
93 | Real-time systems simulation

Chapter 5. Real-time systems simulation

1. Introduction

Multiprocessor systems are becoming the execution environment for most of today’s real-time

applications. In consequence, developers need theoretical methods and experimental tools for

evaluating the feasibility and time behavior of such systems. As showed in many recent papers

[7][25], real-time analysis on multiprocessor systems is not a trivial task, and in the general case when

different restrictions (synchronization, casual dependencies, data race conditions, etc.) are considered,

beside the time conditions, the problem has a non-polynomial complexity.

In this context, empirical methods like simulation have become a more practical alternative to

complex mathematical schedulability analysis. Even though simulation is mainly used to assess

systems’ defects, it can be used to generate system schedules during a preset time interval. The authors

of [105] and [104] showed that fixed priority algorithms (including RM and EDF) generate periodic

schedules in the case of feasible periodic task systems. Therefore, an exact schedulability test would

be to check the task set’s schedulability during this period. This type of test can be implemented in

practice through a simulation tool.

On the other hand, empirical methods such as simulation are used for the evaluation of new

scheduling techniques. As we already mentioned in Chapter 1, the lack of standard methodologies and

tools is an issue in the area of real-time systems. When we first started to evaluate our work in the area

of real-time multiprocessor scheduling, we noticed that there were just a few multiprocessor

simulation tools. We were not able to use any of those simulators, since some were very hard to extend

with new features and new algorithms, while others were not even available for public use. Therefore,

we started to develop our own simulation tool.

 The goal was to develop a real-time simulator that can cover a multitude of cases from parallel

architectures to distributed ones and from independent task sets to transactions or fork-join parallel

tasks. We also included aspects of network communication.

The resulting tool called RTMultiSim is a discrete time simulator that can be used to measure the

time parameters of such systems and in predefined scenarios to demonstrate the feasibility of a real-

time scheduling policy. It can be useful in evaluating the statistical influence of different parameters

(e.g. CPU utilization, parallelism degree) over the real-time behavior of multiprocessor systems. In

addition, we developed a synthetic workload generation tool, which provides input for the simulation

tool.

The simulation tool is useful in system modeling and design phases in order to establish the number

of required processors, the maximum utilization/load factor, the worst-case response time of critical

tasks, or to demonstrate the feasibility of a given setup.

Real-time systems simulation | 94

2. Related work

In the field of real-time system’s analysis and simulation, there are a number of solutions and tools,

offered as open source software (e.g. STORM [106], MAST [107]) or as commercial products (e.g

Simulink [113], SymTA/S [114]). The first ones are more generic and are dealing with the real-time

behavior of systems at higher abstraction levels. The commercial ones are more related to some

pragmatic solutions or to specific platforms.

The differences between these tools are regarding the following aspects:

• The workload model used in simulation – types of executing units (tasks, threads),

periodicity of jobs, processor affinity, clustering, etc.

• The execution environment model – uniprocessor, parallel or distributed systems, uniform

or heterogeneous execution, with or without communication (networking).

• The scheduling model – fixed or dynamic priorities, time-triggered or event-triggered.

• The real-time parameters and restrictions model – discrete time, global or local time.

• Non-real-time conditions accepted in the model – task synchronization, causal

dependencies, and concurrent access to common resources.

In our approach, we tried to cover as many scenarios as possible, allowing seamless variation

between different models. The above-mentioned model types may be obtained as particular cases

through the tool’s parametric configuration. This is not the case for a number of existing simulation

tools, specialized for a given workload and system model.

There are several simulation or analysis tools for real-time systems, but many do not have proper

documentation, they are not extendable (e.g. add new scheduling policies), nor open source. Moreover,

there isn’t any tool imposed as standard in this area. That is why many researchers choose to develop

their own performance evaluation tools. As result of this context, there are a lot of very specialized

tools that work only for a specific workload model or test only a specific problem.

We will mention four simulation tools that have documentation, seem to be extendable, some of

them are open source and provide automatic task set generation. These tools are STORM [106],

MAST [107], FORTAS [108] and YARTISS [109].

The closest tool to our approach is STORM (Simulation tool for real-time multiprocessor

scheduling) [106]. STORM can handle multiprocessor architectures and data exchange between

periodic or aperiodic tasks. The simulated system’s description is specified through an XML file that

contains simulation parameters, tasks set, data exchanged by tasks, CPU and scheduler specification.

Compared to our tool, this simulator does not cover intra task parallelism (e.g. multi threading or fork-

join model). It uses only global scheduling strategies and it does not allow partitioned and clustered

scheduling approaches. STORM isn’t reported to have a task set generation tool. STORM is written in

Java, it is not open source but one can easily write their own scheduler as long as they don’t need a

different task or platform model.

Another similar tool is YARTISS [109], an event-based real-time systems simulator obtained as

result of the extension and redesign of RTSS simulator [110]. This tool is able to handle real-time

95 | Real-time systems simulation

periodic tasks (the Liu & Layland model) and transactions (graph) executed on multiprocessor

systems. The task model is augmented with energy related parameters. The scheduling policies

implemented are uniprocessor and global multiprocessor variants of RM, DM, EDF and LLF.

Moreover, this tool provides a task set generator based on the UUniFast-Discard [112] algorithm and

simulation results visualization facilities. YARTISS is written in Java and is extendable as it is open-

source.

MAST (Modeling and analysis suite for real-time applications) [107] allows the analysis of

uniprocessor and complex distributed systems. It uses an event-triggered execution model with the

possibility to handle complex task dependencies. As scheduling strategies, it supports fixed priority

and EDF. The main features of MAST are worst-case response time schedulability analysis, sensitivity

analysis and optimized priority assignment. The file that contains the model received by MAST as

input is quite complex. Moreover, they do not provide automatic model generation. Due to the

complexity of the input model specification and the lack of an automatic model generator, some will

argue that MAST is difficult to use for performance evaluation. Because it is written in Ada, many

will consider MAST hard to extend.

FORTAS (Framework for real-time analysis and simulation) [108] is a real-time system analyzer

and simulator. It offers functionalities for feasibility testing of various multiprocessor scheduling

algorithms as well as for viewing task schedules with different uniprocessor and global multiprocessor

scheduling algorithms (RM, DM, EDF, LLF and PF). It also provides a task set generation tool that

uses UUniFast algorithm. The task generator has as parameters the interval for task priorities (and

deadlines) and the distribution for task utilizations. FORTAS is written in Java, but it is not open

source and consequently, not extendable.

Compared to MAST and FORTAS, which are focused on analytical scheduling evaluation, our

approach is mainly concentrated on simulation-based evaluation offering step-by-step information

about the evolution of the system under test. Our tool implements a clustered scheduling approach and

it allows intra-task parallelism. Moreover, in the same simulated system, different scheduling

strategies can be defined for each particular executing element (processor, or network).

Another research problem closely related to real-time systems performance evaluation and

simulation is the automatic generation of task sets. Researchers use various methods to generate tasks

sets that are used to demonstrate the performance of scheduling algorithms. Some of these methods

can produce biased experimental results, as shown in [111]. This happens in the context in which there

aren’t any reference task sets to be used as benchmarks, or any standard methods for conducting the

performance evaluation of real-time systems.

 The authors in [111] identify the requirements of automatic task set generation. In their opinion, the

tool has to be efficient, independent and unbiased. The efficiency refers to the number of generated

task sets that has to be large in order to achieve statistically significant results. Independence refers to

the possibility of generating task sets by varying certain parameters such as number of tasks or task set

utilization independent of other (constant) parameters. Finally, the distribution of the generated task

Real-time systems simulation | 96

Results

Workload

generation Tool

XML

Platform

Model

Specification

 XML

Workload

Model

Specification

Simulation Tool

 DB File
Visualization

Module

Figure 1. The RTMultiSim simulation environment

sets should be equivalent to randomly choosing a task set from all possible ones, and discarding those

that do not match the predefined parameters.

For task sets that are used to validate uniprocessor systems (total utilization equal to 1), there is a

very good method based on the UUniFast algorithm presented in [115]. This method was extended to

multiprocessor task sets (total utilization can be greater than 1) by [112]. But the UUniFast-Discard

algorithm proposed in [112] proved inefficient when the total utilization is equal to half the task set

cardinality (nearly all task sets are discarded). The authors in [111] argue that Randfixedsum algorithm

is appropriate to be used for multiprocessor task sets generation and provide a python implementation

of the generator. Randfixedsum is able to efficiently generate a predefined number of task utilization

values that add up to a predefined total utilization. We will demonstrate later in this Chapter that the

algorithm we propose for task sets automatic generation is comparable to Randfixedsum, while easier

to implement. Moreover, we propose an algorithm that generates chain transactions.

In the following sections, we describe the simulation environment that we developed.

3. The simulation environment

Through the RTMultiSim simulation environment, we provide a set of tools that aim to assist

researchers or real-time systems designers in:

• Assessing new scheduling methods,

• Comparing existing scheduling methods,

• Studying the behavior of real-time applications in different execution scenarios

• Finding settings (e.g. timing parameters assignation, processor allocation) that would

improve the real-time applications’ schedulability

As seen in Fig.1, the RTMultiSim Simulation Tool is the main component. It receives as input

specifications of the workload and

platform models, executes the simulation

and stores the results in a database. The

simulation results (e.g. statistics,

execution traces) are later manually

interpreted, or viewed using the

Visualization Module. The workload and

platform models and other simulation

settings have to be specified in XML files

that have predefined structures.

Alternatively, the user can configure the

platform model and the simulation

settings configured through the graphical

interface.

The Workload Generation Tool

automatically generates synthetic task or transaction sets that can be used for statistical analysis of

real-time systems, according to some predefined parameters (e.g. total utilization, hyperperiod,

97 | Real-time systems simulation

cardinality). The generated workload models are produced in the XML format required by the

Simulation Tool.

The Visualization Module provides a graphic representation of the simulation results. The user can

view the execution trace of a task set and its corresponding jobs on processors and general information

about the simulation (e.g. number of migrations, number of deadline misses, processors utilizations).

The design and main features of the RTMultiSim simulation environment will be detailed as follows.

4. The simulation tool

The workload and platform models specifications as well as the simulation settings received as

inputs are transformed into components of the Simulation Tool, as shown in Fig. 2. The simulator

executes the task set on the

platform’s available CPUs

according to the selected

scheduling strategy. During the

simulation process, the

simulator records relevant time

parameters related to the

behavior of the system that are

later stored as results.

The characteristics of the

workload and platform models

implemented in the simulator,

as well as the simulation engine

will be described next.

Figure 2. The RTMultiSim simulation tool components

4.1. The Workload Model

The workload model used in RTMultiSim allows the representation of a variety of real-time

applications that fall in the following general categories: sequential (single threaded), parallel (multi

threaded) and distributed (with network communication).

We propose a task model that is general enough to represent precedence dependencies and parallel

execution and that, in the most simplified case, is able to represent sequential independent tasks that

have a repetition period. We have already described the workload model in Chapter 2, so we will use

that description as reference.

The RTMultiSim workload model is implemented as a set of tasks with dependencies like depicted

in Fig. 3. The model contains periodic and aperiodic tasks that produce and consume events. We

implement the dependencies between tasks with events. A task can produce events, which are

Simulation Tool

Simulator

Workload Model

Tasks

Periodic Tasks

Events

Simulation UI

Platform & Scheduling

Model

CPUs

Clusters

Schedulers

Scheduling Algorithm

Simulation Engine

Time

Job Generator

Jobs, Threads

Job Queue, Events Queue

Cluster Manager

Partitioning Algorithm

Results

Simulation Starter (Models and simulation settings)

Real-time systems simulation | 98

C= {}

Task 1

P={evA, evB}

C={evA}

Task 2

P={evC}

C={evB}

Task 3

P= {evD, evE}

C={evC, evD}

Task 4

P={}

C={evE}

Task 5

P={}

Figure 4. Tasks that create a

transaction through precedence

dependencies

consumed by other tasks, creating an execution dependency between producer and consumer. With

this model, we can represent chain or graph transactions.

Figure 3. Workload model implementation (class diagram)

Fig.4 shows five tasks that create a graph transaction. Each task has P (produce) and C (consume)

event lists. The execution precedence between tasks is created by the fact that a tasks that has to

consume an event will be blocked (not scheduled for execution) until that event is produced and put in

the global event queue.

The task’s execution requirements are represented as a

sequence of execution segments. An execution segment

may be a sequential portion of a task and generate a single

thread, or it can generate multiple threads that could be

executed in parallel on a number of processors (if

available). Each thread will have the execution time of the

segment to which it belongs. Depending on the execution

model, the task can be fork-join, or multiframe. In the case

of a fork-join task, the execution segments represent the

task’s sequential and parallel portions. These portions are

executed in the same order each period. In the case of

multiframe tasks, the execution segment represents the

execution behavior during a period. Each task instance

will have the execution requirements of a single execution

segment, in the order given by the execution segments list.

Fig. 5 shows the difference between the fork-join execution model and the multiframe execution

model. Note that our task model supports both execution models, but in our experiments, we used only

the fork-join model.

99 | Real-time systems simulation

Task 4

Execution={(3,1), (5,3), (2,1)}

Period=15

Fork-join model

Execution={(4,1), (5,3), (2,1)}

Multiframe model

Execution={(4,1), (5,3), (2,1)}

0 5 10 15 20 25 Time

Execution={(4,1), (5,3), (2,1)}

0 15 30 45 Time

Execution={(4,1), (5,3), (2,1)}

4.2. The Platform and Scheduling Models

The platform is modeled as a sum of identical processing units (CPUs). The execution speed of all

tasks is the same on all processors. Job context switch time and job migration time can be taken into

consideration as constant values. This type of platform model can represent parallel systems as well as

distributed systems. In the case of distributed systems, the networks are represented as processing

units.

Figure 5. Two uses of execution segments: fork-join parallel tasks and multiframe tasks

From the allocation point of view, there are three main approaches for multiprocessor scheduling:

• Global

• Partitioned

• Clustered

In the global approach, jobs can be allocated to any available processor and can migrate to other

processors during execution with no restrictions. Partitioned scheduling assumes that each processor

has its own scheduler and job queue. A task is allocated to a single processor. In clustered scheduling,

job migration is restricted to a subset of the available processors. Processors are grouped into clusters.

Each cluster has its own scheduler and job queue. First, tasks are allocated to clusters, and then each

cluster scheduler globally schedules jobs inside the cluster.

In RTMultiSim, we implemented the loose clustered approach, which we described in Chapter 2.

We can configure the scheduling mechanism to be partitioned, global, clustered or loose clustered.

The RTMultiSim implementation of the scheduling model (Fig. 6) contains a cluster manager and a

set of clusters. The cluster manager applies a partitioning heuristic to allocate all tasks to the existing

clusters. If there is only one cluster (global scheduling), all tasks are allocated to that cluster.

Real-time systems simulation | 100

A cluster contains the allocated task set, the list of CPUs and two schedulers (the cluster’s own

scheduler and the alternative scheduler). The alternative scheduler can be excluded if the user does not

want to use the loose clustered mechanism. The local scheduling algorithm decides the execution

order of jobs. In our model, each cluster can use a different scheduling algorithm.

Figure 6. The RTMultiSim scheduling implementation (class diagram)

 The partitioning heuristics available in RTMultiSim are: Next Fit and Affinity. In Next Fit, tasks are

sorted in a decreasing order according to their utilization factor (execution time divided with period).

Each time, the first task is allocated to the next available cluster. In Affinity, tasks with largest

utilization factor and the shortest CPU Affinity list are allocated first. Each task is allocated to the first

available cluster, which contains a CPU from its CPU Affinity list. New partitioning heuristics can be

added by writing classes, which implement a predefined abstract interface (IPartitioningAlgorithm).

In RTMultiSim, we implemented priority-based scheduling algorithms. A scheduling algorithm of

this category chooses the jobs with the n highest priorities to be executed on n available processors,

after it has computed the priority for each job. The available scheduling algorithms are: Rate

Monotonic (RM), Earliest Deadline First (EDF), Least Laxity First (LLF) and First In First Out

(FIFO). RTMultiSim supports preemptive (e.g. RM, EDF, LLF) and non-preemptive (e.g. FIFO)

scheduling algorithms. The simulator may be extended with other user-defined scheduling algorithms

by creating classes, which implement a predefined abstract interface (ISchedulingAlgorithm).

4.3. The Simulation Engine

The simulation is performed for a fixed time interval or until the feasibility interval is covered. For

instance, according to [105] and [104] the feasibility interval for fixed priority algorithms on

multiprocessor systems is a multiple of the task set hyper-period. The simulation engine receives as

input the system model in order to perform the simulation. The most important components of the

simulation engine are:

101 | Real-time systems simulation

• System model (tasks, CPUs, schedulers)

• Clock

• Job generator

• Jobs and threads

Simulation time and job generation. The simulation time is modeled as a global clock. All CPUs

are synchronized to this clock. The global clock advances every time with one simulation time unit

(STU). At each clock tick (transition), the state of the system is recomputed. There can be new job

releases and, depending on the scheduling strategy, there can be schedule updates that generate

preemptions. A job’s execution time is equal to an integer number of STUs. In a time step, each CPU

executes exactly one time unit from the total execution time of a running job.

The job generator creates new jobs according to the workload model. After each global clock

transition, this component gets from the workload model all the tasks that have to release new jobs at

the current simulation time. Based on those tasks, it creates new jobs, which are copied in the global

job queue.

Jobs and threads. In RTMultiSim, jobs inherit all task parameters. The job release time is set to its

creation time. Job execution is performed according to the task’s sequence of execution segments.

A job contains a list of threads, which can be started and executed in parallel. Threads are created at

the start of an execution segment. When all the threads in an execution segment are completed, the

threads for the next segment are created. A thread can pass through several states during its existence,

from creation to completion. The possible thread states are:

• Ready

• Scheduled

• Running

• Blocked

• Completed

In “ready” state, a thread is prepared to be scheduled. If it was chosen by the scheduler and assigned

to a CPU, the thread is in “scheduled” state. During execution, the thread is in “running” state. In the

thread is preempted, it returns in “ready” state. The thread is “blocked” if it waits for an event to be

produced, in order to start or resume its execution.

Scheduling. The cluster manager takes the jobs from the global job queue and places them in the

clusters’ job queues, according to task partitioning. Then, each cluster’s scheduler chooses the jobs

that will be executed on each of its CPUs, according to the scheduling algorithm. Threads belonging to

the same job have the same priority. Ready threads will not interrupt running threads that belong to the

same job. A multithreaded job can be allocated to more than one CPU at the same time. For real-time

transactions, deadlines have to be assigned to intermediate tasks before these will be scheduled. The

simulator has some heuristic algorithms that assign deadlines to tasks. It also has an extension that

finds optimized deadlines by using a genetic algorithm.

Real-time systems simulation | 102

Figure 7. Simulation execution flowchart

Execution. A simulation execution step, as shown in Fig. 7, starts with job generation. Generated

threads that do not meet the requirements to enter ready state (e.g. the thread can start only if a certain

event is produced) are blocked. Blocked threads that meet the requirements to enter the ready state are

unblocked.

New jobs, if any, are placed in the clusters’ job queues. Each cluster scheduler allocates jobs

(threads) to its CPUs. Next, the threads are executed on CPUs. During thread execution, events can be

consumed or produced, execution time is increased and execution statistics are recorded. If the thread

is completed, it is removed from the jobs’ current threads list. If the job is completed, it is removed

from the cluster’s queue and placed in the results.

START

Simulation
End

YES
Write

Results

STOP

NO

Partial
Results

YES NO

Generate
Workload

Block/Unblock
Threads

Schedule
Jobs

Execute thread
On CPU

For each CPU

Clock.Time ++

Job
Complete

YES Store Job
in Results

NO

Thread
Complete

YES

Remove
Thread

Remove Job
from Queue

NO

103 | Real-time systems simulation

Finally, the simulation time is increased and the simulation execution moves to the next time step.

Results. Simulation results are periodically written in a database, until simulation completion.

Results for each simulation are recorded separately. For each released job, the simulator records the

response times and deadline. For each thread, release time, start time, completed time, execution time,

number of migrations and CPU visitation sequence are recorded. Based on the recorded raw data, a

number of statistical parameters may be computed such as: the number of successfully finished tasks,

number of deadline misses, number of migrations, effective utilization of CPUs, etc.

4.4. Simulation examples

RTMultiSim can simulate a variety of systems, defined through configuration parameters, without

any changes in the code. From the platform point of view, these systems can span from multiprocessor

(parallel) to distributed architectures. The scheduling strategies may be global, partitioned, clustered or

loose clustered. The workload can be represented as independent parallel or sequential tasks, periodic

or aperiodic tasks and distributed transactions.

The workload and other simulation parameters such as number of processors, cluster configuration,

scheduling and partitioning strategies are specified in XML or text files.

An independent task set may have the following specification:

<Tasks>

 <Task type="periodic" id="1" C="10" T="15" D="12" />

 <Task type="parallel" id="2" C="5,4,6" P="1,3,1" T="15" D="15" />

 …

</Tasks>

Where id is the task identifier, C is the execution time or list of execution times (for each execution

segment), T is the period, D is the deadline, and P is a list of parallelism values, one for each execution

segment.

A transaction is specified as follows:

;60,60

t1 child m1

m1 child t2

t2 child

Where the first two values are the period and the deadline t1, t2 are tasks and m1 is a message. For

each task or message, the user has to specify the execution time and the processors (networks) on

which they can execute like:

t1, 23, 1, 2

t2, 11, 2

m1, 10, 0

Real-time systems simulation | 104

Task t1, for example, has execution time equal to 23 and can be executed by processors with id’s 1

and 2.

A DAG transaction is specified as follows:

;30,40

t1 child t2, t3

t2 child t4

t3 child t4

t4 child

Task t1 has two children, t2 and t3 that have a common child, t4.

The platform and other simulation parameters can be specified in an XML file or configured

through the simulation tool's GUI. An example of platform XML is as follows:

<Platform>

<CPU No="4" Cluster="{0 1 2 3}" Sched="EDF" Part="Affinity" LinkClusters="false" />

<Settings WriteResults="true" SimTime="5000"/>

</Platform>

“Cluster” attribute describes the scheduling approach. In the previous example, it is the global

approach. For partitioned approach, each CPU ID is put in separate brackets like “{0}{1}{2}{3}”. For

clustered approach, the CPU IDs are grouped (one pair of brackets for each cluster) like “{0 1}{2 3}”.

“LinkClusters” is “true” if the user chooses the loose clustered approach and “false” if it chooses

traditional clustered approach. “Sched” and “Part” are the scheduling and the partitioning algorithms.

Figure 8. The RTMultiSim user interface.

The RTMultiSim GUI allows choosing the workload and platform model files and the manual input

of some configuration parameters. Moreover, there are controls for starting the simulation or other

types of evaluation. Fig. 8 shows the RTMultiSim GUI, the Simulation tab.

105 | Real-time systems simulation

5. Synthetic workload generation tool

In order to generate different simulation scenarios that fit statistically to some globally defined

parameters (e.g. processor utilization) we developed a tool for automatic workload generation. The

goal is to establish for every simulation scenario some parameters that statistically cover the most

relevant cases. Our tool can generate periodic independent task sets or periodic transaction (chain of

tasks) sets.

5.1. Task Set Generation

Task sets used for evaluations are generated automatically in the majority of cases. The method

used to generate tasks is essential, as some task set characteristics like the task set cardinality, the

distribution of task periods or the distribution of individual task utilizations may influence the

evaluation. For instance, for the same task set utilization factor, we obtained different schedulability

results when we used uniform and exponential task utilization distribution. On 6 processors, with

utilization factor of 4.8 and global EDF scheduling, task sets generated with a uniform distribution

were better scheduled then those obtained with an exponential task utilization distribution.

We needed a tool that generates task sets that do not produce misleading simulation results. The

parameters that can be configured for the task set are:

• Total utilization

• Number of tasks

• Task set maximum hyperperiod (LCM of repetition periods)

The main problem to be solved is to generate n individual utilization values of which the sum is

equal to U. Even though there are two important results, which address this problem, the UUnifast-

Discard algorithm [112] and the Randfixedsum algorithm [111], we decided to use a new approach.

We made this decision because, in the UUniFast-Discard case, the algorithm fails to generate task sets

for particular values of n and U [111], and because Randfixedsum is very complex and difficult to

understand and implement.

To obtain a task set with n independent periodic tasks with implicit deadlines and utilization equal

to U, we developed the following methodology:

1. Randomly choose n task periods (Ti) uniformly distributed in the interval [Tmin, Tmax], having the

least common multiple (LCM) less than a given LCMmax.

2. Generate n random task utilization values (ui) for which the sum is equal to a given U. Each ui

has to be equal or greater than 1/Ti and less than 1 (because the computed execution time Ci has

to be greater than 0).

3. For each pair (Ti, ui), compute the execution time Ci=ui*Ti of task i.

4. Verify if the task set satisfies the requested parameters. If not, the task set is discarded.

For step 2, we propose an algorithm that generates n task utilization values with the sum equal to U.

The algorithm starts with assigning each ui the mean value (U/n). To obtain a random distribution of

the utilization values inside the task set and keep the total utilization equal to U, at each iteration step

we randomly choose two ui values which will be modified by adding and subtracting a random value

Real-time systems simulation | 106

from the interval [0,U/n]. After a large number of iterations, we obtain task utilization values, which

are well spread in the interval [1/Ti, 1]. The proposed algorithm’s pseudocode is listed below.

Algorithm: generate n utilization values of sum equal to U.

Input: n, U, T1,T2,…,Tn

Output: u1, u2, …,un

Begin

For(i=1; i<=n){ ui=U/n;}

Repeat n
4
 times

{

 d = random(0,U/n);

 x = random(1,n);

 y = random(1,n);

 if(x!=y)&&(1/Tx<=ux-d<=1)&&(1/Ty<=uy-d<=1)

 {

 ux = ux+d;

 uy = uy-d;

 }

}

End

Figure 9. Comparison between Randfixedsum (blue) and our algorithm (red)

We compared our results with the results of Randfixedsum [111] and we concluded that the two

approaches are equivalent because they generate similar distributions of individual utilization values.

We generated task sets with 40 tasks per set and with total utilization of 4 with both algorithms

(Randfixedsum and ours). Fig. 9 shows the distribution of individual task utilizations we obtained by

using the two algorithms. In terms of execution time, our algorithm is slightly less efficient, but it

produces results in an acceptable time for less than 100 tasks per task set.

Moreover, our algorithm does not have the problem of UUnifast-Discard [112], being able to

generate without any problem task sets having the total utilization equal to half the task set cardinality.

107 | Real-time systems simulation

5.2. Transaction Set Generation

We generate periodic transaction sets, using a similar methodology. The transactions are in fact

chains of tasks, meaning that each task has at most one predecessor and at most one successor.

Processing tasks may alternate with communication tasks.

The parameters that can be configured for the transaction set are:

• Total utilization

• Number of transactions

• Maximum number tasks per transaction

• Transaction set maximum hyperperiod (LCM of repetition periods)

The methodology for automatically generating a transaction set based on the previous preset

parameters is the following:

1. Randomly choose n periods (Ti) uniformly distributed in the interval [Tmin, Tmax], having the

least common multiple (LCM) less than a given LCMmax.

2. Generate n random transaction utilization values (ui) for which the sum is equal to a given U.

3. Based on the generated periods and utilizations, create n transactions.

4. For each transaction, create a task set using the methodology presented in section IV.A. All

tasks will have the same period, equal to the transaction’s period. The precedence relations

between them will be based on the order in which they are generated.

This version of the Workload Models Generation Tool does not generate platform related

constraints for tasks. The user can add this type of constraints (e.g. task to CPU affinity) manually to

the task or transaction set specification files.

6. The Visualization Module

After the simulation has ended, the Visualization Module can generate statistics and graphic

representations of the simulation results. The user has to choose a simulation for which the module

will show the results.

The user can view statistical data such as:

• Number of task migrations

• Number of job migrations

• Number of deadline misses

• Actual utilization per processor

The user can also view execution traces of tasks and jobs on processors, or the execution trace for

all processors in parallel in the same window. Fig. 10 and 11 are graphic representations generated by

the module.

Real-time systems simulation | 108

Figure 10. Task migrations in the Visualization module

Figure 11. Task execution trace on one processor in the Visualization module

7. Comparison with other simulation tools

To highlight the main characteristics of RTMultiSim, we compare it with similar tools. We selected

three of the most representative and recent real-time systems simulation tools: STORM, YARTISS,

MAST. Table 1 shows the comparison. We highlighted the most general approach for each

characteristic.

Table 1. Comparison between RTMultiSim and other real-time systems simulation tools
Characteristics RTMultiSim STORM YARTISS MAST

Simulation Yes Yes Yes No

Schedulability

analysis

Yes No No Yes

Set and optimize

scheduling parameters

Yes No No Yes

109 | Real-time systems simulation

(processor allocation,

deadline assignation)

Workload model Parallel tasks,

periodic tasks,

non-periodic

tasks,

transactions,

tasks with

precedence

dependencies

Sequential periodic

tasks, data

messages between

tasks

Sequential periodic

tasks (energy

aware), graph

transactions

Chain transactions

Platform model Homogeneous

multiprocessor

Homogeneous

multiprocessor

Homogeneous

multiprocessor

Heterogeneous

multiprocessor

Scheduling model Clustered, Loose

Clustered, Global,

Partitioned

Global Global Partitioned

Scheduling algorithms RM, EDF, LLF,

FIFO

FP, EDF, FIFO FP, EDF, LLF,

FIFO

FP, EDF

Partitioning heuristics Next fit, Affinity No No Partitioning is done

manually

Energy aware No No Yes No

Task set generation Yes No Yes No

Transaction set

generation

Yes No No No

Language C# Java Java Ada

OS Windows Windows, Linux Windows, Linux Windows, Linux

Open source Yes No Yes Yes

Visualization Yes Yes Yes Yes

We conclude that, compared to these other tools, RTMultiSim‘s has the following advantages:

• The most general workload model

• The most general scheduling model

• It implements partitioning heuristics

• Has task set and a transaction set generation tools

• The task and transaction set generation tools rely on a more efficient algorithm than

UUnifast-Discard, while others rely on UUnifast-Discard.

As for the disadvantages:

• It is not available on Linux; however, with some minimum effort it can be compiled with

Mono [116], to obtain its Linux version.

• The Visualization module is weak compared to others; however, by using some external,

more complex tools we can achieve good graphical results analysis.

• It is not energy-aware; but only YARTISS has this characteristic.

Real-time systems simulation | 110

8. Conclusions

In this chapter, we presented RTMultiSim, a versatile simulation tool that covers most of the typical

cases of multitasking and multiprocessor real-time systems. First, we described the conceptual model

of the simulator and its functioning. The workload model used by the simulator allows representation

of various types of real-time tasks such as independent periodic tasks, dependent tasks, parallel tasks,

fork-join tasks, and transactions. The scheduling strategy may be global, partitioned, or clustered.

RTMultiSim provides multiple partitioning and scheduling algorithms and an easy method to integrate

new algorithms. We also presented a method for automatic task and chain transaction set generation,

used to generate different simulation scenarios that fit to some predefined parameters.

The RTMultiSim tools (source code and executables) and documentation are available at

http://users.utcluj.ro/~ancapop/research.html.

The main contributions of this chapter are the following:

1. A comparative study of existing real-time simulation tools.

2. The development of a real-time systems simulation environment called RTMultiSim that

contains:

a. A simulation tool that covers a wide variety of system models, including parallel and

distributed real-time systems. As far as we know, it is the only tool that can simulate

clustered scheduling and parallel task sets.

b. An automatic workload generation tool that generates task sets as well as chain

transaction sets. Only a few performance evaluation tools provide automatic task set

generation, and none of those provides automatic transaction set generation.

c. A visualization module.

3. The development of an algorithm that generates random task sets based on some predefined

parameters.

4. The development of an algorithm that generates random chain transaction sets based on some

predefined parameters.

Published papers:

1. Anca Hangan, Gheorghe Sebestyen, “RTMultiSim: A versatile simulator for multiprocessor

real-time systems,” in Proceedings of The 3rd International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems (WATERS) in conjunction with

ECRTS2012 Pisa, Italy, p. 15, 2012

Citation:

I. Minj, “Real Time Event Management and Coordinating System”, Masters Thesis in

ComputerScience and Engineering, Department of Computer Science and Engineering

National Institute of Technology Rourkela, India, 2013

2. Anca Hangan, Gheorghe Sebestyen, “RTMultiSim: A versatile simulator for multiprocessor

real-time systems,” extended paper, submitted to Elsevier Journal of Systems Architecture

