times. 

The scheduler uses the table at run time. The implementation of such a system is 

straightforward. From the execution time point of view, there is a minimum scheduling 

overhead, because the scheduler does not make the decisions at runtime.   

• Systems based on clock-driven scheduling approach are relatively easy to test and validate 

trough simulation. 

However, this approach has some important disadvantages: 

• It can’t handle dynamic systems such as tasks that have variable parameters that can’t be 

predicted in advance. 

• It can’t handle sporadic and aperiodic tasks. 

• They are difficult to modify and maintain.   

Clock-driven approach is best suited in the case of periodic task systems that have a bounded hyper-

period, and that once built, don’t change very often (e.g. small embedded systems). 

In the priority-driven approach, each job that is ready for execution is given a priority. At any 

scheduling decision time, the jobs with the highest priorities are chosen to be executed on the available 

processors. Scheduling decisions are made at runtime. Compared to the clock-driven approach 

priority-driven scheduling is more flexible and can handle a large variety of task models. Scheduling 

decisions are made at runtime, but with a larger scheduling overhead.  

It is said that the priority-driven approach is work-conserving because it does not allow any 

processor/resource to be idle when there are jobs ready for execution. This approach is event-driven, 

that is, scheduling decisions are made when events such as job releases or job completions occur. The 

jobs’ priorities are assigned according to a scheduling algorithm. A scheduling algorithm receives as 

input a task set and has to establish the order in which jobs generated by the task set are executed on 

the platform, by assigning priorities.  

4.1. Classification of scheduling algorithms 

One can classify scheduling algorithms based on different criteria. In [53] the authors distinguish 

three classes based on the priority assignment scheme: 
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• Fixed priority scheduling algorithms assign a priority for each task. The priority is 

inherited by the task’s jobs. Task priority does not change during execution (example: 

Rate Monotonic algorithm [27]). 

• Job-level dynamic priority scheduling algorithms assign a priority for each job. Job 

priority does not change during execution. Jobs belonging to the same task may have 

different priorities, but the relative priority of two jobs stays the same (example: Earliest 

Deadline First algorithm [27]).  

• Dynamic priority scheduling algorithms assign priorities for each job, which may be 

changed any time during execution. The relative priority of two jobs may change in time 

(example: Least Slack First algorithm [28]). 

In [7] scheduling algorithms are further classified as: 

•  Preemptive, when the algorithms allow jobs with higher priority to interrupt the execution 

of lower priority jobs.  

• Non-preemptive, when algorithms do not allow job interruption during execution. A job 

that starts its execution will occupy the processor until its completion. 

• Co-operative, when jobs can be preempted at predefined points during their execution. 

4.2. Main problems of real-time scheduling 

To guarantee the correctness of a real-time system, one has to prove that each job will finish its 

execution before its deadline. Therefore, real time scheduling has been mainly focused on analytically 

solving the feasibility and the schedulability problems [53].   

Given a system model, a task set is considered feasible if there is a schedule so that all tasks are 

executed without missing any of their deadlines. 

A task is schedulable according to algorithm A if its worst-case response time obtained with this 

algorithm is less or equal to its deadline. A task set is schedulable if all its tasks are schedulable. Given 

a system model, a scheduling algorithm is optimal if it can schedule all task sets that are feasible on 

the system.  

A schedulability test assesses the schedulability of a task set according to a given algorithm. The 

schedulability test is sufficient if all task sets that satisfy the condition are schedulable. The 

schedulability test is necessary if all task sets that do not satisfy the condition are not schedulable. A 

schedulability test is exact if it is at the same time necessary and sufficient. The majority of 

schedulability tests developed and used in real-time scheduling (especially in the case of 

multiprocessors) theory and practice are sufficient tests. These tests are based on the system’s worst-

case behavior and sometimes exclude some of the schedulable task sets. On uniprocessors, the worst 

case response time of a task occurs at its critical instant, when the task is released at the same time 

with all the tasks that have higher priorities. On multiprocessors, however, the critical instant does not 

occur under the same conditions as on uniprocessors. It is known [7] that the critical instant has not 

been identified in the case of multiprocessor scheduling of sporadic tasks. In [25] the authors evaluate 

different sufficient multiprocessor schedulability tests and show that there is large number of task sets 
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that are in the “un-decidable zone” (see Fig.4), that is, they did not prove unfeasible, but were rejected 

by the sufficient feasibility tests.     

 

Figure 4. The limits of multiprocessor sufficient and necessary schedulability tests as a function of total 

task set utilization 

4.3. Uniprocessor scheduling 

The most representative priority-driven scheduling algorithms for uniprocessors are the Rate 

Monotonic (RM) and Earliest Deadline First (EDF) algorithms, which were first presented and 

analyzed by Liu and Layland in [27]. Both RM and EDF algorithms are optimal for sporadic task sets 

on uniprocessors. 

RM is a fixed priority scheduling algorithm that assigns priorities to tasks according to their 

repetition rate (� =
	

L
). The algorithm will assign priorities that are proportional with the task’s 

repetition rate. Jobs of the same task will inherit the task’s priority. The RM algorithm can schedule all 

task sets that have total utilization factor less than � = �(2
N
O − 1), where m is the task set’s 

cardinality. The largest utilization factor of tasks sets that can be scheduled is around 70% when m is 

larger than 10, and slightly increases to 78% when m decreases.     

EDF is a job-level dynamic priority algorithm that assigns priorities to jobs according to their 

absolute deadline. The job with the closest deadline will be assigned the highest priority. Job priority 

will not change during execution, but jobs belonging to the same task have different priorities. The 

EDF algorithm can schedule all task sets that that have total utilization factor less than U=1, that is 

any task set that fully utilizes the processing time will be scheduled. 

Another important uniprocessor scheduling algorithm is Least Slack First (LSF). LSF is a dynamic 

priority scheduling algorithm presented and analyzed by Mok in [28]. It is also known under the name 

of Least Laxity First algorithm. The slack of a job is defined as “the maximum time the scheduler can 

delay running the job before it is bound to miss its deadline”. LSF algorithm assigns priorities to jobs 

according to their slack computed at the time the scheduling decision is made. The job with the 

shortest slack is assigned the highest priority. As the slack decreases every time instant if the job does 

not execute, the job’s priority may change very often. Moreover, there are a lot of preemptions 

because the relative priority of jobs changes during execution. The overheads introduced by the very 
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frequent priority re-computation and by preemptions discouraged the practical use of this algorithm. 

The LSF algorithm is optimal for sporadic task sets and can schedule all task sets that that have total 

utilization factor less than U=1(like EDF).     

4.4. Multiprocessor scheduling 

In multiprocessor systems, including distributed systems, the scheduling problem has two aspects: 

• Allocation: for each task/job, choose a processor on which it will execute. 

• Priority assignment: establish in which order jobs will be executed. 

From the allocation point of view, multiprocessor scheduling has been classified as [53]: 

• Global 

• Partitioned 

• Clustered 

In the global approach, jobs can be allocated to any available processor and can migrate to other 

processors during execution with no restrictions. Global scheduling assumes the existence of a unique 

global scheduler and a global job queue. At each time instant, the global scheduler chooses from the 

job queue n jobs with the highest priority, where n is the number of available processors. The chosen 

jobs will be executed on the processors. Since job migration is allowed, it is not important for a job 

that started its execution on a certain processor, once preempted, to continue its execution on the same 

processor.  

Partitioned scheduling assumes that each processor has its own scheduler and job queue. Each task 

is assigned to a single processor. Jobs can only be assigned to the processor the task was assigned to. 

Job migration to other processors is not allowed.  

In clustered scheduling, job migration is restricted to a subset of the available processors. 

Processors are grouped into clusters. Each cluster has its own scheduler and job queue. First, tasks are 

allocated to clusters, and then each cluster scheduler globally schedules jobs inside the cluster. It can 

easily be observed that the global and partitioned scheduling are instances of clustered scheduling. If 

the cluster size is equal to the total number of processors, then we have global scheduling. If each 

cluster contains only one processor (the number of clusters is equal to the number of processors), we 

have partitioned scheduling. 

Partitioned scheduling is done in two steps. First, tasks are allocated on processors by using a 

partitioning algorithm. Second, a uniprocessor scheduling algorithm such as RM or EDF is applied to 

schedule the tasks allocated on each processor. 

Task set partitioning on a multiprocessor is equivalent to the Bin-Packing problem that requires 

placing n objects of different dimensions in m boxes. It is known that the Bin-Packing problem is NP-

hard. As optimal solutions can only be found through exhaustive search, for practical reasons, 

suboptimal solutions known as partitioning heuristics are used in real-time scheduling. Some of the 

most common partitioning heuristics are the following: 
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• First Fit (FF) – allocates the task to the first processor that verifies the schedulability 

condition after the allocation. The search for an available processor always starts with the 

first processor in the processor list. 

• Next Fit (FF) - allocates the task to the next processor (starting with the current processor) 

that verifies the schedulability condition after the allocation.  

• Best Fit (BF) - allocates the task to the processor that minimizes the remaining processor 

capacity. 

• Worst Fit (WF) - allocates the task to the processor that maximizes the remaining 

processor capacity. 

Usually some task sorting procedure is applied before partitioning the task set. By sorting the tasks, 

the result of the partitioning heuristic can be improved. The sorting criterion can be task deadline, 

period, utilization, and others. 

For some time, partitioned scheduling received more attention for two reasons: 

• The schedulability analysis of a task set partitioned on a multiprocessor reduces to the 

analysis of m task sets on m uniprocessors. 

• Global scheduling suffers from the “Dhall effect”. The authors in [6] demonstrated that 

when there are m tasks with short periods/deadlines and very low utilizations, and one task 

with utilization close to 1 that have to be scheduled with global EDF on m processors, the 

heavier task misses its deadline, so the utilization bound of global EDF is 1+ε, for 

arbitrary small ε. Furthermore, authors in [55] showed that for partitioned scheduling of 

periodic tasks with implicit deadlines, the utilization bound is (m+1)/2. 

The main drawback to the partitioned approach is the task allocation step, in which each task is 

allocated to a processor for execution. The allocation problem is known to be NP-hard. Moreover, the 

partitioned approach is not work-conserving, so ready jobs allocated to one processor may stay in the 

queue while other processors are idle resulting in the fragmentation of processing capacity. 

Compared to partitioned scheduling, global scheduling is work conserving, but with the cost of 

migration overhead that didn’t exist in the partitioned approach. There are some global dynamic 

priority scheduling algorithms that are optimal for periodic task sets with implicit deadlines such as 

Proportionate Fair family algorithms [23] and LLREF [54]. However, these optimal algorithms are not 

used in practice due to very large overheads they introduce through high frequency migrations and 

preemptions. A large number of research works [50][58][59][60] try to adapt optimal uniprocessor 

scheduling algorithms such as RM and EDF to global multiprocessor scheduling. It was demonstrated 

in [50] that the maximum utilization achieved by global EDF is influenced by the value of the heaviest 

task (in terms of task utilization): �RST = �− (� − 1)B
UV . A number of improved EDF-based 

algorithms [58][59] have increased the utilization bound, but neither of them is optimal. 

Clustered scheduling is similar to partitioned scheduling, as the task set is partitioned on the 

clusters. Because each cluster contains two or more processors, the scheduling inside each cluster is in 

fact global scheduling. By reducing the number of processors in a cluster the overheads introduced by 
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global scheduling (global queue size, migrations) are reduced. Capacity fragmentation is less of a 

problem than in partitioned scheduling. 

Semi-partitioned scheduling [56][57] is a hybrid between partitioned and global ones that tries to 

overcome the disadvantages of both. This approach is applied to task sets that can’t be partitioned on 

the available processors. In the first step, tasks are allocated to processors until no other task can be 

allocated. These tasks are scheduled according to the partitioned approach. The remaining tasks are 

scheduled according to the global approach, thus they are allowed to migrate on any processor that is 

available for execution. There are two main variants of semi-partitioned scheduling, each of them 

using different methods for reducing the number of migrations for tasks that are scheduled with the 

global approach. The first method statically allocates portions of tasks to available processors. The 

task’s portions are executed on the allocated processors without supplementary migrations. The 

second method defines a restricted migration pattern for jobs of tasks that are globally scheduled. In 

this case, the jobs are not allowed to migrate, but successive jobs of the same task can be released on 

different processors. 

In the case of distributed systems, the scheduling problem is similar to the partitioned scheduling 

problem if the individual physical processing resources are uniprocessors.  Otherwise, if the 

processing resources are multiprocessors, the scheduling is resolved by a hierarchy of schedulers that 

may be partitioned, global or clustered. In distributed scheduling, tasks have to be allocated on the 

individual processing resources by using a partitioning heuristic. Local schedulers solve the task 

scheduling on each individual processing resource after allocation. The allocation and scheduling 

problems usually have more constraints, as the tasks have precedence and communication 

dependencies.  

4.5. Discussion and proposed scheduling model  

Priority-based scheduling and in particular Rate Monotonic (RM) [27] and Earliest Deadline First 

(EDF) [27] algorithms received a great deal of attention from the real-time research community. From 

among the proven optimal uniprocessor scheduling algorithms, RM and EDF are successfully used in 

practice. 

On the other hand, multiprocessor and distributed scheduling still raise open research problems. 

Among the open problems related to multiprocessor and distributed scheduling are: 

• Task allocation/partitioning in both distributed and multiprocessor systems 

• The implementation of optimal multiprocessor scheduling algorithms for real-world 

applications 

• Scheduling real-time parallel applications on multiprocessors 

• Scheduling tasks with interdependencies on multiprocessors and distributed systems 

Most research efforts were, at first, directed towards adapting the most successful uniprocessor 

scheduling techniques to multiprocessors. The same well established workload models such as the 

periodic and sporadic (sequential) task models were chosen for analysis. As multiprocessor platforms 

introduces new variables, many uniprocessor research results proved inapplicable to multiprocessors. 
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Moreover, the multiprocessor variants of RM and EDF algorithms are not optimal. As result of these 

observations, two major research directions emerged:  

• In the first direction, efforts are made to introduce new multiprocessor scheduling 

algorithms, which can be implemented in practice. 

• The second direction concentrates its efforts on finding the best schedulablity tests for 

well known algorithms such as RM and EDF.  

The work in these directions is far from being finished. Optimal multiprocessor scheduling 

algorithms such as the Proportionate Fair algorithm [23] and its variants [48][49] are almost 

impossible to be implemented in practice due to very large overheads introduced by their very frequent 

scheduling decisions and task preemptions. In the second direction, up until now, mainly necessary or 

sufficient analytical schedulability tests were found, most of them having very high complexity levels 

[25]. The existing sufficient schedulability tests introduce very strong constraints that excessively limit 

their results. 

As an example, we can mention the case of the global EDF algorithm. In [25] the authors surveyed 

the most important seven sufficient schedulability tests with different computational complexity 

levels. Their results show that there is a large interval on the total utilization axis, which is not covered 

by the schedulability tests. The interval increases with the number of processors. In the 8 processor 

scenario, this interval starts at a total utilization approximately equal to 4.5 (about 56%). This means 

that all evaluated schedulability tests introduce strong constraints on the task sets they assess, leaving 

outside their limits a large number of task sets which may be schedulable. 

The results we reviewed show that remains a great deal of research work to be done concerning 

multiprocessor real-time scheduling. 

For the rest of this thesis we intend to investigate problems related to multiprocessor scheduling, 

and in particular: 

• Real-time communication scheduling in the context of real-time distributed systems 

timing analysis. We adapt the well known Response Time Analysis technique to real-time 

communication and we create a method for network bandwidth estimation (detailed in 

Chapter 3).  

• Multiprocessor scheduling of real-time transactions. We propose two different techniques 

for solving this problem. The first technique creates schedules based on a clock-based 

approach and is suitable for small embedded systems. The second technique combines a 

genetic algorithm with simulation-based evaluation of candidate solutions to find feasible 

system setups (detailed in Chapter 4). 

• Simulation-based analysis of real-time multiprocessor systems. We create an environment 

that allows the simulation of a variety of real-time systems models and as well supports 

the statistical evaluation of different scheduling techniques (detailed in Chapters 5 and 6).   

For our work on multiprocessor scheduling, we addopt a model based on the clustered approach. In 

this way, we can customize the scheduler to be partitioned or global, as they are particular cases of a 
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clustered scheduler. Through parametrization, we can obtain models suited for the representation of 

multiprocessor and distributed scheduling. Each cluster can apply a different priority-based scheduling 

algorithm.  

We propose an optimization of the classic clustered scheduling, the loose clustered scheduling 

mechanism. Our approach extends the classic clustered approach with a load balancing mechanism 

that has the following objectives: 

• Equalize cluster utilization;  

• Reduce capacity fragmentation due to not optimal task partitioning between clusters.  

 

Figure 5. The loose clustered approach 

Each time a processor in a cluster is idle, it can execute a job from another cluster’s queue if a 

collaboration relation has been defined between the clusters. A collaboration relation between two 

clusters can be statically defined before the start of the system. Each of the collaborating clusters can 

execute a job from the other’s queue. The migrated job can be executed on the free CPU with the 

lowest priority and it will not affect the response time of other jobs.  Fig. 5 depicts an example of this 

mechanism. The collaboration relation is defined between cluster A and cluster B that both contain 

two CPUs. J3 is scheduled on cluster A, but can execute on cluster B because CPU 4 is idle. 

In Chapter 5 we describe the implementation of this model in a simulation environment that we use 

for real-time systems analysis. In Chapter 6 we evaluate this new approach against the clustered, 

global and partitioned scheduling. 

5. Conclusion 

This chapter reviews the most important models and algorithms used in real-time systems current 

research. The analysis of theoretical models was made by addressing the main components of a real-

time system:  

• Workload 

• Platform 

• Scheduling  
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In the context of multiprocessor real-time systems, recent research work is directed towards finding 

new models to describe real-time parallel applications and parallel platforms.  

Workload models capture real-time application patterns, which are used in real-time systems 

analysis. Most of the current analysis techniques on multiprocessors use, for simplicity, the Liu and 

Layland periodic task model or the sporadic task model which were developed in the uniprocessor era 

of real-time systems. However, latest research efforts try to integrate parallel application models in 

real-time systems analysis. Another direction, which needs attention, is that of task dependencies and 

real-time distributed transactions.  

Platform models try to describe the computing resource parallelism through different abstractions 

such as reservations or parallel supply functions.  

In the direction of multiprocessor scheduling, efforts are made to introduce new multiprocessor 

scheduling algorithms, which can be implemented in practice and as well to find the best schedulablity 

tests for widely used algorithms such as RM and EDF.  

Based on the review of the current research results in real-time systems modeling and analysis, we 

identified some directions, which may accommodate new contributions. For the rest of this thesis, we 

intend to investigate the following subjects: 

• Accommodating real-time communication over general purpose networks, in the context 

of distributed real-time systems 

• Real-time transactions scheduling on multiprocessor platforms 

• Real-time systems simulation  

• Simulation-based analysis of real-time multiprocessor systems  

The main contributions of this chapter are the following: 

1. A review and analysis of the current research results in real-time systems modeling and 

analysis. 

2. The description of the models (workflow, platform and scheduling) that will be used in this 

thesis. 
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