
39 | Real-time communication over general purpose networks

Chapter 3. Real-time communication over general purpose

networks

1. Introduction

Distributed real-time systems such as remote process supervision and control systems require a

communication infrastructure that supports reliable and safe real-time data transmission. These

requirements are usually solved by using dedicated networks and industrial protocols, as presented in

[65] and [66]. As these special purpose protocols are incompatible with general purpose protocols

used in local area networks and company intranets, there are interoperability problems between

distributed control applications and organizational software. Local computer networks and Internet

protocols, on the other hand, fail to satisfy real-time requirements because they apply the best-effort

principle in supplying communication services, and it is quite difficult to use them as infrastructure for

real-time applications. To satisfy real-time communication requirements on networks that use Internet

protocols, solutions that enable a predictable network behavior and that provide end-to-end delivery

time guarantees have to be developed.

The recent expansion of the real-time applications domain created a significant research trend

towards finding solutions to accommodate both real-time and non-real-time applications on a common

environment [61][62][63][5][47][64]. Common use hardware and communication protocols do not

offer timing guarantees, which are essential in the case of real-time applications. The main challenge

in this case is to find theoretical and pragmatic methods that facilitate the estimation of applications

response time, as support for real-time applications. Because of this trend, there is significant research

work oriented in three main directions:

• Implement real-time applications on common use microprocessors [5] [47][64]

• Accommodate real-time data transmission on general purpose networks [61][62][14]

• Integrate real-time specific features in common-use operating systems [63]

This chapter presents our work that is conducted in the direction of using general purpose (non-

deterministic) networks for real-time communication. The research work in this direction was mainly

encouraged by networking technology developments such as increasing network bandwidth (Gbps)

and development of new Quality of Service (QoS) mechanisms. In this context, we address the

(communication-related) issues generated by the integration of distributed control systems with other

information systems that do not require special communication services.

We intend to give a solution that will be able to guarantee the timing requirements for real-time data

transmission over general purpose networks. To achieve this objective, we propose a real-time

communication model based on data flow analysis, as support for a reservation-based communication

architecture. Moreover, we propose a method for the analytical estimation of the network bandwidth

required by real-time traffic. Finally, we implement an experimental reservation-based control system

Real-time communication over general purpose networks | 40

that will be used to validate the proposed model and method. The analytical method proposed for the

estimation of required network bandwidth is also validated through simulation.

2. Related work

Many research efforts are directed towards the formalization of models that describe the sharing of

resources between applications that have different timing requirements. The main objective in this

case is to guarantee the timing requirements of each application, in isolation. The concepts of virtual

resources, resource partition [16] and resource reservation [44] have been proposed as support for the

analytic determination of application’s timing parameters in isolation. Moreover, resource reservation

techniques have been combined with feedback techniques to provide response delay and respectively

execution time guarantees for tasks that coexists in a shared environment [61][67]. These concepts

have been recently extended to multiprocessor platform models [5][47].

Several authors investigated the problem of accommodating real-time traffic on best-effort networks

and proposed some pragmatic solutions. In [68] the authors present a method for managing the

network bandwidth for multiple client applications. Their communication middleware, the NIProxy, is

able to partition available client bandwidth between real-time and non real-time traffic flows by

arranging them in a stream hierarchy. This solution gives good results in improving client Quality of

Experience, but it does not guarantee any end-to-end timing requirements for real-time traffic.

Another approach is presented in [14], where the authors propose introducing a prioritization

mechanism in the Internet protocol suite, a mechanism that complies with the IEEE 802.1D standard.

They evaluate the solution through simulation, using the OPNET simulator, by measuring end-to-end

latency of real-time packets in the presence of FTP traffic on the same network. Their conclusion is

that a large part of the end-to-end message latency occurs at the end nodes, assuming that the network

bandwidth is large enough to support all the traffic. In the referred paper the authors do not provide a

solution for evaluating network bandwidth requirements, they just assume that the bandwidth is large

enough.

In [69], Martinez et al. present Earliest Deadline First (EDF) communication scheduler

implementation adapted for high-performance networks. The characteristics of high-performance

networks enabled them to simplify the calculus of packet deadline, taking into consideration only the

previous packet’s deadline, packet size and average bandwidth.

Schantz et al. [62] describe two approaches, priority-based and reservation-based, in developing

distributed real-time middleware. For both solutions, the communication infrastructure is an IP

network. In the priority-based middleware the standard Differentiated Services (DiffServ) mechanism

is implemented for network resource management. In the reservation-based middleware the Integrated

Services (IntServ) mechanism is implemented. Their main contribution is in the area of middleware

implementation. But there are two quite important issues not addressed by this paper:

• the provision of instruments for evaluating the resource requirements of real-time tasks;

• the differentiation between hard and soft tasks.

41 | Real-time communication over general purpose networks

IntServ [70][71] provides end-to-end per-flow QoS by means of hop-by-hop resource reservation

within the IP network but impose a significant burden on the core routers. To reduce the complexity

within each core router, alternative schemes, referred to as Measurement Based Admission Control

Schemes (MBAC) have been proposed [72]. These schemes replace per-flow states with run-time link

load estimates performed in each router. However, MBAC solutions still require significant

modification of the existing Internet architecture, as core routers must support load estimation

algorithms, and still need to be explicitly involved in per flow signaling exchange.

A completely different approach is provided by DiffServ [73]. In DiffServ, core routers are stateless

and unaware of any signaling. While DiffServ easily enables resource provisioning performed in a

management plane for permanent connections, their widely recognized limit is the lack of support per-

flow resource management and admission control, resulting in the lack of strict per flow QoS

guarantees. A number of proposals, presented in the literature, have shown that per flow Distributed

Admission Control schemes can be deployed over DiffServ architectures [74][75]. Although

significantly different in implementation, they share the common idea that accept/reject decisions are

taken by the network endpoints and are based on the processing of “probing” packets, injected in the

network at setup to verify the network congestion status. A “pure” Extended Admission Control

(EAC) scheme, called Phantom Circuit Protocol-Delay Variation (PCP-DV) is proposed in [76]. The

scheme determines whether a new connection request can be accepted based on delay variation

measurements taken on the probing packet at the edge nodes.

Reinemo et al. [77] propose and evaluate three different admission control schemes for virtual cut-

through networks, each one suitable for use in combination with DiffServ based QoS scheme to

deliver soft real-time guarantees. Two of the schemes assume pre-knowledge of the network’s

performance behavior without admission control and are both implemented with bandwidth broker.

The third is based on endpoint/egress admission control and relies on measurements to assess the load

situation. Due to the way in which the flow control affects latency and the nature of cut-through

networks, latency and jitter properties are hard to achieve.

An approach to quantify the impact of end-to-end QoS provisioning through a combination of both

intra and inter-autonomous system (AS) traffic engineering (TE) is proposed in [78]. Two offline

QoS-aware systems are deployed for this and a direct relationship between intra-AS and inter-AS TE

is then established. The interaction between them is analyzed and both the decoupled and integrated

approaches are presented.

In [79], several possible algorithms for routing and scheduling that allow coexistence of QoS and

best- effort flows are presented. The network algorithm takes into account state imprecision in routers,

maxmin bandwidth allocation, and existing link state information.

Most of the contributions presented in the research work we studied are in the area of middleware

implementation and do not provide an analytical evaluation of communication resource requirements.

Our objective is to propose a solution for accommodating real-time traffic on IP networks and,

furthermore, develop a method for the analytical estimation of the network bandwidth required by

real-time traffic.

Real-time communication over general purpose networks | 42

3. Problem statement

Distributed control systems are an integral part of the industrial automation domain. Their

functionalities include data acquisition, monitoring and control of industrial processes. While the

majority of the control systems are usually located within more confined area (e.g. plant area,

company local network) and communications are usually performed using local area network (LAN)

technologies that are typically reliable and high-speed, other are geographically distributed (e.g.

SCADA systems) and need long-distance communication systems such as the Internet.

This research has the objective of solving the communication issues of distributed control systems

that are deployed in the companies’ local IP networks. Usually, these networks are managed by the

companies and the nodes (hosts, switches, routers, servers) are configured and administered by a

company internal authority. Such a network has to accommodate two broad categories of traffic: non-

real-time and real-time. Non-real-time traffic can adjust to changes in delay and throughput and is

generated by applications that include common Internet-based applications, such as file transfer,

electronic email, remote logon, network management, and Web access. Real-time traffic does not

easily adapt, if at all, to changes in delay and throughput and have requirements that include beside

delay and throughput, delay variation and packet loss.

In addition, these corporate networks may be connected to strategic partner networks and to the

Internet, thus, making more use of Wide Area Networks (WANs) and Internet to transmit their data to

remote stations.

Most control applications must satisfy real-time and safety constraints. A very important parameter

in real-time environments is the system response time, defined as the time between the occurrence of

an event and the corresponding response. In distributed systems, message delivery time, has a large

influence on the system’s response time. Network protocols must incorporate control mechanisms for

message delivery time in order to guarantee maximum delivery time for control messages. These

mechanisms assume a deterministic network behavior, which permit a-priori evaluation of maximum

message delivery time.

When measuring the performance of a real-time communication system, the following parameters

are taken into consideration [2]:

• Deadline miss rate (fraction of all messages that are delivered to late at the destination)

• Delay jitter (the variation of message delays)

• Loss rate (fraction of all messages that are dropped on the route from source to

destination)

For hard real-time applications, deadline misses are not acceptable. Moreover, message response

time must be guaranteed a-priori. Delay jitter may not cause serious problems as long as deadlines are

satisfied. In the case of soft real-time applications, deadline misses are tolerable to some extent, but,

under some particular conditions, delay jitter may have negative effects. In the case of distributed

control systems traffic, one has to deal with both hard and soft real-time requirements. For these

reasons, the goal is to minimize both message response time (end-to-end delay) and delay jitter.

43 | Real-time communication over general purpose networks

In the case of using an IP network for real-time communication, some important issues may arise.

First of all, a maximum response time for packets has to be guaranteed. This can be a serious problem

knowing that IP networks function on a best-effort basis.

Another communication issue is message delivery efficiency. Data transmitted through the network

in distributed control systems are quite different compared to data transmitted by usual applications

that generate traffic in IP networks. Control applications use short, unstructured data (e.g. digital

signal values). Process control data is generated, mostly, at well determined periods of time. The

majority of supervision and control functions involve data acquisition, processing and storage,

visualization of process status and command issuing, which require a short reaction time.

Control applications include different automation and computing devices, which are interconnected.

In order to insure interoperability, the communication protocol must allow uniform and transparent

access to system’s resources and it must be simple enough to allow implementation on devices with

limited computing resources.

Last but not least is the issue of real-time and non-real-time traffic coexistence. In the case of

remote process control it is quite possible to have both traffic (real-time) generated by the control

system and traffic (best-effort) generated by other applications (e.g. office automation) that run in the

same network. Network bandwidth has to be managed in order to insure real-time requirements for

control traffic and, at the same time, to insure fair treatment for the best-effort traffic.

The objective of this research is to take a new approach in solving some of the following

communication issues:

• Guarantee packet delivery time in IP networks in the presence of both real-time and non-

real-time traffic

• Ensure predictability of network behavior

• Ensure transmission efficiency of process control data

• Provide device interoperability and uniform access to process control data

To address these problems, we propose a reservation-based communication system architecture for

distributed control applications on best-effort networks. As part of the solution, a control traffic model

and a method for the estimation of the required network bandwidth are defined.

4. The data-flow model as support for a reservation-based

communication architecture

4.1. The reservation-based communication architecture

In order to provide a comprehensive communication system architecture based on IP infrastructures

so that to meet the challenges of quality of service provisioning for industrial control applications, we

integrate in three major components:

• Industrial control applications and processes

Real-time communication over general purpose networks | 44

• A middleware (service manager) between the application and the protocol driver; this

middleware closely interacts with the Internet protocol stack

• A network infrastructure based on IPv4 or IPv6 protocol

The first component of the system architecture represents quality of service demanding applications

that use a QoS API to send requests to the service manager. These applications generate periodic and

aperiodic real-time traffic. The traffic is characterized by packet size, transmitting data rates, priority,

and accepted latency.

The middleware bridges the industrial applications and the underlying network systems by

dispatching the application requests and returning status and feedback from the underlying system to

the application. Examining the application requests and the available network resources, the

middleware selects a provisioning service or service level, maps the application QoS to network-

specific quality of service, and initiates resource reservation or renegotiates the parameters with the

application before the flows’ source starts to generate any packets.

The following components are integrated in the middleware:

• Traffic QoS specification

• QoS negotiation

• Traffic and QoS monitoring

• Resource reservation

• Data transfer

The middleware components are depicted in Fig. 1 and will be described as follows.

Figure 1. System architecture – components

45 | Real-time communication over general purpose networks

4.1.1. Traffic QoS Specification and QoS Negotiation modules

An application which wants to set up a connection in order to transmit packets to another

application in the network uses the means of the traffic QoS specification to set up a reservation

request first. This module is a generic API so that an application demanding quality of service is

isolated from the complexity of the provisioning services.

The application defines its generic QoS specification in terms of traffic profile which is composed

of parameters that characterize the traffic stream or session (source IP address and port number,

destination address, transport protocol) and parameters that define quantitatively the network

performance requirements (transmitting rates, message size, transmission deadlines, latency), which

can be specified using maximal, average and minimal values.

The traffic QoS specification module contains a set of rules for converting the traffic characteristics

to parameters in the underlying message model.

Based on the input from the QoS specification module, the QoS negotiation module is responsible

for authorizing the request and check if the network is able to support the new connection interacting

with the resource reservation module for resource allocation. The goal of this module is to provide

optimal quality of service with respect to critical parameters and previous requests.

Application’s requests for quality of service parameters can be solved in two ways: positive, in case

the resource reservation module sends a positive acknowledge to the QoS negotiation module that

there are enough resources in the network to satisfy the request and the reservation is set along the

path, and negative. In case of a negative notification, the application may invoke the QoS negotiation

module in order to find what resources and services are available in the network and to adjust the

quality of service requirements and start a new negotiating procedure.

4.1.2. Traffic and QoS Monitoring module

In this module components are included for monitoring network resources (available bandwidth,

average utilization of a link, delay, jitter) and quality of service related statistics from routers (queue

length, number of conforming/exceeding packets in bytes, number of dropped packets, CPU

utilization). It also signals significant changes in resource availability.

When an application establishes a network traffic stream, this module starts collecting its

performance. It collects data from traffic stream, including quality of service specification, connection

times, transmission rates and delays, and communicate the quality of service parameters to the QoS

negotiation module in order to determine if there is any quality of service violation. All collected data

is stored into a management information base.

4.1.3. Resource Reservation module

The resource reservation module is the ultimate authority for the resource handling in this

architecture. Its main building blocks are admission control and reservation setup. Admission control

implements request authorization by checking if the network is able to support the flow and the

decision algorithm that nodes use to determine whether a new flow can be granted the requested

Real-time communication over general purpose networks | 46

quality of service with/without impacting earlier guarantees. For these tasks it closely interacts with

the main entity, the resource reservation protocol.

Resource ReSerVation Protocol (RSVP) [70] is used for resource reservation signaling. It is

designed to enable the senders, receivers and routers of communications sessions to communicate with

each other to reserve resources for new flows at a given level of QoS. On the other hand, the

reservation protocol is responsible for maintaining flow specific state information at the end nodes and

at the nodes along the path of the flow.

RSVP requests result in resources being reserved in each node along the data path. Given below are

the main attributes of this protocol: it requests resources in only one direction (it treats a sender

separately from a receiver, although the same application might be running at both the sender and the

receiver); is receiver-oriented (the receiver of a data flow initiates and maintains the resource

reservation used for that flow); RSVP itself is not a routing protocol, but it is designed to work with

the existing routing protocols; RSVP supports both IPv4 and IPv6.

To make a resource reservation at a node [80], our RSVP daemon uses the admission control

mechanism. If check fails, the RSVP returns an error notification to the QoS negotiation module that

originated the request. If checks succeed, the RSVP daemon sets the parameters.

4.2. The data flow model

In order to make an analytical evaluation of the traffic generated by the distributed control system, it

is required to classify this traffic and then, based on the identified types, to define the traffic model.

4.2.1. Traffic classification

Control traffic is generated by data exchanged between the control applications and industrial

devices, such as:

• Values obtained through data acquisition, with a well defined frequency (e.g. temperature

in an oven, liquid level in a tank, engine state – started/stopped, etc.)

• Commands generated at known periods of time

• Operator commands (e.g. start/stop engine, increase oven temperature to 200 degrees, etc.)

• Process events, alarms, alerts, etc.

The previous categories of data generate periodic and aperiodic network traffic, with real-time

constraints.

4.2.2. Model definition

Distributed real-time applications (control applications are in the same category) are quite often

modeled as chains of task and messages [51][81] that are executed on the distributed system’s active

resources (e.g. processors, networks). As example, consider an application that monitors the

temperature and humidity in a room. Temperature and humidity variables are measured by a number

of sensors with the same periodicity of 30 minutes. The sensors send their data to the process

computer. This computer places the values into packets and sends them to the monitoring application.

Assuming that there are two temperature and two humidity sensors (we consider two sensors of each

47 | Real-time communication over general purpose networks

type for redundancy), we can model the room monitoring application as four periodic chains of tasks

and messages, one for each sensor. A chain will be composed of a task that reads the temperature form

the environment and sends it to the process computer through a message. The second task that runs on

the process computer; it receives the message from the sensor and it forwards the measured value to

the monitoring task in a predetermined format, as a message. The monitoring task runs on a remote

site. Fig. 2 shows the model of the room monitoring system with chains of tasks and messages (in

black). The message-based model of the Internet communication, in the case of distributed real-time

systems, is quite inefficient due to the large overhead introduced by the Internet protocols. As for the

feasibility analysis, this model generates overestimated requirements on communication due to the

large number of messages that influence each other.

In this context, we propose a model that solves the issues of the message-based model. To model

the control traffic, we introduce data flows.

Definition. A data flow is the sum of all packets sent through the network that have the same

source, destination, content and periodicity.

Traffic between control applications and devices connected to the process is a sum of periodic and

aperiodic data flows. In our previous example, the packets containing temperature and humidity values

create a data flow. In Fig. 2, the alternative model with data flows is depicted in blue. Another

example is shown in Fig. 3, where data flows are established between two control applications

connected to remote industrial processes, through an IP network.

 Figure 2. Data flows between control applications

T1

T4

T6

T8

M1

M3

M5

M7

Sensors

Local

dedicated

network
Process computer

T2

T5

T7

T9

M2

M4

M6

M8

Internet

Remote site

T3

T2 DF1

Model of the room monitoring system with chains of tasks and messages

Communication trough Internet is modeled as a data flow

Period = 30 min

Real-time communication over general purpose networks | 48

Periodic data flows include values obtained through data acquisition, control commands, which

occur at well defined periods. Aperiodic data flows include commands issued by the application

operator, high priority alerts and event signals. A number of parameters are identified for each data

flow type.

The parameters for aperiodic data flows are:

• Source

• Destination

• Packet size

• Priority (importance)

• Content (process control data included in the flow)

• Required packet delay (or response time)

• Transmission deadline

Periodic data flows have two more parameters with respect to aperiodic data flows, the inter-release

period and the phase (the release time of the first packet in the data flow).

F
low
 1, 3 Fl

ow
 2

F
lo
w
 1
,3

P
ro
ce
ss
 D
at
a

Pr
oc
es
s
D
at
a

Figure 3. Data flows between control applications

49 | Real-time communication over general purpose networks

It is a common practice in real-time task modeling to assume that aperiodic tasks have a minimum

inter-release period, which is given by process related parameters. Because all tasks are considered

periodic, scheduling and feasibility analysis are simplified. For the same reasons, we choose to make

the minimum inter-release period assumption for aperiodic data flows.

A periodic data flow is formally defined as an n-tuple, as follows:

�� = (�, �, �, 	, �,
, �	�, �
��, ����
��) (1)

The components of the n-tuple are the data flow parameters. φ is the data flow’s phase, T is the

inter-release period for periodic data flows and the minimum inter-release period for aperiodic data

flows. P is the priority, r is the required packet delay or response time, D is the transmission deadline

and l is the size of a data flow packet. The last three components are the source (Src), destination

(Dest) and content description of the data flow (Content).

The Internet protocol suite is optimized to deliver large packets of data in a best-effort manner.

Process control messages, on the other hand, are very short (from a few bytes to hundreds of bytes);

they have periodic occurrence and real-time constraints. If very short periodic messages are packed

and released in an IP network, the protocol overhead is very large compared with the payload data.

Because messages with short period of occurrence (e.g. seconds, milliseconds) can generate large

amounts of traffic although few effective data is transmitted, one can conclude that the network is

inefficiently utilized for data transmission.

To optimize the transmission of control packets in IP networks, we adopt the strategy of

aggregating control data from different process devices into the same data flow.

To organize control data into larger data flows, the following parameters must be considered:

• Data acquisition periodicity, assuming that devices which perform data acquisition with

the same period read the sensor values virtually at the same time

• Data priority

• Data source and destination

By performing data flow aggregation, the data flow packets contain larger amounts of effective

data, hence increasing the efficiency of control data transmission. To achieve a correct data flow

aggregation the respective data flows have to be synchronized (their phases are equal). It is not enough

to have the same release period. Data has to be produced and transmitted at approximately the same

time. Usually, it is not a difficult problem to achieve the synchronization requirement. For this reason,

we will assume that aggregated data flows can be easily synchronized.

To aggregate data flows we propose the Aggregate Data Flows (ADF) algorithm. First, an array of

data flows (DF) is created by defining a data flow for each piece of process data. The parameters are

set for each data flow. The array of data flows is then sorted by data flow period. To aggregate data

flows that have similar characteristics, each periodic data flow is compared to all other periodic data

flows that have the same period. If the data flows have the same source and destination, they are put

together in the same data flow. The aggregated data flow (see Procedure 1 – Merge Data Flows) will

Real-time communication over general purpose networks | 50

contain data from both initial data flows, they will have the highest priority and the smallest deadline

of the two data flows. The first data flow will be substituted by the aggregated data flow and the

second data flow will be deleted.

Algorithm 1: Aggregate Data Flows (ADF)

count = 0;

Foreach process_data_value

{

 DF[i] = Create_data_flow ();

 Set_data_flow_parameters (DF[i]);

 i++;

}

Sort_data_flows_by_period ();

For (i=0; i < count-1; i++)

{

 If Periodic (DF[i]) and !Marked_for_delete (DF[i])

 {

 j = i+1;

 While (DF[i].period == DF[j].period)

 {

 If (Periodic (DF[j]))

 {

 If (DF[i].src == DF[j].src)and(DF[i].dest == DF[j].dest)

 {

 Merge (DF[i], DF[j]);

 Mark_for_delete (DF[j]);

 }

 }

 j++;

 }

 }

}

Foreach DF

{

 If (Marked_for_delete (DF[i]))

 {

 Delete (DF[i]);

 }

}

Procedure 1: Merge Data Flows (MDF)

Input: DF[i], DF[j]

Output: DF[i]

DF[i].content = DF[i].content + DF[j].content;

DF[i].size = DF[i].size + DF[j].size;

DF[i].priority = max (DF[i].priority, DF[j].priority);

51 | Real-time communication over general purpose networks

DF[i].deadline = min (DF[i]. deadline, DF[j]. deadline);

In this way, we obtain the specification of periodic data flows for a control system. For aperiodic

data flows, which cannot merge with other flows, transmission efficiency is reduced. A solution for

these flows, if their frequency of occurrence is high, is to reserve space for aperiodic data in periodic

flows. This space (e.g. a few bytes) is used only if the aperiodic event takes place right before a

periodic data flow packet is sent.

5. Response time analysis for real-time communication

In real-time systems, it is essential to guarantee response times. The system architecture proposed

in this chapter uses an IP network as a communication infrastructure. The main challenge in this case

is to guarantee real-time constraints on a best-effort communication infrastructure. For solving this

problem, we use a network bandwidth reservation mechanism.

The bandwidth reservation mechanism requires the estimation of network bandwidth for the real-

time traffic generated in the system. For this purpose, we adopt a method commonly used in the case

of real-time tasks, the response time analysis using a priority-based scheduling algorithm. This method

allows the calculation of the worst case response time of real-time tasks [81][82] as the solution of a

recursive equation. We adapted the classic method of response time analysis to our data flow model.

This allows the computation of response time for each data flow.

The most important time restriction in our case is that the response time of any data flow should not

exceed its deadline. To obtain an estimation of the network bandwidth we have to find the minimum

bandwidth value for which all data flows meet their deadlines, in the worst case.

In our adaptation of response time analysis, we assume that each data flow corresponds to a “task”

and the network corresponds to the “processor”, which has to be shared between all “tasks” in the

system. Priorities are assigned to data flows in a rate-monotonic fashion [27], that is, the priority of a

data flow is given by its period parameter. This way, a data flow that has a lower period will have a

higher priority. Data packets will inherit the priority of the data flow to which they belong. The packet

with the highest priority will be transmitted first.

Periodic and aperiodic data flows are taken into consideration for scheduling. Aperiodic data flows

are considered to have a minimum inter-release period. The next step is to compute the response time

for each data flow. The data flow system is feasible if, for each data flow, the response time is less

than its transmission deadline (r < D). In this work we consider that transmission deadline for a data

flow is equal to its inter-release period (T = D). By obtaining the appropriate values for the response

time of all data flows, in the worst case, the value for the required network bandwidth can be derived.

The bandwidth value obtained is used to make resource reservations. In this way, it can be guaranteed

that actual response time for each data flow will be less or equal than the computed response times.

It is considered that the worst case response time for a data flow happens when a packet has to wait

for the transmission of packets that belong to all data flows with higher priority and for one packet

Real-time communication over general purpose networks | 52

with lower priority, but with the largest transmission time. It is also assumed that all data flows start at

the same time.

In order to compute the data flow response time (ri) the following variables are taken into

consideration:

• The delay caused by the devices found on the network path (tdelay)

• The transmission time of packets that belong to the data flow (Ci)

• The data flow’s inter-release period (Ti)

• The data flow’s priority (Pi)

• The transmission time of packets that belong to data flows with higher priority

• Maximum transmission time of packets that belong to data flows with lower priority

• The number of hops from source to destination (nHops)

Response time for each data flow is computed using the following equations:

∑
>

++=

ij PP

jidelayi
CCnHopstr)(*

0
 (2)

})|{(*
1

ikkj

PP j

i

t

i
idelay

t

i PPCMaxC
T

Cr
CnHopstr

ij

<+∗











 −
++= ∑

>

+

 The response time is obtained through iteration, until the computed response time is

approximately equal to the response time computed in the previous step (�	�
� − 	�

���� < �, � → 0). Two

important conditions that have to be imposed:

• All response times have to be less than the corresponding deadlines (ri<Di)

• Network utilization has to be less than 100% (∑ !"
#"
< 1)

The bandwidth value is at first equal to B0=∑
!"
%"

 and it is gradually increased from with 10% while

the response time and utilization are computed, until these requirements are met. The

bandwidth value used for the reservation (Br) is the minimum bandwidth value for which the

requirements are met.

In the first iteration, the response time of a data flow is computed by summing up the transmission

time, the delay caused by the network devices such as switches and routers, and the transmission time

of all other data flows that have higher priority. In subsequent iterations, the response time equation

has two new components: the maximum transmission time of packets that have lower priority and the

sum of transmission time of all packets of higher priority that are likely to be released while the packet

is being transmitted through the network. The number of packets with higher priority that influence the

response time of the data flow equals the number of packets that are released in the response time of a

packet from the data flow. To decrease the number of iterations, the time interval when the actual

packet is being transmitted (Ci) is subtracted from the response time, as in that time interval packets

from other data flows cannot be transmitted.

53 | Real-time communication over general purpose networks

The transmission time for packets that are included in a data flow is computed as follows:

Bandwidth

lengthPacket
C

_
= (3)

The delay caused by network devices can be approximated by using a mean round-trip time of a

probe packet sent on the same route on which the bandwidth reservation will be made.

As the response time is computed recursively, the computation time could be a problem. In our

case, because bandwidth requirements are assessed and reservations are made before starting the

control system, a larger computation time is not an issue.

The main disadvantage of the response time analysis method is that sometimes it does not converge

to a solution. In this case, we have to increase ε and give an approximate solution.

6. An experimental reservation-based control system

To validate the system architecture, the data flow model and the method of estimating network

bandwidth described earlier, a prototype of a distributed control system, was developed. The prototype

includes the communication middleware, the industrial application and the industrial device simulator

(for the provision of industrial process data).

The communication middleware runs on a network infrastructure based on Internet protocol suite,

with IPv6 as a network protocol. The adopted solution is to use the IPv6 Traffic Class and Flow Label

fields. The Traffic Class field enables a source to identify desired traffic-handling characteristics of

each packet relative to other packet from the same source. The intent is to support various forms of

services. In case of IPv6 standard [83], a flow is defined as a sequence of packets sent from a

particular source to a particular destination for which the source desires some special handling by the

intervening routers. From the source’s point of view, a flow is just a sequence of packets that are

generated from a single application instance at that source and have the same transfer service

requirements. From the router’s point of view, a flow is a sequence of packets that share attributes that

affect how these packets are handled by the router. In principle, all of a user’s requirements for a

particular flow could be defined in an extension header and included in each packet, but for our

implementation, we leave the concept of flow open to include a wide variety of requirements and

adopt the flow label, in which the flow requirements are defined before traffic generation and a unique

flow label is assigned to the flow.

The RSVP module is designed as a state machine. The objects defined in this module represent:

• RSVP sessions

• State information extracted from PATH message and information from RESV message

• Reservations installed in an outgoing interface

• Information about a previous hop in a session, i.e. the last reservation that has been sent to

this hop

Real-time communication over general purpose networks | 54

For each RSVP session, all relevant information is bundled and the destination address and port is

saved. From each PATH message all relevant information is held, i.e., the sender’s address and traffic

specification, routing information. For each reservation requested from a next hop, reservation

specification is held, i.e., the FlowSpec, which determines the amount of resources that are requested,

depending on the service class.

The industrial control application uses all the facilities offered by the communication middleware

and implements the following functionalities:

• Remote process control and visualization

• Input and output data flow definitions for devices participating in the industrial process

• Control data flow through commands sent to devices connected to processes

• Specification and negotiation of resources needed for communication with other devices

• Receive and process data flows from industrial devices

• Register data flow delay time

The operator can visually create the diagram of the industrial process, by dragging the symbols of

different types of devices on the control board. Next, the operator has to specify input data flows (data

received from devices connected to the process) and output data flows (commands sent to devices) in

order to establish communication parameters.

After the definition of data flows, the negotiation process for resources starts. Input and output data

flows are analyzed and, as a result, bandwidth needed to satisfy real-time communication constraints is

computed. The application sends a query asking for the available bandwidth and round-trip time to

destination process. The response time can be guaranteed only for the data flows having the period

less than the delay caused by the network devices (e.g. switches, routers). If the available bandwidth is

insufficient, data flows having the smallest period are deleted, data is recomputed and application

begins the resource reservation process. After the negotiation and reservation process, the application

can start to send and receive data flows.

Figure 4. Data flow specification in XML

<Flow>

 <ID> data_flow_ID </ID>

 <SrcIP> source_IP </SrcIP>

 <DestIP> destination_IP </DestIP>

 <Per> data_flow_period </Per>

 <Pri> data_flow_priority </Pri>

 <Name> data_flow_symbolic_name </Name>

 <Content>

XML_content_specification

 </Content>

 </Flow>

55 | Real-time communication over general purpose networks

The industrial device simulator sends periodical data flows (requested by the control application)

containing process values randomly generated from a predetermined range and receives periodical

data flows representing commands from the control application for devices connected to the process.

Devices cannot negotiate resource reservations for generated data flows nor to specify quality of

service parameters. The control application connected to these devices is responsible for the

negotiation and bandwidth reservation.

An important issue encountered during the implementation of both the industrial control application

and the device simulator is the specification of data flows. In order to assure the device and application

interoperability, data flow parameters and content are specified using XML. In this way, messages

between applications and devices are interpreted easier and the access to process and control data is

uniform. Fig. 4 shows an example of a periodic data flow specification in XML.

7. Experimental evaluation

Two sets of experiments are conducted. First, a simulator is used to validate the proposed method

for network bandwidth estimation. Second, tests are performed using the implemented control system

prototype, which was deployed on the experimental infrastructure.

7.1. Estimation of network bandwidth

For the first set of experiments, we measure the response time, jitter and packet loss for multiple

periodic real-time data flows, which are released in a simulated IP network. The transport protocol is

UDP, because it is more appropriate to real-time traffic. The main objective of these experiments is to

check if the computed network bandwidth value guarantees the required response time and low jitter

for all data flows.

The simulation study was performed on Network Simulator (NS-2) [84], version 2.33. The

simulation results were evaluated for different scenarios using the topology depicted in Fig. 5.

Figure 5. The topology used for simulations

The topology consists of 5 nodes. These nodes are connected with full-duplex bidirectional links.

All links have the same available bandwidth and propagation delay. It is assumed that per link delay is

negligible. Constant-Bit-Rate (CBR) agents were attached to the source node (S) and used to generate

periodic, fixed size packet traffic in the network. User Datagram Protocol (UDP) was used as transport

layer protocol to minimize the overhead of establishing a connection. Five periodic data flows were

defined, having the same source (S) and destination (D). The parameter settings are summarized in

Table 1.

Table 1. Parameter settings for periodic real-time data flows

Flow Period (ms) Packet size (B)

F1 10 300

Real-time communication over general purpose networks | 56

F2 120 300

F3 50 300

F4 75 300

F5 520 300

Two scenarios were simulated. Measurements were made to compare data flows’ response times

with the corresponding deadlines and to observe to what extent the jitter affects the response time of

packets.

In the first scenario the network bandwidth was set to the minimum value which can accommodate

all defined data flows (379 Kbps). Results analysis revealed that the average measured response times

were acceptable in the case of data flows which had larger periods, but for the other data flows

response times were very often greater than the corresponding deadlines. Jitter measurements showed

that even if the average value was quite small, the maximum value was very large, approximately

equal to the measured minimum response time. For this scenario no packets were lost.

For the second scenario, equations (2) were used to derive the maximum bandwidth needed by the

set of data flows in order to satisfy the deadlines. The computed maximum bandwidth was 2106 Kbps.

As expected, a considerable difference can be observed between the measured maximum response

time and the maximum computed response time. This difference is due to the fact that the worst-case

scenario does not occur during simulation time, thus the resulting network utilization is low. All the

deadlines were satisfied and the average delay jitter is very small for the flow with the largest period.

There was no packet loss.

For both scenarios, measured values can be found in Tables 2-5 and the comparison between data

flows in terms of response time and jitter are shown in Fig. 6-9.

Table 2. Response times (1
st
 scenario)

Flow
Response time (ms) - measured

Maximum Average Minimum

F1 50.66 28.87 25.33

F2 50.66 33.01 25.33

F3 50.66 32.98 25.33

F4 50.66 30.48 25.33

F5 50.66 33.03 25.33

Table 3. Response times jitter (1st scenario)

Flow
Response time jitter (ms) - measured

Maximum Average Minimum

F1 25.33 3.22 0

F2 18.68 3.58 0

F3 19 4.33 0

F4 24 4.41 0

57 | Real-time communication over general purpose networks

F5 25.33 3.59 0

Table 4. Response times (2nd scenario)

Flow

Response time (ms)

Measured Computed

Maximum Average Minimum

F1 6.078 3.103 3.039 9.12

F2 6.078 3.839 3.039 68.4

F3 6.078 3.870 3.039 27.36

F4 6.078 3.447 3.039 41.04

F5 6.078 3.724 3.039 86.64

Table 5. Response times jitter (2

nd
scenario)

Flow
Response time jitter (ms) - measured

Maximum Average Minimum

F1 3.039 0.114 0

F2 2.279 0.547 0

F3 2.279 0.484 0

F4 3.039 0.815 0

F5 3.039 0.002 0

Figure 6. Response times (1
st
 scenario)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

F1 F2 F3 F4 F5

Data flows

R
e
s
p

o
n

s
e
 t

im
e
 (

m
s
)

Minimum

Average

Maximum

Real-time communication over general purpose networks | 58

Figure 7. Response times jitter (1
st

 scenario)

Figure 8. Response times (2
nd

 scenario)

Figure 9. Response times jitter (2

nd
 scenario)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

F1 F2 F3 F4 F5

Data flows

R
e
s
p

o
n

s
e
 t

im
e
 j

it
te

r
(m

s
)

Average

Maximum

0

1

2

3

4

5

6

7

F1 F2 F3 F4 F5

Data flows

R
e
s

p
o

n
s
e
 t

im
e
 (

m
s
)

Minimum

Maximum

Average

3.039

2.279 2.279

3.039 3.039

0.114

0.547 0.484

0.815

0.002
0

0.5

1

1.5

2

2.5

3

3.5

F1 F2 F3 F4 F5

Data flows

R
e
s
p

o
n

s
e
 t

im
e
 j

it
te

r
(m

s
)

Maximum

Average

59 | Real-time communication over general purpose networks

7.2. Tests performed using the experimental control system

To test the distributed control system prototype, two PCs connected in a local network were

configured as traffic source and destination. A static route consisting of another two PCs which played

the role of routers was established between these nodes. The network infrastructure was based on IPv6

protocol. The communication middleware, the control application and the device simulators were

deployed on the test infrastructure.

A process schema containing monitoring elements connected to two data flows was specified in the

control application. The first data flow (Flow 1) has a 2 seconds period and 270 byte packet size. The

second data flow (Flow 2) has a 0.5 second period and the same packet size. After starting the remote

control application and the device simulators, response time for all packets was measured.

Measurements were made in two cases. In the first case, the communication middleware was used

to make network bandwidth reservations before starting the traffic. In the second case, no reservations

were made for the real-time traffic. For both data flows, response time measured during tests was less

than the maximum allowed response time, in the case of reservations, presented in Table 6.

Table 6. Measured response time for experimental data flows with reservations

 Flow 1 Flow 2 Flow 1 Flow 2

Computed bandwidth 9 kbps

Available bandwidth 100 kbps 64 Mbps

Measured tdelay 1.5 ms 0.65 ms

Computed maximum response time 0.745 s 0.497 s 0.744 s 0.496 s

Measured response time 0.685 s 0.372 s 0.677 s 0.367 s

The measurements showed that the proposed system architecture, traffic model and method of data

flow scheduling are able to satisfy the control system's requirements and guarantee a maximum

delivery time. They also showed that the analytical evaluation of the response time is an upper limit to

the measured time parameters.

If no reservations were made, for both data flows, measured response time fluctuated between a

minimum of 0.367 seconds and a maximum of 0.617 seconds, as can be observed in Table 7. Packets

of Flow 1 have the same priority on the network as packets of Flow 2, even though Flow 2 requires a

better response time. Real-time requirements were not satisfied, because for Flow 2 the maximum

measured response time was greater than the computed maximum response time.

Table 7. Measured response time for experimental data flows without reservations

 Flow 1 Flow2

Computed bandwidth 9 kbps

Available bandwidth 100 Mbps

Measured tdelay 0.4 ms 0.4 ms

Computed maximum response time 0.744 s 0.496 s

Real-time communication over general purpose networks | 60

Maximum measured response time 0.617 s

0.617 s

Minimum measured response time 0.367 s 0.367 s

Fig. 10 and Fig. 11 show charts that compare the computed response time for the two data flows

with the measured response time, on both test scenarios.

(a) Available bandwidth = 100kbps

(b) Available bandwidth = 64Mbps

Figure 10. Response time measurements using reservations

0.745

0.497

0.685

0.372

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flow 1 Flow 2

Data flows

R
e
s
p

o
n

s
e
 t

im
e
 (

s
)

Computed

Measured maximum

0.744

0.496

0.677

0.367

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flow 1 Flow 2

Data flows

R
e
s
p

o
n

s
e
 t

im
e
 (

s
)

Computed

Measured maximum

61 | Real-time communication over general purpose networks

Figure 11. Response time measurements without using reservations

8. Conclusions

In this chapter, we present a new approach in solving the control of network delivery time and data

delivery efficiency in distributed control systems, on IP infrastructures. The proposed data flow traffic

model provides the basis for communication scheduling, and a reservation-based communication

system architecture. The provided solution uses Integrated Services/RSVP and the facilities of IPv6

protocol as support for real-time communication. The proposed data flow model is the support for the

rate-monotonic response-time analysis method used for computing the required network bandwidth.

The experimental results show that the implemented prototype satisfies the real-time constraints.

This proves the validity of the proposed communication model and the method for computing the

required network bandwidth. Moreover, the analytical evaluation of response time demonstrated to be

an upper limit for measured delivery time.

The main contributions of this chapter are the following:

1. The communication model, which is based on control data flow analysis and communication

scheduling that uses a rate-monotonic algorithm. The communication model solves efficient

delivery for short control messages over IP networks and facilitates a-priori estimation of

required network bandwidth for the reservation mechanism.

2. The method for network bandwidth estimation that uses rate-monotonic response-time analysis

and that is based on the data flow communication model.

3. The reservation-based communication system architecture. The solution uses Integrated

Services/RSVP and the facilities of IPv6 protocol as support for real-time communication. The

implemented middleware translates real-time requirements to existing network services and is

used to validate both the communication model and the system architecture.

4. The implementation of the experimental reservation-based control system.

5. The experimental evaluation of the proposed network bandwidth estimation method, through

simulation.

6. The experimental evaluation of the proposed reservation-based communication system

architecture using the experimental reservation-based control system and middleware.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flow 1 Flow 2

Data Flows

R
e
s
p

o
n

s
e
 t

im
e
 (

s
)

Computed

Maximum measured

Minimum measured

Real-time communication over general purpose networks | 62

Published papers:

1. Anca Hangan, Ramona Marfievici, Gheorghe Sebestyen - "Real-time Data Flow Scheduling

for Distributed Control", International Journal On Advances in Networks and Services, ISSN

1942-2644, vol. 1, no. 1, year 2008, p.77-90

2. Anca Hangan, Ramona Marfievici, Gheorghe Sebestyen - "Solutions for Real-Time

Communication over Best-Effort Networks", RoEduNet International Conference 2008, pp.44,

ISBN: 978-973-662-393-6 [IEEE][ISI Proceedings]

3. Ramona Marfievici, Anca Hangan, Gheorghe Sebestyen - "Periodic real-time data flows over

general purpose networks", Intelligent Computer Communication and Processing, 2008. ICCP

2008, pp.207-213, ISBN: 978-1-4244-2673-7[IEEE] [SCOPUS][ISI proceedings]

4. Gheorghe Sebestyen, Anca Hangan - "Transaction-based model for real-time distributed

control systems", Automation, Quality and Testing, Robotics, 2008. AQTR 2008, pp.165-170,

ISBN: 978-1-4244-2576-1[IEEE] [SCOPUS]

5. Anca Hangan, Ramona Marfievici, Gheorghe Sebestyen – “Reservation-Based Data Flow

Scheduling in Distributed Control Applications” – The Third International Conference on

Networking and Services, 19-25 June 2007, Athens, Greece, in Proceedings of the Third

International Conference on Networking and Services, IEEE Computer Society Washington,

DC, USA, 2007, ISBN: 0-7695-2858-9, p. 10-15 – Best Paper Award

[IEEE][ACM][DBLP][SCOPUS]

Citations:

1. M. I. Andreica, E.-D. Tirsa, N. Tapus, F. Pop, and C.M. Dobre, Towards a Centralized

Scheduling Framework for Communication Flows in Distributed Systems, Proc. of the

17th Intl. Conf. on Control Syst. and Comp. Science, Vol. 1, 2009, pp. 441-448

2. M.I. Andreica, N. Tapus, "Decision optimization techniques for efficient delivery of

multimedia streams," Signals, Circuits and Systems, 2009. ISSCS 2009. International

Symposium on , vol., no., pp.1,4, 9-10 July 2009

6. Ramona Marfievici, Gheorghe Sebestyen, Anca Pop-Bidian – “Real-time communications

for industrial control applications on IPv6 networks” – Acta Universitatis Cibiniensis Journal,

Universitatea Lucian Blaga din Sibiu, vol.LV, p.26-29, Sibiu, 2007, ISSN1583-7149

7. Ramona Marfievici, Gheorghe Sebestyen, Anca Pop-Bidian – “QoS and IPv6 Infrastructure

for Industrial Control Applications” – 5th RoEduNet IEEE International Conference, Sibiu,

Romania, June 2006, in “Proceedings of the 5th RoEduNet IEEE International Conference”,

Ed. Univ. Lucian Blaga, ISBN (10)973-739-277-9; (13)978-973-739-277-0, p. 166-169

[IEEE]

8. Ramona Marfievici, Gheorghe Sebestyen, Anca Pop-Bidian – “Industrial Control

Communication Framework based on an IPv6 Infrastructure” – International Multi-

Conference on Computing in the Global Information Technology – Challenges for the Next

Generation of IT&C, Bucuresti, Romania, 1-3 August 2006, in IEEE Computer Society Order

Number E2629, ISBN 0-7695-2629-2, Editors: Petre Dini, Chip Popoviciu, Cosmin Dini,

Gunter van de Velde, Eugen Borcoci [IEEE] [SCOPUS]

