
113 | Performance evaluation of real-time multiprocessor systems

Chapter 6. Experiments regarding the performance

evaluation of real-time multiprocessor systems

1. Introduction

In accordance with the main objective of this thesis (to develop pragmatic solutions for

multiprocessor real-time problems) we developed a simulation-based schedulability test methodology

and an evaluation method to assess the performance of multiprocessor real-time systems. Our

evaluation methods aim to reduce the complexity of analythic test procedures.

Moreover, we developed some benchmark tests that assess the main features of a parallel real-time

programming language. The tests measure the performance of individual operations executed on

parallel threads. This chapter includes descriptions for the conducted experiments and results analysis.

2. A simulation-based schedulability test methodology for

multiprocessor real-time systems

In the last years, important research efforts were made in the direction of finding feasible

scheduling strategies for parallel architectures, but the results are far from being final or stable. One

conclusion of these efforts is that the simple extension of uniprocessor theory and experience to

parallel systems is not a successful approach. There are many examples when researchers based their

demonstration on uniprocessor system results and proved to be wrong on parallel systems. For

instance it was proved that in case of a parallel architecture the critical time interval is not the period

that follows after all the tasks are released at the same time, as in the case of a single CPU. In addition,

the optimality of RM and EDF scheduling algorithms on parallel systems is not true, at least in some

cases.

In the direction of feasibility analysis most of the results concentrate on finding necessary or

sufficient conditions for feasibility. Nevertheless, these conditions are in most cases too complex [25]

and hard to implement in practice or the gap between the necessary and sufficient condition leave too

many cases undecided. The existing sufficient schedulability tests introduce very strong constraints,

which excessively limit the utilization factor of many systems. Through simulation, we will show that

these feasibility limits are too high and we can find schedulable tasks sets that are not verifying the

sufficient conditions.

Another research direction is based on the computation of demand and supply functions for

multiprocessor real-time systems. In [18] and [47] the authors derive sufficient conditions for the

feasibility of task systems using these functions. The complexity of the obtained relations, as well as

the pessimistic results, limits the use of this method.

Recent research on priority-based multiprocessor scheduling showed that fixed priority algorithms

(including RM and EDF) generate periodic schedules in the case of feasible periodic task systems

[105][104]. This result will be used later in this section to demonstrate the feasibility of a task set

using the simulation approach.

Performance evaluation of real-time multiprocessor systems | 114

2.1. System model

We focus on applications that can be modeled as independent periodic tasks with no restrictions

other than real-time ones. It should be noted that the system model is a particularization of the one we

propose in Chapter 2.

A task set (τ) comprises n tasks and each task (τi) is described by its execution time (Ci), repetition

period (Ti), and relative deadline (Di). Task deadlines are implicit. The total utilization of a task set is

computed as U=Σui, where ui=Ci/Ti is the task’s utilization factor. Another important task parameter

that we consider here is the phase. If the phase is equal for all tasks, the task set is called synchronous.

If the phases are different, the task set is asynchronous. In this case, we use synchronous task sets. We

consider that all jobs are sequential, meaning that a job has no multiple threads and it can be executed

on at most one processor at the same time.

The platform is modeled as a homogeneous multiprocessor P={P1, P2, … , Pm} composed of m

processors with identical characteristics.

For the research presented here, we use the global scheduling model that assumes the existence of a

unique global scheduler and a global job queue. At each time instant, the global scheduler chooses

from the job queue, ma jobs with the highest priority, where ma is the number of available processors.

The chosen jobs will be executed on the processors. The priority of each task is computed by using a

specific algorithm.

2.2. Theoretical results on global EDF schedulability analysis

The purpose of this section is to present the theoretical background for our schedulability test and,

as well, to have a comparison reference for the experimental results. We analyze the case of

synchronous task sets executed on a homogenous multiprocessor system and scheduled with global

EDF algorithm.

Most of the theoretical results on global EDF algorithms establish necessary or sufficient conditions

for feasibility. In [25] the authors surveyed the most important seven sufficient schedulability tests

with different computational complexity levels. One sufficient feasibility test [47], given below, states

that a task set is schedulable with global EDF if:

U ≤ m (1 - umax) + umax (1)

This rather simple condition takes into account only the number of processors m and the usability

factor umax of the most demanding task from the set (the task with the maximum utilization factor). It

can be seen that if umax is close to 1 the usability of m processors is reduced to the usability of a system

with a single processor. We used equation (1) as a reference for the simulation results.

A more powerful global EDF schedulability test (in terms of the detected number of schedulable

task sets) [25] is based on an iterative method and has a pseudo-polynomial computational complexity.

This test computes the minimum slack Sk (distance between the deadline and the completion time of a

job) for each task. If the slack is negative for a task, the task set fails the schedulability test. The

equation is:

115 | Performance evaluation of real-time multiprocessor systems

+−−−= ∑

≠ki

kk
i
kkkk CDI

m
CDS)1,min(

1

 (2)

, where indicates the interference caused by

other tasks i on task k.

As we already commented in Chapter 2, according to the latest studies [25], there is a large region

between the sufficient and necessary conditions, where task sets’ schedulability is undecided. The

“undecided” region increases with the number of processors. For instance, in the 8 processor scenario,

this interval starts at a total utilization of about 56% of the maximum utilization. Even if some

schedulability tests find more schedulable task sets than others, the conclusion of [25] is that all

evaluated schedulability tests introduce strong constraints on the task sets they assess, leaving outside

their limits a large number of task sets which may be schedulable.

In our research, we want to show, through simulation, that a large number of task sets from the

undecided region are in fact schedulable.

Our method is based on the results in [105] and [104], where the authors show that deterministic

fixed priority algorithms generate periodic schedules in the case of feasible periodic task systems. In

[105] the authors prove that a feasible schedule obtained using deterministic global EDF of a

synchronous constrained deadline system on m identical processors is periodic with a period P that

begins at instant 0. The schedule repetition period P is equal to the task set’s hyper-period. The

authors extend their results in [104], where they give some guidelines for the development of an exact

schedulability test for global EDF on multiprocessors. To decide if a task set is schedulable, the

authors suggest to build a schedule and check if the periodic part of the schedule is reached or not. The

periodic part is reached when the execution states at the two ends of the interval coincide (this is true

because it is assumed that the algorithm is deterministic). If there are no missed deadlines in the first

period, then the task set is schedulable. In the case of asynchronous task systems, the periodic part of a

feasible schedule may begin after more than one hyper-period.

Following these results, we focused our research on combining simulation with theoretical analysis

results to assess the schedulability of synchronous periodic task systems. The main objectives of our

research are to:

• Develop a method for assessing the multiprocessor schedulability of periodic task systems

through simulation.

• Experiment the behavior of multiprocessor systems with global EDF using randomly

generated periodic task sets, in order to determine the features that influence the

schedulability.

)
0

)mod(,min(
i

S
i

T
k

D
i

C
i

C

i
T

k
D

i

k
I −+=

i
k

I

Performance evaluation of real-time multiprocessor systems | 116

The outcome of our work will help real-time system designers to choose a practical strategy that

does not involve complex and restrictive mathematical analysis and which is well suited to the

characteristics of their application.

2.3. The schedulability test and evaluation method

We developed an exact schedulability test by following the guidelines presented in [104]. We use

RTMultiSim, the real-time systems simulator that we presented in Chapter 5 to build the periodic

schedule for independent, synchronous, periodic task sets scheduled with global EDF. Theory says

that the schedule period is equal to the task set’s hyper-period.

To check if the schedule’s period has been reached, we simulate the system during two hyper-

periods and we verify if the states at the end of each hyper-period coincide. The state of the schedule,

at a certain time is given by the jobs that are executing at that time. A feasible schedule is one that, at

the end of the task set’s hyper-period has the following properties:

• All jobs meet their deadlines

• All jobs that started during the hyper-period, have finished their execution during the same

hyper-period

We will use this tool to assess the schedulability of task sets with global EDF in different scenarios.

As there are not available any standard benchmark models or model sets inspired from real systems,

to evaluate a scheduling technique or algorithm, we propose to use synthetic system models. This

method is widely used in the performance evaluation of real-time scheduling techniques. However, the

evaluation results depend on certain model parameters such as:

• The number of processors. An important factor is how the performance degrades as a

function of the number of processors in the system.

• The task set cardinality. The number of tasks in a set influences the individual task

utilization distribution. If there are few tasks in a set, those tasks will have larger

utilizations compared to larger task sets that have the same total utilization.

• The individual task utilization distribution in a task set. Task utilization distribution is

known to influence the schedulability rate in evaluation tests [111].

• The task set’s hyper-period. In our case, the schedulability test can be performed only if the

task set’s hyper-period is less than 106. If the hyper-period is larger, the simulation will

take too much time to execute.

We intend to investigate how these parameters influence the results of the schedulability test. After

the results analysis, we will be able to draw some conclusions and give some advice on how to choose

and vary the parameters of task sets that are used for real-time systems performance evaluation.

For our experiments, we will use the task set generation tool that we presented in Chapter 5. Our

tool usually generates task sets with exponential distribution of individual task utilizations. To obtain

task sets with other distribution, we temporarily altered the tools generation process.

117 | Performance evaluation of real-time multiprocessor systems

2.4. Experiments and results analysis

We conducted experiments with the global EDF algorithm for different systems and determined

through simulation which of the generated tasks sets are schedulable. We use synchronous periodic

tasks with implicit deadlines, so the schedule period will start at time 0 and will be equal to the task

set’s hyper-period. We use the schedulability test we developed with RTMultiSim that was previously

presented.

The total number of task sets generated and simulated was approximately 10,000. We investigate

how many schedulable task sets are found by the simulation-based test and how the parameters of the

task sets influence their schedulability.

First, we investigated how the individual task utilization distribution influences the schedulability

rate. We generated tasks sets with different total system utilizations that will be executed on a platform

with 8 processors. We generated three cases:

• In the first case, the distribution is uniform, between 0.1 and 0.5.

• In the second case, the distribution is uniform, between 0 and 0.7.

• In the third case, the distribution is exponential.

Fig. 1shows (left) the distribution of individual task utilizations in three cases, and (right) the

schedulability test results.

Figure 1. Experiments with different task utilization distribution. Distribution of individual task

utilization in 3 cases and results obtained through simulation on 8 processors for the 3 cases.

After this experiment, we are able to draw the following conclusions:

• For the same number of processors and total utilization, the schedulability depends on the

distribution of individual task utilizations. The results in Fig. 1 show that the uniform

distribution causes higher schedulability rates. The schedulability rate is even higher when

the individual task utilization values are in a smaller interval (case 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Task utilization

N
o

.
o

f
ta

s
k

s

Performance evaluation of real-time multiprocessor systems | 118

• The schedulability of a task set is more critical when there are a few tasks with utilization

close to 1. From Fig. 1 case 3 we observe that if we have task utilizations in the interval

close to 1 the schedulability decreases. This is somehow in accordance with equation (1)

that states that the largest possible schedulable total utilization is a function of the largest

individual task utilization.

Moreover, we made simulations on 4 different platforms that contain 2, 4, 6 and 8 processors. For

each platform we generated synchronous periodic implicit deadline task sets with increasing

cardinalities between m+2 and m*10, and increasing total utilizations between 0.6*m and 0.99*m,

where m is the number of processors. We created 30 task sets for each individual scenario. For each

task set we selected task periods from the interval [10, 250], having the LCM less than 100,000.

On each of the generated task sets, we also applied the global EDF schedulability test described by

equation (1), in order to compare the results with those obtained with the simulation-based method.

Below, we include the graphical representation of the results we obtained for the platforms with 4

(Fig. 2) and 8 processors (Fig. 3). The results for 2 and 6 processors are similar and follow the same

pattern, but were not included as graphical representations.

a. Results obtained through simulation

b. Results obtained with equation (1)

Figure 2. Experiment results for 4 processors

119 | Performance evaluation of real-time multiprocessor systems

a. Results obtained through simulation

b. Results obtained with equation (1)

Figure 3. Experiment results for 8 processors

After the evaluation of the results, we made the following observations:

• The schedulability rate of all task sets decreases while the number of processor increases,

for the same total (normalized) utilization. This is true for the simulation-based test, as

well as for the test done with equation (1).

• As expected, the schedulability of a task set decreases with the increase of its total

utilization. This can be seen in Fig. 2a and Fig. 3a, where for 4 and 8 processors the

number of not schedulable task sets is represented related with the total utilization factor.

• For a given total utilization, the most critical scenarios are when the number of tasks in a

set is slightly higher than the number of processors; as the number of tasks increases the

number of not schedulable tasks decreases, becoming equal to 0 when the number of tasks

is more than 10 times the number of processors.

• The results obtained through simulation are more optimistic than those obtained for the

same scenarios using the analytical sufficient schedulability conditions. Fig. 2 and 3

compare the two situations; in Fig. 2a and 3a are results obtained through simulation and

in Fig. 2b and 3b are results obtained with equation (1). This observation motivates the

use of our simulation-based methodology.

Performance evaluation of real-time multiprocessor systems | 120

The conclusion of these experiments is twofold. For a given total utilization, an increased (greater)

number of tasks increases the feasibility chance. The presence of tasks with utilization close to 1

drastically reduces the chances for the whole set to be schedulable. The results obtained through

simulation proved to be more optimistic than the theoretical ones.

Our experiments and their results offer some guidelines in choosing the parameters of synthetic

system models used for performance evaluation. Moreover, our simulation-based exact schedulability

test can be a more pragmatic alternative to analytic tests that introduce too many restrictions and rule

out many systems models that may be schedulable.

3. Simulation-based evaluation of global, partitioned and clustered

scheduling approaches

We continue our investigation regarding multiprocessor scheduling of real-time systems with more

simulation-based tests that focus on evaluating and comparing the three main multiprocessor

scheduling approaches and the new approach we proposed in Chapter 2, the loose clustered approach.

We use the experience gained during the previous section.

First, we will have to choose the metrics for evaluation. The criteria used to measure the

performance of a scheduling strategy are often chosen in accordance with the application domain. For

hard real-time systems, where deadline misses are not allowed, the performance of a scheduling

strategy is mostly measured by its ability to find a feasible schedule [2]. A schedule is feasible if,

given a set of tasks all tasks complete their execution before their deadline.

In the case of soft real-time applications, performance measures can include the average and

maximum response time or deadline miss rate. The evaluation of the performance can be done by

formally proving the limits of the performance measures. Sometimes, finding these limits is a very

complex problem. In these cases, simulation can be a good method for scheduling strategy

performance evaluation.

In the uniprocessor world, the performance evaluation of scheduling strategies is mostly done

through analytical evaluation. In 1973 Liu and Layland [27] proved the schedulability conditions of

RM and EDF strategies (see equations (3) for RM and (4) for EDF) for sets of periodic independent

tasks.

()12 /1

−≤∑ n
i nU

 (3)

 ∑ ≤ 1iU
 (4)

Later, Response Time Analysis (RTA) was proposed [117] as an iterative method for the exact

evaluation of task worst case response time for fixed priority schedulers. This method relies on the

analysis of the worst case arrival sequence (when all jobs are ready to execute at the same time, t=0).

The transition to multiprocessors proved to be challenging from the theoretical point of view. Not

all uniprocessor theory can be generalized to multiprocessors. An important example is uniprocessor

121 | Performance evaluation of real-time multiprocessor systems

RTA, which cannot be applied to multiprocessors because the uniprocessor worst case arrival

sequence is not valid under these new conditions [118]. To our knowledge, the worst case arrival

sequence remains unknown for multiprocessors. The majority of the schedulability tests for global

multiprocessor schedulers introduce a large computation overhead [118]. But for hard real-time

systems, tests that guarantee timing requirements are necessary. On the other hand, non-critical real-

time systems don’t need such exact proofing mechanisms. An approximate performance evaluation of

the scheduling strategy can be accepted.

The simulation of abstract representations or models is an approximate evaluation method. The

approximation is better if the model used by the simulation is closer to the real-world and there are

enough measurements done. To make a relevant evaluation of a scheduling strategy, the input for the

simulator and the performance criteria have to be chosen according to the profile of the system that

will use the strategy.

As we already discussed in Chapter 2, there are advantages and disadvantages for each of the

multiprocessor scheduling approaches.

Partitioned approach is preferred because after the step in which tasks have been assigned to

processors, scheduling is reduced to uniprocessor scheduling on multiple processors. The main

disadvantages are that this approach is not work-conserving and that task partitioning is done with

non-optimal heuristics. The schedulability rate of these systems is closely related to the efficiency of

the task partitioning step.

Global approach is work-conserving but suffers from “Dhall’s effect” [6]. In the presence of heavy

tasks, the schedulability of task sets is reduced almost to the maximum utilization of a uniprocessor

(1+ε). Another problem of global scheduling is caused by the frequent migrations. The cost of

migration is not quantified in many theoretical models, but in real systems, this cost is very high.

Many developers of real-time systems prefer strategies that minimize the number of migrations, of

context switches and the scheduling overhead introduced by a unique, large process queue.

Clustered scheduling emerged because of the observation that the cost of migration decreases in the

case of shared cache memories. Migration is confined to processors that have shared caches.

Moreover, the number of migrations and the scheduling overhead are reduced. As in the case of

partitioned scheduling, the clustered approach is influenced by the partitioning heuristic, as well.

The loose clustered approach described in Chapter 2, was proposed as an optimization of the

clustered approach and can be applied for the partitioned one, as well. Our approach extends the

clustered with a load balancing mechanism that:

• Equalizes cluster utilization;

• Reduces capacity fragmentation due to not optimal task partitioning between clusters.

We estimate that the loose clustered approach to schedule more tasks sets than the clustered one,

while maintaining a lower migration rate than the global approach.

To evaluate and compare the above scheduling approaches, we use the following metrics:

Performance evaluation of real-time multiprocessor systems | 122

• The number of schedulable task sets, normalized with the total number of evaluated task

sets. This metric shows how many tasks sets the scheduler is able to schedule without

deadline misses.

• The migration rate defined as the total number of migrations divided by the number of

schedulable task sets. This is because we do not record all steps for tasks sets that have

deadline misses. The migration rate is important when the systems developer wants to

quantify the migration-related overhead introduced by a scheduler.

• The average slack of task sets. The slack or laxity is defined as the time remaining from

the job’s completion time until the actual deadline. The slack is a metric for the maximum

additional load a system would be able to accept, and still be schedulable. The scheduler

that obtains larger slacks is more efficient in using the processors’ available time.

3.1. Experimental setup

We use a similar system model with the one used in the previous section:

• Independent periodic task sets with implicit deadlines

• Homogenous multiprocessor

As scheduling model we use the one we propose in Chapter 2 and we implemented in RTMultisim.

The scheduling model can be configured to be:

• Global

• Partitioned

• Clustered

• Loose clustered

In the cases when a partitioning scheme is needed, we use Next Fit heuristic. The scheduling

algorithm is EDF.

We use RTMultiSim to conduct the simulations and our task set generator to produce synthetic

workload models. To assess the schedulability of a task set, we use the previously presented

simulation-based schedulability test. The migration rate and average slack are computed from the

simulation results.

The evaluation is done as follows:

• We do all our tests on a platform with 4 processors.

• We generate 450 task sets with total loads of 50% to 99%, with 6 to 20 tasks.

• We simulate the scheduling in case of all four scheduling models, using the same task sets.

3.2. Experimental results

The experimental results are presented in Fig. 4, 5 and 6. The partitioned approach can find the

most feasible schedules. The greatest advantages of this approach is that jobs do not migrate and that it

has one distinct scheduler for each processor. The greatest disadvantage is that if the partitioning

heuristic is weak, there will be less feasible schedules. Moreover, the average slack is the smallest.

123 | Performance evaluation of real-time multiprocessor systems

Figure 4. Schedulable task sets as a function of system utilization

Figure 5. Migration rate as a function of system utilization

Figure 6. Average slack as a function of system utilization

Performance evaluation of real-time multiprocessor systems | 124

The global approach finds the fewest feasible schedules. This is mostly because o the Dhall’s effect.

The migration rate is very high for task sets with system utilization larger than 80%. However, the

average slack is one of the largest; only the loose clustered approach has a larger slack for task sets

with system utilization larger than 80%.

The clustered approach finds slightly more feasible schedules than the global approach, but only for

task sets with system utilization larger than 70%. However, the migration rate is half the one measured

for the global approach. The average slack is less than the one measured for the global.

Compared to the clustered approach, the loose clustered one finds more schedulable task sets, but

with the cost of larger migration rates. But, for system utilizations larger than 80% it os only a little

more higher. The average slack is one of the highest.

Due to these observations, we can conclude that the loose clustered approach has good results

mainly for task sets with large system utilization, in these cases improving the schedulability rate with

the cost of a very small increase of the migration rate.

4. Tests for assessing the features of parallel real-time Java

implementations

Real-time applications mostly use special processors in order to be predictable and to show a

deterministic behavior. General purpose processors, on the other hand, are not widely used in real-time

systems because of the non-determinism introduced by various features that are used to improve their

performance such as the processor cache hierarchy, speculative execution of instructions or hardware

parallelism (Hyper-Threading). However, the technology advances and mainly the improvement of

multi-core processors made general purpose processors more interesting to the real-time community.

The use of multicore processors and of parallel programming generated new areas of interest in real-

time systems. As noted in Chapter 1, the interest in multicore platforms is twofold. There is a special

interest in the timing analysis of multicores and that of operations that involve a cache hierarchy. On

the other hand, there is a special interest in parallel or multicore-aware programming languages for

real-time applications.

The most popular programming languages for real-time applications were until recently C or Ada.

In the past years, in an effort for introducing Java and its advantages (e.g. object oriented

programming, platform independence) to the real-time community, the Real-Time Specification for

Java (RTSJ) [119] standardized a set of constraints on the Java language and runtime environment.

These constraints are related to several features like its garbage-collector, dynamical memory

allocation, threading and synchronization methods, that make Java unsuitable for real-time programs.

Currently, there are several available RTSJ implementations [120][121][122][123]. Due to the

development of multicore processors and the real-time community’s interest in it, the group that

defined the RTSJ showed their intention to create a specification for a parallel/ multi-threaded version

of RTSJ[13].

In this context, our research targets the development of benchmark tests that will assess the features

of parallel real-time Java implementations.

125 | Performance evaluation of real-time multiprocessor systems

Currently, there are just a few real-time Java benchmarks, but they are either not multiprocessor-

aware [124] or not complete real-time benchmarks [168] (the latter doesn’t support

NoHeapRealtimeThreads and AsyncEventHandlers [119]). The micro-benchmark presented in [169]

deals with memory allocation, communication buffering and assessing timer accuracy for real-time

Java. Even if it does not discuss the consequences of using multi-core processors, uses test scenarios

that rely on multi-threading and a multi-core systems for testing. However, the accent falls on real-

time issues and not on parallelism (the two threads are started concurrently, but not necessarily in

parallel) or low-level multi-core issues. In the embedded systems world, there are a few C benchmarks

that are parallel/multi-core aware, such as MiBench [127] and EEMBC [128]. MiBench is open-source

and has a collection of 35 C applications that are used to characterize embedded workloads and

determine the performance of embedded processors. EEMBC provides also a Java application

benchmark suite for the evaluation of multi-core processors, but is only commercially available.

4.1. Tests overview

We developed a set of benchmark tests (RTSJMcBench) that assess important features of parallel

Java implementations such as:

• Memory operations: allocation, copy, shared cache read.

• Asynchronous event handling.

• Locking.

A test starts a collection of parallel threads that execute a given task. Depending on the test

purposes, a particular primitive operation is timed by using the processor timestamp counter (e.g., in

the case of Intel processors, the rdtsc instruction [129]). Such operations, for instance, can be the

acquiring of a lock or an array copy. The timing operation is done in a loop, in order to take several

measurements that allow for a statistical interpretation of the results. Each thread reports the time

values in a separate file. For timing and reporting, we use the jTools [130] package. A separate tool

merges the individual result files into a CSV file where each column represents the values of a single

thread. Practically, this is the final output of the benchmark. We developed an additional tool for

processing of this result files and interpreting the results.

Running a RTSJMcBench test can be also complicated by the number of arguments the program

needs. To configure the run-time arguments, the application that starts the tests reads these parameters

from an XML file. By default, the name of the arguments file is args.xml and it must reside in the

same directory with the test application. Below is an example of such an arguments file used by a

memory allocation test for Linear Time Scoped Memory [119]:

<testapp name="rtsj.mcperf.mem.alloc.memalloc">

<arg name="no_of_threads" value="10"> Number of realtime threads </arg>

<arg name="type_of_threads" value="rt"> Type of threads: RealtimeThread (rt), NoHeapRealtimeThread

(nh) </arg>

<arg name="scheduling_policy" value="rr"> POSIX realtime scheduling policy: SCHED_RR (rr),

SCHED_FIFO (fifo)</arg>

<arg name="count" value="10000"> Number of iterations </arg>

Performance evaluation of real-time multiprocessor systems | 126

<arg name="priority" value="30"> Priority of the real-time threads </arg>

<arg name="datadir" value="./datadir"> Directory storing the results of the run </arg>

<arg name="instr_load" value="1000"> Number of instructions to simulate activity </arg>

<arg name="memtype" value="LT"> Memory type: scoped (LT or VT), immortal </arg>

<arg name="memsize" value="32M"> Memory size: bytes, Kilobytes (K), Megabytes (M) </arg>

<arg name="allocsize" value="8"> Size of the allocated memory chunks: bytes, Kilobytes (K), Megabytes

(M) </arg>

</testapp>

The arguments describing the collection of parallel real-time threads of a benchmark test are: the

number of threads, their type (RealtimeThread [119] in the above case), their scheduling policy

(SCHED_RR [131] in the above example) and real-time priority, the number of iterations performed

in order to time a given operation, the directory where the results of the run will be stored and a so

called “instruction load” that is used to run some fake computation that allows simulating thread

activities besides those represented by the operations that are timed. The rest of the arguments in the

above example are those particular to the memory allocation test, namely the type of memory to be

allocated (Linear Time Scoped Memory), the total amount of Scoped Memory allocated for the test

and the size of each of the allocation operations performed by the test.

The following sections will describe the individual tests and their experimental results obtained for

Jamaica VM, a multicore-aware implementation of RTSJ. The Linux system we used for testing is a

Slackware distribution running on a dual quad-core Intel Xeon E5405 running at 2 GHz with 3 GB of

RAM. This quad-core processor is a uniform memory access symmetric multiprocessor that packages

two dual-core dies into the same chip. There is no Hyper-Threading available. The cache sharing of

the processors, which can be detected by means of the CPUID instruction, is: cores 0 and 2 share their

own L2 cache and so do cores 4 and 6, 1 and 3 as well as 5 and 7.

4.2. Memory operations

Memory allocation. This test aims to evaluate the performance of allocating either regular Java

memory (heap memory) or the various types of RTSJ memory: Scoped Memory (either Linear Time

or Variable Time) and Immortal Memory [119]. The test measures the time taken by the new

instruction when allocating an array of given size for various types of memory. The user can set the

size of the memory area to be used and the size of the array allocated by new. The allocation is

performed a number of times specified by the iteration count value taken from the arguments file. An

automated procedure detects whether the choice of the various parameters doesn't lead to memory

overflow (i.e., the number of iterations times the allocation size is smaller than the available memory).

The main thread creates the test threads and calls the start method of the benchmark framework.

Because the constructor of the thread test class takes a reference to a Memory Area object (either

Scoped or Immortal memory), the start method will create the corresponding real-time threads using

the specified type of memory. If no RTSJ MemoryArea object is specified, normal Java heap memory

is used instead. Each test thread sets its processor affinity, attempts to pass a barrier waiting for all the

threads of the collection to be ready to run and then enters a loop. The processor affinity is set in a

Round Robin manner across the set of available processors based on the logical thread ID. Within the

127 | Performance evaluation of real-time multiprocessor systems

loop, the thread iterates a fixed number of times (the iteration count is taken from the args file) over a

sequence of operations that allocates an array of bytes and simulates some work. The allocation

instruction is timed using the start/stop methods of HighResTimer [130] object for that thread.

Figure 7. Results of the memory allocation test

Fig. 7 describes the results obtained by running an allocation test with 16 real-time threads for heap

memory, both with JamaicaVM [120] (parallel version) and plain Java running on Linux. The threads

used a SCHED_FIFO [131] policy (priority based, equivalent to PriorityScheduler [119]) and real-

time priorities of 30. The size of the allocation unit varied from 1 KB to 10 KB with a 1KB increment.

On the y-axis is reported the average latency of allocations.

Memory copy. This test is almost the same with the previous one, with one difference. This time,

we measure the time is takes to copy an array by using System.arraycopy. Both the source and

destination arrays are local to the test thread and are allocated before entering the main loop of the run

method of the test thread.

Figure 8. Average memory copy latencies

Performance evaluation of real-time multiprocessor systems | 128

Fig. 8 describes the average latencies of copying heap memory arrays of various sizes, with Jamaica

VM (parallel version) and plain Java with 16 real-time threads using SCHED_FIFO and priorities of

30. All the processors of the system described at the beginning have been used. The size of the arrays

to be copied ranged from 1 to 10 KB with an increment of 1 KB. It can be noticed that the copy

performance of Jamaica is worse than that of plain Java, but this is mainly due to a particular

implementation of the arrays in the Jamaica VM.

Shared cache read performance. This test aims to assess the performance of using the CPU

caches when copying byte arrays. The source of the array copy is shared by all the threads, while the

destination of the copy is a local array for each of the test threads. The source array is allocated to fit

in the L2 cache. The source array size is taken from the arguments file and is expressed as a fraction of

the L2 cache size. Threads’ CPU affinity is set so that they all share a L2 cache. The assignment is

perfectly balanced according to a Round Robin scheme based on the logical thread ID.

Figure 9. Shared cache copy performance

Fig. 9 shows the test results for 16 real-time threads running on two CPUs that share an L2 cache.

The L2 cache size for Intel 5405 is 6 MB. Therefore, the size of the array to be copied varied from 6

MB to 6 KB, using a fraction factor growing exponentially according to the powers of 2 from 1 to

1024. The graphs report the average latency of copying a shared array allocated in heap memory.

Naturally, as its size increases to the L2 cache size, the performance degrades. It can also be noticed

that the Jamaica VM performance is somehow worse than that of Java.

129 | Performance evaluation of real-time multiprocessor systems

Figure 10. Average cost per byte for array copy

Fig. 10 describes an average cost per byte as the size of the array increases. It can be noticed that

the cost per byte of Jamaica VM is insensitive to the increase of the array size.

4.3. Asynchronous event handling

This test evaluates the dispatch delay of an RTSJ event handling (i.e., the time between firing an

event and the call of the associated handler). Each test thread defines a local event and associates a

handler with it (a BoundAsyncEventHandler [119] object; therefore, according to RTSJ, each handler

executes within a separate thread). Each handler has its own CPU affinity, which is the same with that

of the thread associating the handler with the event. The CPU affinity is set Round Robin across the

available processors, both for the test threads and their corresponding handlers. Within the main loop,

each thread starts the local timer, fires the local event and waits for an event handler notification. The

event handler records the current time by stopping the timer. Before finishing, the event handler

notifies its completion to the firing thread. The thread unblocks, simulates some activity and starts a

new loop iteration.

Figure 11. One-on-one average event handling dispatch latency and maximum event handling dispatch

latencies

Fig. 11 shows the average dispatch latency and its maximum value for real-time threads on Jamaica

VM and Linux. The tests used all the processors and have been run with 8, 16, 32, 64 and 128 real-

time threads respectively. Note that the average dispatch time stays somehow constant with the

number of threads. However, the maximum dispatch delay grows naturally with the number of

threads. It is also worth noting that the maximum delays are on the order of seconds, while the average

delays are worth hundreds of microseconds. One possible explanation is that the dispatch of some of

the bound event handlers (Linux threads) might have been delayed by the activity of system threads.

4.4. Locking

This test evaluates the performance of storing spin-locks in shared CPU caches. When two threads

that synchronize using spin-locks run on cores that don’t share any processor cache, grabbing and

releasing the spin-lock are operations that fire the cache coherence protocol. The test measures the

impact of the cache coherence protocol on the locking performance. Note that even if two cores are on

the same chip, they may not share an L2 cache. The test chooses a random CPU from the processor set

Performance evaluation of real-time multiprocessor systems | 130

and then finds CPUs that share an L2 cache with it. Half of the threads perform cache-aware locking,

while the other half does not. Instead, they run on a processor subset not sharing an L2 cache. The

threads set their CPU affinities Round Robin across their corresponding CPU subsets. Each of the

halves uses its own shared spin-lock. We have run simultaneously the two thread sets to make sure

that the measurements are taken in the same conditions. After setting the appropriate CPU affinity,

each thread enters the main loop where it attempts to grab the corresponding shared spin-lock. The

local thread timer measures the acquire operation. After performing the critical section, the lock is

released. Fig. 13 shows the average spin-lock acquire latency when using 4 real-time threads. Two

threads perform cache-aware locking (Threads 1 & 2), while two other (Threads 3 & 4) perform non-

cached locking. The graphs show three values per thread, one for each processor set that has been

used. The first bar (the red one) shows the performance of running cache-aware locking on CPUs

{0,2} and non-cached locking on CPUs {1,5}. The second bar, the blue one, shows the performance

on another experiment using CPUs {0,2} and {3,7}. The third bar (the green one) shows the

performance of using the set of CPUs {1,3} and {0,4}.

Figure 13. Average cache-aware latencies

Note that for non-cached locking at least one of the threads 3 and 4 is constantly hit be

synchronizing penalties. In only one case, the green bar on the Java graph, both cache-aware and non

cache-aware locking perform comparably poor. For the rest of the cases, cache-aware locking

outperforms non-cached locking (at least one of the threads 1 and 2 takes advantage of the shared

cache). In terms of absolute values, Jamaica VM performs one order of magnitude poorer than Java.

2. Conclusions

In this chapter, we presented the development of a schedulability test and some performance

evaluation methods for multiprocessor real-time systems. In the first two sections, we addressed the

problem of scheduling, while in the third section we assessed the features of a parallel real-time Java

implementation, Jamaica VM.

In the first section, we created a method for assessing the multiprocessor schedulability of periodic

task systems through simulation and we made experiments to assess the behavior of multiprocessor

systems with global EDF using randomly generated periodic task sets, in order to determine the

features that influence the schedulability. Our schedulability test proved to find more schedulable task

131 | Performance evaluation of real-time multiprocessor systems

sets than other analytical tests. Moreover, the observations we made during the experiments can be

used as guidelines by researchers that intend to evaluate their work with simulation tools.

In the second section, we compared the performance of the main three scheduling approaches

(global, partitioned and clustered) and we evaluated the scheduling approach we proposed in Chapter

2, the loose clustered approach. The loose clustered approach improves clustered scheduling, because

it finds more feasible schedules with a small increase of the migration rate.

The third section presents some tests made for assessing the timing of individual operations

implemented in parallel real-time Java. We tested several memory-related operations (allocation, copy

shared memory read), asynchronous event handling and locking. As there are not many benchmarks

that evaluate parallel features of real-time programming languages, we consider that our work

completes the existing research in this area.

The main contributions of this chapter are the following:

1. The development of a simulation-based exact schedulability test.

2. The development of a simulation-based method for the performance evaluation of

muliprocessor real-time systems.

3. The evaluation of the main scheduling approaches global, partitioned, clustered and the

comparative evaluation of the loose clustered approach.

4. The development of tests that assess the timing of individual operations implemented in parallel

real-time Java (namely Jamaica VM).

Published papers:

1. Gheorghe Sebestyen, Anca Hangan, Alin Suciu, “Simulation-based Schedulability Tests for

Multiprocessor Real-time Systems,” in Proceedings of 2012 IEEE International Conference on

Automation, Quality and Testing, Robotics, AQTR 2012[IEEE][SCOPUS]

2. V. Olaru, A. Hangan, Gh. Sebestyen, “Java support packages and benchmarks for multi-core

processors”, High Performance Computing and Communications (HPCC), 2011 IEEE 13th

International Conference on, pp. 528-535 [IEEE][DBLP]

Citations:

Goran Velkoski , Sasko Ristov, and Marjan Gusev. "Loosely or tightly coupled affinity

for matrix-Vector multiplication." Information & Communication Technology

Electronics & Microelectronics (MIPRO), 2013 36th International Convention on.

IEEE, 2013.

3. V. Olaru, A. Hangan, Gh. Sebestyen, “RTSJMcBench, a framework for writing parallel

benchmarks for Real-Time Java on multi-core architectures”, Automation Quality and Testing

Robotics (AQTR), 2010 IEEE International Conference on, AQTR 2010, pp. 1-6 [IEEE]

Citations:

Performance evaluation of real-time multiprocessor systems | 132

Joffrey Kriegel, et al. "Waveperf: a benchmark generator for performance evaluation."

SIGBED Review 9.2 (2012): 7-11.

4. Anca Hangan, Gheorghe Sebestyen, "Simulation-based evaluation of real-time

multiprocessor scheduling strategies" iccp, pp.375-378, Proceedings of the 2010 IEEE 6th

International Conference on Intelligent Computer Communication and Processing, 2010 ISBN

978-1-4244-8228-3[IEEE][SCOPUS]

5. V. Olaru, A. Hangan, Gh. Sebestyen, G. Saplacan, “Real-time Java and multi-core

architectures”, 4th International Conference on Intelligent Computer Communication and

Processing, 2008. ICCP 2008, pp. 215-222 [IEEE]

Citations:

Pablo Basanta-Val, and Jonathan Stephen Anderson. "Using real-time java in

distributed systems: Problems and solutions." Distributed, Embedded and Real-time

Java Systems. Springer US, 2012. 23-44.

Damien Masson, and Serge Midonnet. "Handling Non-Periodic Events in Real-Time

Java Systems." Distributed, Embedded and Real-time Java Systems. Springer US, 2012.

45-77.

Juan Antonio Holgado-Terriza, and Jaime Viúdez-Aivar. "JavaES, a Flexible Java

Framework for Embedded Systems." Distributed, Embedded and Real-time Java

Systems. Springer US, 2012. 323-355.

Daniel Shapiro, "Recent progress in multiprocessor thread scheduling."

