
1 | Real-time system models

Chapter 1. Introduction

1. Real-time systems

In most cases, it is expected that a computer system will produce a correct result in an acceptable

time frame, approximately proportional to the volume of computation required. If you read an online

journal, the accepted time to complete loading of the website is less than 20 seconds. But if you want

to simulate the biochemical interactions between molecules, a period of up to several days can be

accepted to produce results, because the volume of data and computation is very high. In previous

cases, the users are satisfied if the system produces a correct result, with no errors and, even if the web

page takes longer than 20 seconds to load, only the user's patience is affected. The correctness and the

usefulness of the result are not affected.

However, there are situations when it is very important that the system response is generated

without errors and within a specified time interval. There are critical cases in which exceeding the time

limit causes negative (sometimes catastrophic) unwanted effects, such as most of the industrial control

systems, avionics, military systems and other similar systems. In other cases, the response time has to

be situated inside a specified interval for the system to be useable. Multimedia streaming or

teleconferencing applications have such time constraints. For these applications, the Quality of Service

(QoS) the user perceives is influenced by the end-to-end packet delay and by the standard deviation of

packet delay (jitter). QoS must be high for these applications to be usable.

A system is real-time if its correct functioning depends on meeting certain time constraints. More

specifically, a real-time computing system can be defined as a system that when subjected to external

stimuli, generates a response within a limited time interval. H. Kopetz gives the following definition in

[1]:

"A real-time computer system is a computer system in which the correctness of the system behavior

depends not only on the logical results of the computations, but also on the physical instant at which

these results are produced."

Real-time systems usually respond to events that take place in the environment in which they

operate and they often have direct effects on it. Therefore, their response time, defined as the time

between the occurrence of an event and the corresponding response, should be correlated to the timing

characteristics of the environment. For example, in the case of an industrial process, if the time

between the occurrence of an alarm due to high pressure in a boiler and the time a valve opens

resulting in lowering the pressure must be under 10 seconds, the response time of the system that

controls this process must be adapted to this timing requirement, otherwise the boiler can explode.

Teleconferencing applications are another example. In this case, even if extreme values are admitted, it

is very important that average data transmission delays be undetectable to human hearing and vision;

moreover, the transmission delay jitter must be low. If these timing requirements are not met, the users

will not understand what their interlocutors are saying, and will not be able to see them.

Real-time system models | 2

Real-time systems can be classified from different points of view. For example, some classifications

can be done by taking into consideration only the characteristics of the applications that are executed

on the system. Other classifications can be made by taking into account platform characteristics,

resource availability or characteristics of the operational environment. Some of these classifications

are presented below.

Hard and soft systems

A very important classification of real-time systems is made considering only the timing constraints

of real-time applications. According to this classification, real-time systems are either hard or soft.

A real-time application is composed of multiple tasks (units of work that are scheduled and

executed by the system). Each task has a deadline, defined as the instant in time by which its

execution has to be completed. The characteristics taken into consideration when choosing a category

for an application (hard or soft) are linked to the quantification of deadline misses and the effects

generated by deadline misses [2]:

• The total number of deadline misses

• The usefulness of the results in case of deadline misses

• The effects of deadline misses on the users and the environment

A real-time application is hard if:

• The total number of deadline misses is zero or close to zero

• The usefulness of the results is zero or close to zero in the case of deadline misses

• Deadline misses have serious, sometimes catastrophic effects on users and the

environment (e.g. a boiler explosion; a robot crushes into an obstacle)

For hard real-time applications, deadline misses are not accepted. Moreover, the developer has to

guarantee that deadlines are always met by using some proved analytical methods or validation

algorithms.

A real-time system is hard if it contains mainly hard real-time applications. To guarantee that in a

hard system all timing constraints are satisfied, applications and the platform (hardware and software)

on which they execute must have deterministic behaviors. In this way, the validation of the entire

system can be done before system start, or, for dynamic systems, during execution.

A real-time application is soft if:

• Occasional deadline misses are accepted. The deadline can even be specified as a

probabilistic parameter.

• The results are still useful if the application experiences a small number of deadline

misses, but their usefulness decreases with the increase of deadline misses. The relation

between the number of deadline misses and the usefulness of the results is specific for

each application.

• Deadline misses cause only the degradation of service quality

3 | Real-time system models

The avoidance of occasional deadline misses is of little importance for soft real-time applications

because they do not cause serious effects. It is more important that these applications have good

average response times.

A soft real-time system contains mainly soft real-time applications. These systems do not need such

rigorous validation as in the case of hard systems. Even if exact quantification of deadline misses is

not required, the validation of the average case timing behavior is desirable.

Event-triggered and time-triggered systems

Another classification is based on the type of mechanism that triggers real-time applications

activities, such as the execution of a job or the transmission of a message [1].

If the activities are triggered by the occurrence of an event other than the clock tick, the real-time

system is event-triggered. An intelligent sensor that reports a significant change in the value of a

measured environment parameter (e.g. temperature) is event-triggered. Event-triggered activities are

usually modeled as asynchronous or sporadic tasks that require dynamic execution schedulers.

When activities are initiated in predetermined points in time, the real-time system is time-triggered.

Time-triggered activities are usually modeled as periodic tasks and execution scheduling is

predetermined. These systems are more predictable than event-triggered systems, but can overlook the

occurrence of some events. Let’s presume that the intelligent sensor mentioned before is part of a

time-triggered system. To obtain information about the state of the environment, the system will poll

the sensor from time to time. If the state change occurs between two consecutive polls, the sensor has

to save the observed state until the system asks for an update, or the observation will be lost.

Resource-adequate and resource-inadequate systems

Real-time systems, in which there are enough computing resources available to handle all presumed

scenarios, are resource-adequate [1]. Even if it is too expensive to have systems that have enough

resources to handle all possible situations, many hard and safety-critical systems have designs based

on the resource-adequacy principle.

On the other hand, in many cases, it is hard or even impossible to provide enough resources to cover

all possible scenarios. These systems are consequently built on the resource-inadequacy principle.

Embedded and mobile systems have limited resources that have to be managed in order to provide the

best performance. Recently, extensive work has been done in the area of accommodating real-time

applications on shared platforms. In this case, applications have to dynamically adapt to the fluctuating

resource availability in order to maintain timing constraints.

Single-node and distributed systems

Depending on the characteristics of the underlying platform, a real-time system can be single-node

or distributed [3]. A single-node real-time system consists of one computer and its I/O devices. The

single-node system receives an input, performs some processing locally and then, it generates the

result.

Real-time system models | 4

A distributed real-time system consists of multiple computers (nodes) that communicate through a

computer network. Each node of the distributed system may have its own I/O devices and can process

inputs received from another node. Applications have distributed components. The validation of

timing constraints must take into consideration end-to-end execution, which consist of processing time

(measured in the nodes) and data transmission time (measured in the communication network).

Some of the advantages of implementing real-time applications on distributed environments are:

• Reliability

• Resource sharing

• Scalability

 Reliability is usually obtained trough replication. If a node fails, other nodes can resume its

activity. If nodes have limited computing resources, resource sharing can help overcome this problem.

Moreover, a distributed system can be easily extended by adding more processing nodes.

Uniprocessor and multiprocessor systems

Another classification criterion can be the number of CPUs of the underlying platform.

Consequently, real-time systems can be uniprocessor or multiprocessor. Uniprocessor systems contain

only one CPU. Multiprocessor systems contain more than one CPU.

Even if many real-time systems contain more than one CPU, a great number of research models and

analysis techniques are focused on platforms with only one CPU. However, recent studies tend to

address multiprocessor environments and their problems, such as task assignment, task

synchronization and the heterogeneity of the CPUs.

Multiprocessor systems and distributed systems resemble in the sense that each system contains

more than one CPU [2]. The difference between the two is that multiprocessor systems are tightly

coupled and CPUs may have a shared memory, and, in contrast, distributed systems are loosely

coupled and each CPU has its own, private memory. As consequence of these characteristics:

• It is much easier to keep global status and workload information up to date on

multiprocessor systems.

• Scheduling and synchronization algorithms that are suitable for multiprocessor systems

may not work as well for distributed systems.

Many real-time applications, which are developed for uniprocessor systems, are single threaded. If

these applications are to be deployed on multiprocessor systems, the easiest solution is to assign the

application to only one CPU. But to fully take advantage of multiprocessor systems, we need to find

ways to parallelize real-time applications.

Open and closed systems

In [4], the authors classify real-time systems as closed and open systems based on the characteristics

of their operating environment.

5 | Real-time system models

Closed real-time systems have the following characteristics:

• The set of real-time applications that coexist in the system is known and does not change

in time

• Applications are developed and validated together

• Detailed timing attributes of all real-time applications on each processor are known

• The schedulability of the system in all predicted scenarios is determined beforehand

In contrast with closed systems, open real-time systems have the following characteristics:

• The set of real-time applications that coexist in the system may change in time; at run-

time, the user can request the start of another application, which was not part of the initial

application set

• Applications may be developed and validated independently

• If an application is validated to meet its timing constraints when executing in isolation, the

system that accepts its access to the shared platform at runtime, has to guarantee that the

application’s timing constraints are met on the shared platform

• The system may accept applications with different timing requirements, even non-real-

time applications

The design and implementation of open real-time system has lately received much attention from

the real-time research community. Recent work has been done in the direction of integrating these

systems with complex platforms (many shared resources, not just a single processor) [5].

After analyzing the classifications presented above, the main aspects that differentiate them can be

highlighted:

• Classification criteria

• System layer from which the criteria is selected

• The model components influenced by the selected criteria

Table 1 shows these aspects.

Table 1. Comparison between different classifications of real-time systems

Classification Layer Criteria Influence

Closed

Open

Environment Environment dynamics Workload model

Resource model

Scheduling

Hard

Soft

Application Timing constraints (deadline) Workload model

Scheduling

Event-triggered

Time-triggered

Application Activity triggering mechanism

(implementation)

Workload model

Real-time system models | 6

Resource-adequate

Resource-inadequate

Platform Resource availability Resource model

Single-node

Distributed

Platform Number of computing nodes Resource model

Scheduling

Uniprocessor

Multiprocessor

Platform Number of CPUs Workload model

Resource model

Scheduling

2. Status of real-time systems research

Real-time systems have a well defined application domain that includes industrial process control,

avionics, military and signal processing applications. The environment in which these systems

function is controlled, closed and predictable. For these applications, timing and performance

requirements have to be guaranteed before system start. Parameters whose values can’t be known or

predicted before system start can generate great issues. In this context, to guarantee a deterministic

behavior of the real-time system, designers use special purpose and many times expensive hardware,

networking infrastructures, protocols and operating systems.

The recent evolution of the real-time domain creates new trends in research and development (see

Table 2). These trends are partially generated due to the expansion of the application domain to online

multimedia applications (audio and video streaming, teleconferencing, Internet phone), real-time

online transactions, real-time web (social networks, real-time search), mobile applications, home

automation, sensor networks, and more. On the other hand, the constantly increasing performances

and low costs of common use off-the-shelf hardware and networking infrastructures encouraged

researchers to find solutions for their use in real-time systems.

Table 2. Current trends in real-time systems research
Level Classic approach Current trends

Hardware and

communication

platforms

To insure determinism, special purpose

real-time hardware, special purpose

networks and real-time communication

protocols are used.

Use commercial off-the-shelf hardware

and networking technologies for real-

time systems. E.g. multicore, switched

Ethernet, IP networks, etc.

Operating systems

and resource

management

Real-time operating systems, real-time

resource management and execution

scheduling.

Manage real-time applications in

common use operating systems (E.g.

Linux).

Develop virtualization technologies for

real-time systems.

Applications Relatively small application domain:

industrial process control, avionics,

military, signal processing.

Diversification of application domain:

multimedia (audio and video streaming,

teleconferencing, Internet phone), online

real-time transactions, real-time web

7 | Real-time system models

(real-time search, social networks),

mobile applications, home automation,

sensor networks, etc.

Environment The environment is closed and

controlled.

In restrictive cases, real-time

applications do not share resources

with other applications.

Resources are shared only between

real-time applications.

The environment is open and dynamic.

Real-time applications can share

resources with non-real-time

applications.

Fig.1 shows some current points of interest for real-time systems research that emerge as the effect

of the two factors we identified:

• Real-time systems application domain diversification

• Evolution of common hardware and communication infrastructures

An important research direction has the objective of implementing real-time systems on

multiprocessors (parallel and distributed infrastructures). Multiprocessor scheduling of real-time tasks

is not a new research subject [6]. However, because it raises complex problems [7], researchers are

still looking for improved solutions. Moreover, research in this direction intensified because of the

large-scale production of multicore microprocessors. There are several topics of interest in this

direction, such as:

• Multiprocessor scheduling [8][9],

• Multiprocessor/Multicore processor timing analysis [10][11],

• Development of technologies and tools for analyzing the worst case execution behavior on

multiprocessors/multicores [12],

• Parallel or multicore-aware programming languages for real-time applications [13]

Real-time system models | 8

Figure 1. Some current points of interest for real-time systems research

Many research groups investigate major problems of multiprocessor real-time systems such as

scheduling, timing analysis and worst case execution behavior analysis. Even though there are many

results in these directions, there are still important issues that need to be solved. There are several

optimal scheduling algorithms for multiprocessors [23][24], but they don’t have any practical

relevance due to the prohibitively high overheads introduced by migrations and context switches. The

schedulability problem (proving that tasks meet their deadlines) needs more investigation since

theoretical results show that multiprocessors can in some cases handle task utilizations not much larger

than uniprocessors [6][18]. Moreover, schedulability tests are very restrictive [18] and there are many

situations when tasks can’t be included in the “schedulable” or “not schedulable” groups. A third

important problem that, to our knowledge, doesn’t have a solution until now is the identification of the

worst case execution behavior on multiprocessors [7]. In our opinion, multiprocessor real-time

systems research problems need solutions that are more pragmatic and can be used beyond the

research lab.

Increased performances of common use communication infrastructures (switched Ethernet and IP

networks) and the development of QoS mechanisms were the cause for new research initiatives.

Researchers aim to find solutions to use these communication infrastructures and QoS mechanisms in

real-time distributed systems. The main concerns of this research direction are:

• To ensure transmission predictability of real-time data [14]

• To find mechanisms that make possible the coexistence of real-time and best-effort data

flows in the same network [15]

Real-time systems (RTS)
application domain

diversification

Evolution of common
hardware and

communication
infrastructures

Open RTS

RTS on
multiprocessors/

multicore

RT communication
on switched
Ethernet/ IP

networks

Adaptation of non-
RT technologies for

RTS

Complex RTS

simulation tools

Resource
management in open

RTS

RT applications in
non-RT operating

systems

Virtualization

techniques for RTS

Evaluation
methodologies and

tools

Multiprocessors RT
scheduling

RTS artificial data
set automatic

generation

9 | Real-time system models

For many modern real-time systems the computational load and resource availability cannot be

determined or predicted a priori, because of the open and dynamic environment in which they operate.

Furthermore, resource availability and application resource requests can fluctuate in an unpredictable

manner. Embedded and mobile devices, present in many real-time applications, have limited resources

that need to be managed efficiently to maximize performance. Many current real-time systems must

manage concurrent activities with different restrictions of time and QoS and that require access to

shared resources. In these cases, the main challenge is to find models that can deal with the diversity

of these activities. The situation becomes even more complex when real-time applications share

resources with applications that do not have real-time restrictions. Starting from these issues, the

operation of real-time applications in open environments and sharing resources between applications

with different time restrictions, some important research topics have emerged:

• Resource management in open real-time systems (which contain applications with

different time restrictions) [4] [5] [16]

• Handling real-time tasks in common use operating systems [17]

• Virtualization techniques for real-time systems [18]

• The adaptation of non-real-time technologies such as those used in SOA, Web and Cloud

Computing, for real-time systems [19] [20] [21]

Many classic models and solutions, which are used in the development of real-time systems, cannot

handle the recent evolution in this domain. A review of classic theories is needed in order to adapt

them, if possible, to meet current needs. On the other hand, new models, algorithms and technologies,

which deal with the complexity of current real-time systems, are needed.

Performance evaluation of a new real-time model, algorithm or technique implies the comparison

with similar existing results according to a certain method and based on a set of metrics. Many

research results in the area of real-time systems are validated through complex mathematical analysis

by computing the system’s worst case response time. However, with the growing complexity of real-

time systems, the worst case behavior is sometimes impossible to identify. Consequently, these

methods are becoming out-of-date and there is need for new evaluation methods and tools. The real-

time community has recently acknowledged [22] that there are three “major obstacles” in comparing

published work in the area of real-time systems:

• The lack of standard methodologies and software tools for performance evaluation

• The lack of public/open software used for performance evaluation

• Research results are not made available as downloadable data files

We adhere to their opinion and consider that the real-time systems research community needs a set

of open tools and data sets that would be used for research results evaluation. There is need for

common metrics and common evaluation methods to be able to make a relevant comparison between

similar research results.

Real-time system models | 10

3. Thesis objectives

In this context, the objective of this thesis is to develop theoretical and pragmatic solutions for

multiprocessor real-time problems: scheduling of tasks and of network communication, timing

analysis of models, and evaluation of scheduling techniques; and, moreover, to contribute to the

development of multiprocessor (including distributed) real-time systems with new models,

algorithms, techniques and methods that respond to the current challenges of the real-time systems

research domain.

The focus will be on the following sub-objectives:

• Study the most representative theoretical models and scheduling techniques used in real-

time systems research.

• In the context of distributed real-time systems, investigate and propose a solution for

accommodating real-time communication over general purpose network segments.

• Propose new techniques for the multiprocessor scheduling of complex real-time

applications.

• Propose a new approach for the analysis and performance evaluation of multiprocessor

real-time systems, including new tools for simulation and data set automatic generation.

4. Thesis outline

The remainder of this thesis is organized as follows.

Chapter 2 contains a presentation of the most representative theoretical models used in real-time

systems research. We identify the shortcomings of current models and we propose a real-time system

model, composed of three sub-models (application, platform and scheduling), which can represent

parallel execution as well as task dependencies.

In Chapter 3 we propose a model for the description of real-time traffic and for the availability of

open network segments that allow the transmission of real-time traffic at the same time with non-real-

time traffic. Moreover, we adapt the well known Response Time Analysis technique to real-time

communication to create a method for network bandwidth estimation in the context of a reservation-

based communication architecture.

Chapter 4 presents two new multiprocessor scheduling techniques for real-time transactions that

improve the performance of current techniques. The first scheduling technique is best-suited for small

systems that have limited resource availability. The second technique uses a genetic algorithm to find

feasible scheduling solutions.

Chapters 5 and 6 present our work in the direction of real-time systems performance evaluation.

We first describe the design and implementation several simulation tools that are used as support for

the evaluation of multiprocessor real-time systems theoretical models and algorithms. We then present

our approach for the timing analysis of real-time multiprocessor systems that is based on simulation.

Chapter 7 concludes this thesis by summarizing the thesis contributions.

