
63 | Multiprocessor real-time scheduling

Chapter 4. Multiprocessor real-time scheduling

1. Introduction

A scheduling strategy imposes a set of rules that are used to establish the execution order of all

tasks that are ready for execution. One of the main tasks of a real-time system’s designer is to

configure the application on a given platform and find a proper scheduling strategy so that all tasks

satisfy their time requirements (e.g. deadlines). In the case of real-time uniprocessor systems, several

widely studied optimal algorithms find a feasible schedule for a given setup, such as RM, EDF [27]

and LSF [28].

On the other hand, for multiprocessor real-time systems the search space for a feasible scheduling

solution is multi-dimensional. There are far more restrictions and therefore finding a feasible solution

is much more complex [7]. Moreover, real world applications, are usually of high complexity, and

can’t always be modeled as independent task sets. In the case of distributed real-time systems, for

example, applications consist of tasks with resource usage constraints and with data dependencies

among them. As a consequence, there are many more parameters which have to be considered before

making a scheduling decision.

Most multiprocessor scheduling algorithms offer real-time guarantees only at very low resource

utilization rates [25] compared to their uniprocessor equivalents, or they are very difficult to

implement in real-world cases [23]. However, as multicore and distributed systems are becoming the

typical computing platforms for a wide range of real-time applications, recent research efforts are

mostly directed towards finding pragmatic solutions for multiprocessor systems.

In the case of multiprocessor platforms, in order to reduce the complexity of the real-time

scheduling problem, one often used approach is to divide it into a number of sub-problems, such as:

• Allocate tasks to available execution nodes (e.g. processors, networks).

• Set priorities/deadlines for tasks contained in distributed transactions.

• Apply local scheduling techniques for tasks’ execution. If tasks are not allowed to migrate

(partitioned scheduling), these local scheduling techniques are uniprocessor.

In this chapter, we present two scheduling techniques for real-time transactions on multiprocessors.

The first scheduling technique is best suited for distributed embedded systems that have limited

processing and communication resources. In this case, it is important to have the lowest scheduling

overhead possible, so that applications that run on the platform will not be delayed.

The second scheduling technique is best suited for larger systems for which a traditional scheduler

will fail at lower system loads. Our technique combines a genetic algorithm with simulation-based

evaluation of candidate solutions to find feasible system setups. When using the term “system setup”,

we refer to a task to processor mapping and an intermediate task deadline assignment for which the

EDF scheduling algorithm will produce a feasible schedule.

Multiprocessor real-time scheduling | 64

We implement tools that based on these scheduling techniques and starting from abstract real-time

transactions and platform representations are able to produce static schedules and feasible system

setups. The tools allow us to validate our research and to make the performance evaluation of the

proposed techniques.

2. Related work

Real-time scheduling on multiprocessor systems, as we already noted in Chapter 2, includes two

important sub-problems:

• The allocation or mapping of tasks to processors

• The assignment of task priorities, which consequently establishes the order of execution

In transactional systems, that consider precedence restrictions between tasks, an extra problem is to

establish priorities not only for the end of a transaction but also for the tasks contained in it. In systems

that use EDF schedulers, the priority is given by the task’s deadline. Usually, the intermediate task

deadlines are not determined by the nature of the real-time application, but they may have an

important impact on the schedulability of the system. Intermediate task deadlines are necessary to the

local scheduling of tasks (on each individual processor).

An important number of research works investigate the two scheduling sub-problems separately, or

as a composite solution.

Task allocation in distributed real-time systems is known to be an NP-complete problem [85], so an

algorithm that generates an optimal solution in polynomial time, does not exist. To generate sub-

optimal solutions for task allocation in polynomial time, one can use heuristics such as First Fit, Best

Fit, Worst Fit or Next Fit [85]. If the system workload is heavy, a feasible solution may not be found

even if such a solution exists.

Solutions that address only the tasks order of execution consider that task allocation to processors is

already resolved. The most complex issues appear in the case of distributed applications, which are

modeled as transactions or sequences of tasks with end-to-end deadlines. In this situation, intermediate

tasks do not have predefined deadlines, so the only imposed restriction is that the last task of the

sequence finishes its execution before the end-to-end deadline. To obtain a schedule, researchers

proposed different algorithms [86] and heuristics [87][88] for assigning deadlines to intermediate

tasks. In [86] the authors investigate a deadline assignment that reduces resource utilization. They

consider a component-based approach, analyzing each transaction individually, and use separate

windows of execution for the tasks in a transaction. In [87] and [88] the authors propose two similar

heuristics for intermediate deadline assignment, which distribute the end-to-end deadline evenly or

proportionally between all tasks. In [51] the authors use an iterative optimization algorithm called

HOPA to assign deadlines to the tasks inside a transaction set. The authors in [90] use a genetic

algorithm to optimize the deadlines assigned by HOPA.

In the case of composite solutions, which solve both task allocation and priority assignment,

optimization techniques such as simulated annealing [89] or genetic algorithms [91][92][93][94][95]

65 | Multiprocessor real-time scheduling

can be used. Other techniques use constraint programming [96] or combine search heuristics with

Response Time Analysis [97].

It is rather difficult to make a comparison between the existing scheduling techniques, as they use

different system models, schedulability analysis and different metrics for performance evaluation. For

example, [85] evaluates task allocation heuristics using a periodic task model, with independent tasks,

under EDF and Fixed Task Priority (FTP) scheduling. In [89] and in [96] the authors use periodic task

models with inter-task communication and FTP scheduling, while in [91], [92] and [97] the authors

use linear transaction models with end-to-end deadlines under FTP scheduling. In [93][94][95] the

authors consider transactions described by directed acyclic graphs that contain non-preemptive tasks

and communication costs, under FTP scheduling. For performance evaluation, authors use metrics

such as:

• Success rate: ratio between the number of data sets for which a feasible scheduling

solution was found, and the total number of data sets. [90][91]

• Scheduling index: the worst distance between the transaction’s worst case response time

and its deadline.[51]

• Execution time of the algorithm.[51][90][92]

Another important aspect for performance evaluation is the test data set. It has to be general enough

to allow a relevant interpretation of the experimental results. However, there are papers [90][92] that

use test data sets that, in our opinion, are not general enough.

When doing a comparison between two algorithms, it is a good idea to run the same test data sets

with both algorithms. This approach is very hard to achieve or even impossible if researchers do not

make public their tools and test data sets. At this time, very few research groups make available their

tools and data sets.

3. Problem statement

The objective of our research is to schedule a set of real-time transactions on multiprocessor

(distributed) platforms and to guarantee that all their constraints are respected. Our work addresses two

important aspects of multiprocessor scheduling: task allocation to processors and the order for task

execution on each processor. We intend to give a composite solution to these problems.

We consider the following types of constraints for the explored real-time systems:

• Precedence: the release and execution of a task may be conditioned by the execution of

other tasks or reception of some messages, and thus, precedence relations between tasks

are created. We represent applications as transactions.

• Real-time: Transactions have to finish their execution before their deadlines. If any

deadline misses are detected, the application is considered not schedulable.

• Resource: each task can be deployed on a sub-set of the available platform nodes, those

that provide all requested capabilities.

We propose two solutions to this problem:

Multiprocessor real-time scheduling | 66

• An algorithm that builds static cyclic schedules for each processor or network segment

that belongs to the platform.

• A genetic algorithm that finds feasible system setups. Tasks are allocated to processors

and are assigned deadlines such that, under local EDF scheduling, all transactions will

meet their deadlines.

The detailed solutions are presented as follows.

4. The cyclic executive-based scheduling technique

We propose a scheduling technique that is best suited for multiprocessor (distributed) embedded

systems that have limited processing and communication resources. In this case, the processing

overhead introduced by the scheduler has to be as low as possible such that the applications will not be

delayed. The lowest scheduling overhead is obtained when using pre-computed schedules. Then, the

scheduler does not need to make any scheduling decisions at runtime. It only chooses the job indicated

by the schedule. The cyclic executive scheduling approach uses these pre-computed schedules.

The cyclic executive scheduling approach was chosen after weighing both its advantages and

disadvantages [98].

The advantages are:

• The execution schedule is predetermined and it guarantees that all deadlines are met.

Future system execution is determined based on the schedule computed for a cycle.

• There are fewer context switches.

• Overheads introduced by context switches are low.

• The processor level scheduler is very simple. It only has to dispatch jobs according to the

predefined schedule. There is no need for complex scheduling policies that can introduce

large computational overheads.

The disadvantages are:

• The cyclic executive is best suited for harmonic task systems.

• The maximum allowed worst case execution time is constrained by the value of the minor

cycle.

• Changes in the system can’t be made at runtime.

• Job overruns can’t be handled.

Some of the mentioned disadvantages can however be solved through system design decisions, such

as enforcing harmonic task periods or splitting large tasks into smaller ones.

The design of the algorithm that generates cyclic schedules for real-time transactions on

multiprocessors is presented as follows.

4.1. System model

 To be able to build the schedule, we have to formally describe the workload and the underlying

platform. In the next subsections, we present the workload and the platform models.

67 | Multiprocessor real-time scheduling

4.1.1. The Workload Model

We represent application as preemptive sets of tasks (T). Each task (t∈T) is characterized by its

worst case execution time (e) and by a set of execution constraints. Task execution is constrained by

resource and data availability. Each task can only be executed on a subset of the available processors

and can start its execution only if all its data dependencies have been solved. Tasks can produce data,

which is considered “available” only at the end of their execution. Data is then ready to be used by

other tasks, which, at their turn, can produce data. Data dependencies create precedence relations

between tasks. Due to these precedence relations, tasks form directed acyclic graphs (DAGs) called

transactions.

Real-time transactions have the following parameters:

• Task graph (G) – a DAG which describes the execution flow dictated by data

dependencies between tasks

• Period (p) – the repetition period of the transaction

• Phase (φ) – the release time of the first instance of the transaction

• Deadline (D) – the relative deadline of the transaction; we assume that transactions have

hard deadlines (deadline misses are not accepted)

The task graph consists of a set of nodes (N). A node ni∈N contains a task (ti) and its “children”, a

set of tasks which use data produced by ti. Between two nodes ni and nj there is a directed edge (ni , nj)

only if tj ∈children(ti). In the context of a task graph G, we will use notations children(ti) and

parents(ti) to refer to the set of tasks which use the data produced by ti and the set of tasks that produce

the data which is used by ti, respectively.

At the start of each period, an instance of the transaction is ready to be executed. A transaction

instance contains task instances (jobs). The execution of a transaction starts with the execution of jobs

that don’t have data dependencies (jobs don’t have to wait for data to be available). Gradually, all jobs

in the transaction instance are executed, as soon as their data dependencies are resolved.

Task description does not contain any specific real-time parameters such as phase (φ), period or

deadline. These parameters are present in the transaction description. These real-time parameters are

inherited by the tasks in the task graph, from the transaction. The phase of the first task in the

transaction is equal to the transaction phase. The deadline of the last task in the transaction is equal to

the transaction deadline. All tasks that execute after the first task and before the last task have variable

phases and deadlines. Their phases are computed as a function of their “parents” phase and execution

time:

))(),()(max()(ikkki tparentsttett ∈+= φφ (1)

A real-time workload model W=(T, TR) contains a set of tasks and a set of transactions. Fig. 1

shows an example of such a workload model. T is a set of five tasks and TR a set of three transactions.

For each task, the worst case execution time and the set of processors (on which the execution is

possible) are known. Transactions describe the flow of execution created by precedence relations

Multiprocessor real-time scheduling | 68

between tasks. For example, in transaction tr3, the jobs of tasks t2 and t3 can begin their execution only

if the job of task t4 has finished its execution. In the same transaction, the job of t5 will begin its

execution if the jobs of t2 and t3 have finished.

Figure 1. A workload model with five tasks and three transactions that run on 4 processors.

4.1.2. The Platform Model

Our real-time applications execute on a distributed platform, which consists of multiple nodes that

communicate through a network. Each node has a single processor and a buffer, where data generated

by tasks is memorized until use. The execution rate of all tasks is the same on all processors. Nodes

have different capabilities (e.g. not all nodes can measure the temperature of the environment), and

therefore, a task can execute only on the platform nodes which provide all requested capabilities. As

previously presented, each task has an associated set of processors that are able to execute it.

As communication scheduling is out of the scope of this research, we assume that the

communication network insures real-time transmission of data packets between tasks.

Data transmission time is included in the execution time of the task that produced the data. Even if

more than one tasks use the produced data, it is considered that the transmission is done only once.

Data reception time is included in the execution time of the task that uses the data. Data transmission

and data reception times are the same if the transmitter and receiver tasks execute on the same node, or

on different nodes. Data transmission is asynchronous. This means that a task will finish its execution

as soon as data transmission is finished. Data is then buffered until the receiver tasks are released. The

transmitter task will not block until the release of the receivers.

Fig. 2 shows an example of communication between tasks. Tasks are placed on time axes. Tasks t1

and t2 execute on the same processor, t3 executes on another processor. Task t1 produces data that is

later used by t2 and t3. The gray part of task execution depicts the portion of task execution time that

is used for data transmission or data reception.

P={P1, P2, P3, P4} – available processors

T = {t1, t2, t3, t4, t5} G1:

 t1 = (e1, {P1, P2}) G2:

 t2 = (e2, {P1, P2, P3})

 t3 = (e3, {P4}) G3:

 t4 = (e4, {P1, P2, P3})

 t5 = (e5, {P2, P4})

t4

t1

t1 t2

t3

t2

t3

t5

t1

t1

t4

69 | Multiprocessor real-time scheduling

Figure 2. Communication between tasks.

The processing resources of the platform are modeled as a homogeneous multiprocessor P={P1, P2,

… , Pm} composed of m processors. Similar to the resource partition model presented in [16], we

chose to model each processor as),(iiiP Π∆= , where i∆ represents the processor available time

during the period iΠ . i∆ is expressed as a union of non-overlapping time intervals:

 U
k

kki ba],[=∆ , where 1+<< kkk aba and Π≤kb (2)

The semantic of this representation is that processor Pi has the same availability in any

])1(,*[ii kk Π+Π time interval. This representation will help us compute a periodic schedule for each

processor.

4.2. Building the cyclic schedule

Under the assumptions of the previously described workload and platform models, our scheduling

problem reduces to multiprocessor scheduling. To solve the transaction scheduling problem we chose

to adapt the uniprocessor cyclic executive model described in [99] to multiprocessors and transactions.

The cyclic executive is a simple scheduler that uses a cyclic schedule that establishes the job

execution order. The cyclic schedule is computed offline, before system start. This schedule covers job

execution over a time period. At the start of each new period, the cyclic schedule is restarted.

The cyclic executive model is best suited to schedule harmonic task systems, because in other cases

the length of the schedule can be too large to be of any use in real-world systems. A periodic task

system is harmonic if all task periods are multiples of the smallest task period.

In our case, tasks inherit the periodicity of transactions. In consequence, many tasks will have the

same period. So, the condition to have a harmonic transaction set is less restrictive on application

system design.

The choice of the cyclic executive was made because:

• The static cyclic schedule used by the executive guarantees that all transaction deadlines

are met. It does not need further analysis to demonstrate its feasibility.

• By computing the schedule for a cycle, the entire future system execution is predicted.

P1

P2

Time

t2

t3

Time

t1

Multiprocessor real-time scheduling | 70

• The method does not involve complex Response Time Analysis or other schedulability

analysis techniques.

• The computational overhead introduced by the local processor scheduler is minimized. No

additional scheduling decisions have to be made at runtime.

• The method reduces the number of context switches.

Other scheduling-related assumptions are:

• Jobs can be preempted.

• Jobs are not allowed to migrate, but different jobs of the same task can be started on

different processors.

Our objective is to allocate jobs to processors, such as job constraints are respected (deadline,

resource constraints and data dependencies). For each processor, a cyclic schedule will gradually be

built, as jobs are allocated processor time.

We define a cyclic schedule as a pair),(Π= σS , where Π is the schedule repetition period. σ is

an ordered sequence of executables),,(iiki erj=ε , where jk is the executed job, ri is the start time of

the executable and ei is its execution time.

∀ iε , jε inσ , if iε < jε , then iij err +≥ (3)

Jobs can be preempted, so the execution of a job can be composed of more than one executables.

Each executable has a repetition period equal to the schedule repetition period.

To obtain the set of cyclic schedules for the multiprocessor, we have to compute a cyclic schedule

for each processor),(iiiP Π∆= . We assume that processors have equal periods. Each schedule’s

repetition period has to be equal to the processor period and equal to the least common multiple

(LCM) of the transaction set periods:

})|)(({ TRtrtrpLCM kk ∈=Π (4)

Each executable in the schedule occupies processor time, each period. A new executable can be

added to the cyclic schedule only if the requested time interval is available on the processor.

To create the cyclic schedules:

• First, the list of jobs that will have to be executed during Π is computed.

• Then, jobs are allocated while gradually building intermediate cyclic schedules for each

processor.

• Each taken allocation decision is final.

71 | Multiprocessor real-time scheduling

4.2.1. The List of Jobs

For each transaction tr∈TR, there will be
)(trp

Π
 transaction instances. Each transaction instance

contains jobs that have to be executed according to its task graph. For each job (j) the following

information is needed:

• Release time (r) – time when the job starts its execution. The release time of a job is

computed with equation (5).

)()1()(trDktr ∗−+= φ (5)

• Deadline (D) – equal to transaction instance deadline.

)(trDkD ∗= (6)

• Completion time (c) - time when the job completes its execution.

• Remaining transaction execution time (E) – transaction execution time starting with this

job, to transaction end.

• Priority (Pr) – The job with the earliest release time is scheduled first. If there are jobs

with the same release time, the one that is closest to deadline is first.

Π

+−
+=

)(
Pr

ErD
r (7)

• Scheduled – “true” if the job was scheduled.

• Ready – “true” if the job is ready to be scheduled. A job is ready to be scheduled only if

its “parents” have already been scheduled.

• The transaction to which it belongs (tr).

• The task graph node that generated it – needed to compute data dependencies (n).

• The task that generated it (t).

• The instance sequence number (k, 1 ≤ k ≤
)(trp

Π
)

4.2.2. Job Allocation

To allocate jobs to processors, the following steps are repeated until all jobs in the list of jobs are

scheduled:

1. The first step is to choose the job that has the lowest priority value, from the job list. Only

jobs which are “ready” (do not have any unresolved data dependencies) can be selected.

2. The second step is to select a processor for the job. From the subset of processors on which

the job can execute (obtained from the corresponding task), the processor on which the job

would complete earliest is chosen. If there are two processors that can provide the same

completion tine, the one least loaded is selected.

3. In the third step, the job is locally scheduled on the selected processor.

4. At the end, job’s “children” are marked as “ready”, and the release time in recomputed for

all unscheduled jobs belonging to the transaction instance. The release times have to be

recomputed, because:

Multiprocessor real-time scheduling | 72

o It is not guaranteed that each job receives a time interval that starts exactly at its

estimated release time.

o Jobs can be split over many execution intervals. Job’s children can only have

release times greater or equal to its completion time.

After re-computing the release times, there may be cases in which unscheduled jobs would certainly

miss their deadlines, and then, the transaction set would be considered not schedulable.

The pseudocode for the job allocation strategy is listed below.

Algorithm 1: Job Allocation Strategy

Input: J - the list of jobs; P – the list of processors

Output: ∑ – the set of cyclic schedules

Begin

while(NotScheduled(J))

{

 j = SelectJobToSchedule(J);

 p = SelectProcessor(j,P);

 if (Processor selection failed)

 {

 Transactions could not be scheduled;

 break;

 }

 Schedule(j,p);

 MarkReadyJobs(Children(j));

 RecomputeReleaseTimes(j,J);

 if (Jobs miss deadlines)

 {

 Transactions could not be scheduled;

 break;

 }

}

Σ = GetSchedules(P);

end

4.2.3. Schedule generation

For each processor, a scheduling algorithm (scheduler) receives the job as input, and produces a list

of executables, which are then added to the processor schedule. The scheduler searches for available

execution time intervals on the processor, which match the job execution request. The needed

execution time intervals are then occupied and the corresponding executables are created.

To optimize the search for available execution time intervals, the processor available time i∆ is

partitioned in
GCD

l
Π

= sub-intervals, where GCD is the greatest common divisor of the transaction

73 | Multiprocessor real-time scheduling

set periods. Each sub-interval can have at most l available units of execution time. When an execution

time interval is occupied, it is removed from i∆ . i∆ is expressed as:

U
k

kkjli ba],[);,...,,(21 ==∆ δδδδ , where 1+<< kkk aba and lbk ≤ (8)

The job j which has to be scheduled, initially requests [r(j), r(j)+e(j)] execution time interval. In

most cases, this interval is not available. The scheduler searches the best match, which can be an

ordered list of n intervals ikk ba ∆∈],[, where)()(,)(1 jejrbajr n +≤≤ and 1+<< kkk aba . For each

interval, the corresponding executable is created),,(kkkk abaj −=ε and added to the cyclic

schedule. The pseudocode for the generation of a cyclic schedule is listed below.

Algorithm 2: Generation of a cyclic schedule

Input: j - the list of job; r(j) – release time of j; e(j) – execution time of j; ∆ – processor available time; l

– number of sub-intervals of ∆

Output: EL – the list of executables

Begin

remainingExecTime = e(j);

searchKey = r(j)/l;

startTime = r(j)%l;

while(remainingExecTime>0)

{

 Foreach(Interval [a,b] in [searchKey])

 {

 if (startTime < b)

 {

 if (a > startTime) { startTime = a; }

 if (b >= startTime + remainingExecTime)

 {

 s= searchKey * l + startTime;

 EL.Add(j, s, s + remainingExecTime);

 Δ.Remove(δ[searchKey], startTime, startTime+ remainingExecTime);

 return EL;

 }

 else

 {

 s= searchKey * l + startTime;

 EL.Add(j, s, s + b);

 Δ.Remove(δ[searchKey], startTime, b);

 remainingExecTime -= b - startTime;

 startTime = b;

 }

 }

 }

 searchKey ++;

 startTime = 0;

}

return EL;

Multiprocessor real-time scheduling | 74

end

To obtain a multiprocessor schedule, cyclic schedules have to be generated for each processor. The

proposed scheduling algorithm splits the job’s execution over the available processor time. Unlike the

classic cyclic executive technique, our approach does not impose that the job’s execution time is less

than the minor cycle (GCD of the transactions’ periods). Therefore, our method is more general.

4.3. Experimental evaluation

To validate the proposed scheduling method, we implemented a tool that receives as input a text file

which contains the workload model as previously described, and the number of processors on which

the workload should be scheduled. The tool generates a text file that contains a cyclic schedule for

each processor, by using the proposed multiprocessor cyclic executive method.

Figure 3. A workload model with five tasks and three transactions that run on 4 processors.

We have chosen a test configuration with 3 processors, 20 tasks and 6 transactions. The workload

model is described in Fig. 3. We assumed that each transaction starts at timeφ =0, and that transaction

period is equal to the deadline. The total utilization of the transaction set is 2.8, which would generate

an average load of 0.933 on each processor.

Our tool generated the following schedules with Π =30:

P={P1, P2, P3} – available processors

T = {t1, t2, … , t20}

 t1 = (3, {P1, P2}) t8 = (1, {P1, P2, P3}) t15 = (2, {P1, P2, P3})

 t2 = (3, {P1, P2, P3}) t9 = (2, {P1, P2, P3}) t16 = (2, {P1, P2, P3})

 t3 = (3, {P1, P2, P3}) t10 = (2, {P1, P2, P3}) t17 = (2, {P1, P2, P3})

 t4 = (2, {P1, P2, P3}) t11 = (3, {P1, P2, P3}) t18 = (2, {P1, P2, P3})

 t5 = (2, {P1, P2, P3}) t12 = (1, {P2, P3}) t19 = (2, {P1, P2, P3})

 t6 = (4, {P1, P2, P3}) t13 = (3, {P1, P2, P3}) t20 = (2, {P1, P2, P3})

 t7 = (2, {P2, P3}) t14 = (3, {P1, P2})

TR = {tr1, tr2, tr3, tr4, tr5, tr6}

tr1 = (G1, 10); G1 = {(t1, {t2}), (t2, {})}

tr2 = (G2, 10); G2 = {(t3, {t4}), (t4, {})}

tr3 = (G3, 15); G3 = {(t5, {t6}), (t6, {t7}), (t7, {})}

tr4 = (G4, 30); G3 = {(t8, {t9, t10}), (t9, {t11}), (t10, {t11}), (t11, {t12, t13}), (t12, {t14}),

 (t13, {t14}), (t14, {})}}

tr5 = (G5, 15); G5 = {(t15, {t16, t17}), (t16, {t18}), (t17, {t18}), (t18, {})}

tr6 = (G6, 30); G6 = {(t19, {t20}), (t20, {})}

75 | Multiprocessor real-time scheduling

• S(P1)={(t1;0;3), (t8;3;1), (t6;4;4), (t20;8;2), (t10;10;2), (t18;12;2), (t11;14;3), (t15;17;2),

(t16;19;2), (t1;21;3), (t14;24;3), (t18;27;2)}

• S(P2)={(t3;0;3), (t19;3;2), (t4;5;2), (t16;7;2), (t7;9;2), (t3;11;3), (t2;14;3), (t12;17;1),

(t13;18;3), (t3;21;3), (t7;24;2), (t4;26;2)}

• S(P3)={(t5;0;2), (t15;2;2), (t2;4;3), (t9;7;2), (t17;9;2), (t1;11;3), (t4;14;2), (t5;16;2), (t6;18;4),

(t17;22;2), (t2;24;3)}

Processor loads obtained after scheduling are: 0.9 on P1, 0.94 on P2 and 0.96 on P3.

In another experiment, we chose a configuration with 7 tasks and 3 transactions to be scheduled on

2 processors. The transaction set generated an average load of 0.84 on the processors. One task had the

execution time equal to the most frequent transaction period. This condition makes scheduling more

difficult in the case of cyclic executives. Our tool generated schedules for this configuration, too.

To make a statistical evaluation of the proposed scheduling technique, we generated random

transaction sets with the workload generation tool presented in Chapter 5. We imposed the following

constraints on the generated data sets:

• Chain transactions

• Transactions in a set have harmonic periods and deadlines

• The system is composed of 6 transactions on 4 processors, and of 10 transactions on 8

processors

• A transaction contains at most 10 tasks

We generate transaction sets with increasing average system utilization starting at 40% and up to

99%. For this evaluation, we used 390 transaction sets with these characteristics.

We used the tool that generates multiprocessor cyclic schedules for all generated transactions sets.

We used the following metrics:

• Success rate: ratio between the number of data sets for which a feasible scheduling

solution was found, and the total number of data sets.

• Execution time of the algorithm.

The evaluation of the proposed cyclic executive scheduling technique (CYEX) was made by

comparison to a global EDF scheduler (LAX-EDF). The global EDF scheduler chooses the jobs that

have the closest deadlines at runtime. These jobs are allocated to any available processor; jobs can

migrate on different processors during their execution. For the EDF scheduler to work, intermediate

tasks inside the transaction must be allocated deadlines. In this case, we computed the deadlines with

equation (9).

� = � − ∑ ���	
�
 (8)

� = � + � ∗ �
∑ �������

 (9)

Multiprocessor real-time scheduling | 76

Where D, C are the transaction’s deadline and execution time, l is the transaction’s laxity and d, c

are the deadline and the execution time of a task. To compute intermediate tasks’ deadlines, the

transaction’s laxity time is proportionally divided between tasks.

LAX-EDF scheduling technique was implemented using the RTMultiSim simulation tool that is

presented in Chapter 5. As it is a runtime scheduler, its functioning was simulated, and we based our

performance comparison on the simulation results.

We expect that LAX-EDF has a better success rate than CYEX, because it is a runtime scheduler

that allows job migrations. We scheduled all test transaction sets with both techniques.

Experimental results are presented in Fig 4, 5 and 6. We observed that CYEX has better success rate

than LAX-EDF for scheduling 6 transactions on 4 processors. For the case of 10 transactions on 8

processors, CYEX has 20% less success rate than LAX-EDF. During the experiments, we observed

that CYEX has some problems in scheduling heavy (low laxity) transactions.

In terms of execution time, CYEX is better than LAX-EDF (see Fig. 6). CYEX finds the schedules

earlier that LAX_EDF is able to generate them in RTMultiSim.

Figure 4. Success rate for scheduling workloads with 6 transactions on 4 processors.

Figure 5. Success rate for scheduling workloads with 10 transactions on 8 processors.

0

0,2

0,4

0,6

0,8

1

40% 60% 80% 100%

S
u

cc
e

ss
 r

a
te

System utilization

CYEX

LAX-EDF

0

0,2

0,4

0,6

0,8

1

40% 60% 80% 100%

S
u

cc
e

ss
 r

a
te

System utilization

CYEX

LAX-EDF

77 | Multiprocessor real-time scheduling

Figure 6. Execution time of CYEX compared to LAX-EDF.

Concerning related work, the cyclic executive model didn’t receive much attention from the

research community, even if it is used in safety-critical systems and in real-time network protocols

such as WorldFIP [100]. A uniprocessor cyclic executive model implemented in Ada was formally

described in [99]. In [101], an adaptation of the cyclic executive is used for scheduling high-criticality

tasks in a mixed-criticality system. The cyclic executive is one of the several schedulers they used in

their hierarchical scheduling model.

More recently, an implementation of a multiprocessor cyclic executive in safety-critical Java was

presented in [102]. They compute cyclic schedules using the UPPAAL [103] model checker. As they

do not make a statistical evaluation of their approach, we are not able to compare it with our approach

in terms of success rate or a similar metric. However they report that their schedule generation

process, done with UPPAAL, takes in the case of 16 tasks and multiple resource constraints as much

as 30 minutes, which is far more than the execution time of CYEX.

We conclude that our approach, CYEX, has better success rate compared to a global EDF

approach, but only in the case of small systems. Moreover, CYEX is faster than the global EDF

approach and even than the UPPAAL approach presented in [102].

5. A genetic approach for multiprocessor real-time scheduling

In this section we propose an optimization-based technique that enhances the scheduling of real-

time transactional multiprocessor systems. The technique addresses two important aspects: task

allocation and task deadline assignment. In order to satisfy real-time restrictions we combine genetic

search and simulation to find feasible system setups. The genetic engine looks for a feasible task-to-

processor mapping (allocation) and deadline setting that meets the given real-time and dependency

restrictions. The simulator is used to evaluate the behavior and consequently the quality of different

candidates. Through an iterative process, we obtain a feasible scheduling solution by choosing the best

candidate result.

Our contribution addresses the adaptation of a genetic algorithm to the multiprocessor scheduling

problem and specifically the definition of a multi-criteria fitness function that describes the quality of

a schedule related to the imposed time restrictions.

0,00

5,00

10,00

15,00

20,00

25,00

6 transactions on 4

processors

10 transactions on 8

processors

T
im

e
 (

se
c)

CYEX

LAX-EDF

Multiprocessor real-time scheduling | 78

5.1. System model

We define a system model as support for the genetic approach. The model is presented below.

5.1.1. Workload model

We use the real-time transactions model described in Chapter 2. A transaction is a sequence of tasks

executed periodically, which has an end-to-end deadline. This means that the transaction must finish

its execution before that deadline. We choose to represent the precedence dependency between tasks in

a transaction through a list.

A real-time transaction has the following defining elements:

• Task list (L) – a list that describes the dependencies between tasks and determines the

execution order restrictions.

• Period (T) – the repetition period of a transaction.

• Deadline (D) – the time limit for a transaction, relative to its release time.

A task has the following parameters:

• Execution time (C).

• Deadline (d) – time limit relative to the task’s release time.

• CPU affinity – list of processors on which the task can be executed.

Transactions are released periodically in accordance with some external or functional requirements.

A transaction instance contains task instances called generically jobs. The execution of a transaction

starts with the execution of jobs that do not have precedence dependencies. A job is considered for

scheduling only if its dependences are solved (jobs that precede it are executed).

In case of a real application, only transaction deadlines are specified. Intermediate task deadlines are

not specified. However, the scheduling algorithm, in our case EDF, requires such deadlines in order to

establish the execution priorities. One of the main goals of our research is to determine these

intermediate deadlines in a way that all real-time, precedence and resource restrictions are satisfied.

Our workload model is general, in the sense that it may be configured to represent independent sets

of tasks or distributed applications, including network communication tasks (messages). The message,

in our case, can be represented as a task, which is handled only by a network segment (represented as a

processor), configured in the CPU affinity parameter.

5.1.2. Platform and Scheduling Models

The processing resources of a platform are modeled as a multiprocessor system P={P1, P2, … ,

Pm} composed of processors (CPUs) and possibly network segments. From an abstract point of view,

the network segments may be assimilated with processors that can handle messages. Messages are

scheduled for transmission on a network segment in a similar way as tasks on a processor. This model

can cover a wide range of system configurations that span from parallel systems (without messages

and network segments) to distributed ones.

79 | Multiprocessor real-time scheduling

We assume that each processing resource has its own scheduler. The scheduler chooses the job with

the highest priority to be executed, at a certain point in time, on the processing resource. The priority

is computed by the scheduling algorithm implemented in the scheduler. In our experiments, we used

the EDF algorithm that assigns priorities to jobs according to their deadlines, so the job that has the

closest deadline will have the highest priority. It is known that the EDF algorithm is optimal for single

processor systems [27] and it can handle task set utilizations of up to 100% in the case of independent

tasks.

 The workload model has to be mapped on the platform, so that all transactions meet their deadlines.

To accomplish this goal, each task has to be allocated to a suitable processing resource. On each

processing resource, each task must have a deadline, to be able to compute its jobs priorities. Both,

allocation and deadline assignment are solved with the proposed approach.

5.2. Scheduling with a genetic approach

Our work addresses two important aspects of multiprocessor scheduling: task allocation to

processors and intermediate task deadline assignment. We intend to give a composite solution to these

problems by employing an optimization method.

The task allocation and deadline assignment problems generate a multidimensional solution space,

which increases with the number of processors and the number of tasks in the system. As mentioned

before, finding an optimal solution is an NP-complete problem. However, sub-optimal solutions are

acceptable in our case if transactions’ end-to-end deadlines are not exceeded, even if some

intermediate task deadlines are missed. Our objective is to find this type of sub-optimal scheduling

solution.

We choose a genetic algorithm as search and optimization method, because it is well suited for

problems with a large search space and multiple optimization objectives. Genetic algorithms are

inspired from biological evolution. A genetic algorithm starts with an initial set of possible solutions

called population. At each iteration step, it generates a new population by means of natural selection,

crossover and mutation. Each solution is evaluated with a fitness function. The fittest solutions will

propagate their characteristics to later populations, generating improved new solutions.

 We adapted the continuous genetic algorithm to our problem domain. Scheduling variables that

must be optimized are task allocations to processors and task deadlines. The parameters that need to be

minimized are transaction response times, task response times and the processor utilization factor

(defined later by equation 16).

We start from initial solutions obtained by applying known heuristics for both task allocation to

processors and intermediate task deadline assignment. We generate new populations mostly through

crossover, but also by keeping the best individuals from the previous population. After obtaining a

new population, mutation is applied. The variables of the genetic algorithm are population size,

crossover and mutation probability factors.

The fitness of a solution is evaluated through simulation. The simulator receives a workload model

obtained from the individual representation created in the genetic algorithm, and creates the execution

Multiprocessor real-time scheduling | 80

schedule using the platform and the scheduling predefined models. We base our approach on the

results in [104], where the authors showed that for deterministic fixed priority scheduling algorithms

(e.g. EDF) the schedulability analysis must be performed during a period equal to twice the hyper-

period of the task set (hyper-period = least common multiple of tasks’ repetition periods). Therefore,

we simulate each configuration setup for two hyper-periods of the transaction set, and we use the

timing results obtained through simulation for the computation of the fitness function.

A conceptual schema of the proposed technique is depicted in Fig.7. The optimization-based

technique comprises three steps. In the first step, the genetic algorithm generates a solution population.

The solutions are evaluated through simulation in the second step. In the third step, based on the

evaluation, the genetic algorithm generates a new solution population, which replaces the previous.

These steps are iterated until a feasible solution is reached.

Figure. 7. Scheduling using a genetic approach

Algorithm 1 shows the pseudo-code for the genetic algorithm we use. We generate new populations

mostly through crossover, but also by keeping the best individuals from the previous population. After

obtaining a new population, mutation is applied. The configurable variables of the genetic algorithm

are population size, crossover and mutation probability factors. If at any iteration step, we observe that

there is not enough genetic diversity we apply mutation with a higher rate on the population, before

the creation of a new population.

Algorithm 1: Genetic scheduling

Begin

Generate initial population;

For each individual in population compute fitness;

While (generations < max_generations)

{

 If (not enough genetic diversity)

 {

 Apply mutation on population with higher rate;

 }

 Create new individuals with crossover;

 Add new individuals to new population;

Step 3: Replaces

Step2:

Evaluates

New solution

population

Genetic

algorithm
Simulation

Step1:

Generates

Solution

population

Fitness

81 | Multiprocessor real-time scheduling

 Choose best individuals from population;

 Add best individuals to new population;

 Replace population with new population;

 Apply mutation on population;

 For each individual in population compute fitness;

}

End

5.2.1. Genetic representation of a scheduling solution

Solutions to the processor allocation and deadline assignment problems are represented as

individuals in a population. Each individual (chromosome) is composed of a sequence of genes. A

gene is an integer value that may represent a processor number (identifier) on which the task is

allocated, or a task deadline. Each gene has its own domain of values (∆). For processor allocation, the

domain is the task’s CPU affinity list.

��
�	
�� = {��|�� ∈ ��������� !"�# �	
��} (10)

In the case of task deadlines, the value domain is continuous between the execution time of the task

(minimum) and the largest possible deadline (maximum) assuming that all subsequent tasks in the

transaction can execute without interruption, without exceeding the transaction deadline. Note that a

task’s deadline is relative to its release time. A task is not released until all its predecessors finished

their execution, so the assigned deadlines do not determine or enforce the precedence between tasks.

						�&
�	
�� = '�()�*, �()	, -,	

�()�* = �(, (11)

						�()	, = �� − .�/ , 01#2/ ∈ 031�#14 �5��

Even though the transactions have hard deadlines (meaning that if a transaction misses its deadline,

then the scheduling is considered not feasible) the tasks inside transactions have soft deadlines. This

happens because even if several intermediate tasks miss their deadlines, it is still possible for the last

task (and consequently the transaction) to meet its deadline. For this reason, we allow a less

constrained value domain for genes that represent task deadlines. A less constrained deadline domain

can increase the chances of finding a good scheduling solution.

The chromosome contains two adjacent genes for each task in the workload. The first gene

corresponds to the processor to which the task is allocated and the second is the task’s deadline. The

order of the genes is given by transactions. Fig. 8 gives an example of how the chromosome is

constructed based on the system model. The example is composed of four processors and two

transactions (with the corresponding tasks). Tasks can be allocated to any of the four processors. For

instance, the first gene shows that task t1 is allocated to processor P1 and its intermediate deadline is

10 time units. The next gene is for task t2 allocated on P0 and with deadline of 5 time units.

Multiprocessor real-time scheduling | 82

Figure 8. Chromosome construction based on the transaction model

For an efficient search, the initial population must have a large genetic variety. We generated the

initial population in two steps. First, we created a number of individuals using task allocation

heuristics such as First Fit or Round Robin. We also assigned the deadlines for tasks and messages

choosing the smallest possible value as deadline (dmin). In the second step, we choose a random

individual from the population, copy it and apply several mutations. The obtained individual is then

added to the population only if there are no duplicates. The second step is repeated until the specified

population’s size is reached.

5.2.2. Genetic operators

We used two types of genetic operators: crossover and mutation. These operators are applied on the

current population with predefined probability rates, to create new generations with better fitness.

Crossover combines genes from two individuals to create two offspring, which will have mixed

characteristics from the parents. For our scheduling problem, we use a two-point crossover operator.

The parents are selected by tournament. From two randomly selected individuals, the fittest is chosen

to be one of the parents. This way we give a chance to individuals that do not have the best fitness but

may have good partial solutions to propagate their genes to later generations.

We allow crossover only between different individuals. The crossover points are selected at

random. We eliminate cases when the points coincide or when they are at the two ends of the

chromosome. A certain task can inherit the allocation gene from a parent and the deadline gene from

the other parent, so it is not necessary that the genes between the crossover points include both

allocation and deadline genes for a task.

Mutation randomly changes the value of a gene in order to find a better solution and consequently

to maintain a certain degree of genetic variety. Mutation is applied with a given probability on all

individuals each time a new population is obtained.

We applied two different mutation operators. In the majority of cases, we applied the classic

mutation operator that selects a random gene from the chromosome and changes its value, with

another random value from the gene’s value domain. We also implemented a mutation operator, which

chooses the new value from a sub-interval around the current value of the gene. The limited interval is

set as a percentage of the maximum allowed interval.

t1 t2 t3 t4 t5

t6 t7 t8 TR2: T=30, D=30

TR1: T=60, D=60

Processors: P0, P1, P2, P3

t1 t2 t3 t4 t5 t6 t7 t8

P1,1 P0,5 P2,1 P0,1 P3,6 P1,5 P0,1 P3,3

Chromosome: 1,10,0,5,2,10,0,10,3,6,1,5,0,1,4,3

Assign (resource, deadline) pair to each task:

83 | Multiprocessor real-time scheduling

Experimental results improved when the interval was limited to 50% of the initial domain and later

to 25%. We applied this type of mutation only on populations with good average fitness, because we

suppose that their genes are close to their best values and we do not want to spoil good possible

solutions through mutations that radically change the gene’s value.

5.2.3. The fitness function

The fitness function evaluates the quality of a given scheduling solution related with some chosen

optimization objectives. A scheduling solution is considered the best if all transactions finish before

their deadlines, all tasks finish their execution before their designated deadlines and if the tasks are

uniformly allocated to the available processors. But, as we mentioned before, we only look for sub-

optimal solutions, in which at least all transactions finish before their deadlines. For this purpose, we

establish three optimization objectives, with different weights.

The most important optimization parameter is the transaction’s completion time, which has to be

less than the transaction’s deadline. A solution is considered feasible if the transaction’s completion

time is less or equal to the transaction’s absolute deadline. Another optimization objective is to have a

rather uniform allocation of tasks over the existing resources. This will increase the system’s

robustness and it can increase the effectiveness of the search. The third optimization objective is the

task response time, which has to be less than the task’s deadline. We tried to differentiate between

satisfying transactions deadlines and intermediate task deadlines in the sense that transaction deadlines

are much more important (because they derive from real application constrains) and task deadlines are

artificially introduced for the scheduling algorithm.

In order to express all the above optimization goals, we defined a fitness function as a weighted

combination (sum) of four fitness expressions. A smaller value means a better solution.

The first component fTR measures the quality related to the transaction’s completion time (equation

3). It is computed as a sum of terms, each term representing a transaction that does not meet its

deadline. A term is an exponential function of the difference between the maximum response time Ri

and the deadline Di of a transaction. The goal is to have all the differences equal to zero, which means

that all transactions meet their deadlines.

��6 = ∑ 2)	,(69:;9)(69:;9)=> (12)

The second component measures if the intermediate tasks meet their deadline (equation 4). This

component has a smaller weight.

�? = ∑ 2@AB	(C�:&�)?	
�
 (13)

The next component measures the degree of uniform allocation of tasks on processors (equation

14). It is the sum of the differences between the actual processor’s utilization factor Up and an average

value. The goal is to obtain an allocation as close as possible to the average value. It is obvious that

this component will have lower values if the transactions are composed of tasks with lower individual

utilization that can be evenly spread on the available processing resources.

Multiprocessor real-time scheduling | 84

�	//DE = ∑ F�G − �HFG∈� (14)

where: 	
 �G = ∑ ��

&�?	
�
∈G (15)

		�H =
∑ I�

J�K����
E	C&(�) (16)

Ck and dk are the execution time and deadline of task k. Card(P) is the number of processors.

Below is the complete expression of the fitness function.

L = ��6 ∗ MN + �	//DE ∗ MO + �? ∗ MP (17)

Based on experiments, we found that a good combination of weights is: w1 = 1000, w2=100 and

w3=1. A significant observation is that the most important factor should receive the largest weight.

5.3. A technique that reduces the search space

As the task allocation and deadline assignment problems generate very large solution spaces that

increase with the number of processors and the number of tasks, the execution time of the genetic

algorithm can be very large (e.g. hours). Moreover, as the solution space increases, the algorithm’s

success rate reduces because it doesn’t always converge to an acceptable solution in an acceptable

number of iterations, or it deadlocks (finds a local minimum).

We intend to investigate if a smaller search space has a good impact on the genetic algorithms

success rate, its speed and the fitness of the best solutions. In this context, we propose a technique that

composes our optimization-based approach for finding a task to processor allocation with a non-

iterative approach for intermediate task deadline assignment.

The steps for finding a scheduling solution are:

• In the first step, we create the chromosomes.

• In the second step, we apply a non-iterative algorithm or heuristic to assign deadlines to all

tasks.

• In the third step, we compute the fitness.

• In the fourth step, the genetic algorithm chooses the best individuals and applies the

genetic operators to obtain a new population.

Second, third and fourth steps are iterated until an acceptable solution is found. The genetic

algorithm will create the chromosomes as described in section IV, but the genes that represent task

deadlines will have constant values (determined in the second step) and will not be modified (mutated)

during genetic iterations.

We implemented two variants of the proposed technique, by using two distinct solutions for task

deadline assignment. In the first variant, we used the algorithm proposed in [86], where the authors

85 | Multiprocessor real-time scheduling

find a deadline allocation by constructing an ordered list of tasks. The obtained deadline assignment

depends on the distribution of computation times among the tasks and on task to processor allocation.

In the second variant, we propose a deadline assignment heuristic similar to the ones presented in

[87] and [88]. We computed the transaction laxity time (l) as in equation 9 and we divided it

proportionately between the transaction’s intermediate tasks. The deadline is computed as the

execution time to which is added the portion of the transaction’s laxity time (see equation 10).

This deadline allocation heuristic is influenced by the transactions time parameters (deadline and

execution time) and not by the task to processor allocation.

The implementation variants allow us to explore two distinct strategies for deadline assignment,

combined with the optimization-based technique, and to observe which of them is the most effective.

5.4. Experimental evaluation

For the experimental part, we developed a tool, which receives as input the system model and

generates schedules according to the proposed optimization-based technique. The scheduling tool is

composed of a genetic engine linked to a real-time system simulator. The genetic engine receives as

input the application model composed of tasks and transactions. The transactions are translated into

chromosomes. Afterwards, the genetic engine generates populations in search for better individuals

(system configurations). At the end of the genetic iteration, it writes the results (chromosomes and

corresponding fitness values) in a file.

We use RTMultiSim for simulation. This tool is described in Chapter5. RTMultiSim is a discrete

time-stepped simulator for real-time multiprocessor task scheduling and execution. It executes a given

system model from an initial moment to a preset maximum simulation time. The simulation results are

stored in a database. After an iteration of the genetic algorithm, all individuals in the population are

passed to the simulation tool. The individual is translated into a simulation model. The simulation is

executed for a time equal to twice the transaction set’s hyper-period. During simulation, the maximum

response times of tasks and transactions are determined. Based on these parameters, the simulation

tool computes the fitness value of the individual. Fitness values are supplied to the genetic algorithm,

which continues the search with a new generation.

 To explore the behavior of the proposed techniques in different scenarios, we use tools for

automatic task set generation and transaction set generation that are described in Chapter 5. These

tools can generate task/transaction sets with predefined cardinality (number of tasks/transactions) and

total utilization factor, ensuring a random distribution of individual task utilization factors.

The optimization-based technique can be used in different situations and scenarios. The most

general problem is to find a feasible schedule for distributed transactions. By simplifying the general

problem, our technique can find solutions for the allocation of independent tasks on a given

multiprocessor platform, or the assignment of time parameters to tasks. This is possible due to the

flexibility of the system model and of the simulation tool used for solution evaluation.

Multiprocessor real-time scheduling | 86

We chose to evaluate the optimization-based scheduling technique in the case of distributed

transaction scheduling, which is the most complex of the scenarios mentioned before. To solve this

problem, the genetic algorithm must find a good task deadline distribution besides a good task to

processor allocation.

Experiments allowed us to adjust the parameters of the genetic algorithm for a faster generation of a

good solution. In case of mutation probability the best values was 1% for shorter chromosomes (20-30

genes) and 0.6% for longer chromosomes (more than 100 genes), and for the crossover probability

70%. In some cases, a variable mutation ratio with a tendency of decreasing the probability in every

generation had better results. The initial population was set to 60 individuals, as a compromise

between variability and algorithm execution time; higher number of chromosomes require more

simulation time. We let the population evolve to maximum 1000 generations. We also observed that

using intuitive heuristics for the initial population generation, instead of random generation, is a better

choice for a faster search.

For the experiments, we generated using the workload generation tool presented in Chapter 5 two

types of system models. In the first case, we generated system models composed of 6 transactions on 4

processors. In the second case, we generated models composed of 10 transactions on 8 processors. The

generated models have partitioned scheduling (a task is assigned to only one processor, the task does

not migrate) and don’t have any resource restrictions (all tasks are able to be execute on any

processor). A transaction contains at most 10 tasks. Transaction execution times and task execution

times are generated at random. The number of tasks in a transaction is random between 1 and the

maximum number of tasks. The transaction sets have random periods of repetition, while their hyper-

periods are less than 1500 discrete time units. The method we used for transaction set generation is

described in detail in Chapter 5. Our method insures a certain degree of generality for the data sets

used for the evaluation. We generated transaction sets with average system utilization of 60%, 70%,

75%, 80%, 85%, 90%, 94%, 97% and 99% (10 models for each utilization configuration).

We obtained results from 3 sets of experiments (on the same data sets):

• With the proposed optimization-based technique applied on both task allocation and

deadline assignment sub-problems (OPT);

• With the optimization-based technique composed with the deadline assignment algorithm

in [88] (ORDER-OPT);

• With the optimization-based technique composed with the deadline assignment heuristic

that divides the laxity time between tasks (equation 10), which is similar to [87] and [88]

(LAX-OPT).

A feasible solution has the fitness less than 1000.

For the evaluation, we used the following metrics:

• Success rate: ratio between the number of transaction sets for which a feasible scheduling

solution was found, and the total number of transaction sets.

87 | Multiprocessor real-time scheduling

• Average number of iteration: average number of iterations until a feasible scheduling

solution is found. The runs that don’t find a feasible solution are not considered. This

measure shows how fast a feasible solution is found.

• Average fitness: average fitness of feasible scheduling solutions.

Fig. 9 shows the success rate of the three proposed optimization-based approaches for 6 transactions

on 4 processors as a function of system utilization (a description of system load). We use LAX-EDF

scheduler, which we described in the previous section, as reference. All three algorithms have better

success rate by at least 30%. LAX-OPT has slightly better results than OPT, while ORDER-OPT has

the worst performance. OPT and LAX-OPT find feasible solutions for all transaction sets with

utilizations up to 90%. Between 90% and 99%, the success rate drops from 1 to 0. Fig. 10 shows the

success rate for each approach for 10 transactions on 8 processors. OPT and LAX-OPT find feasible

solutions for all transactions sets in the test set for utilizations of up to 70%. There is an average of

30% improvement compared to LAX-EDF.

Figure 9. The success rates of the proposed techniques, for 6 transaction on 4 processors

Figure 10. The success rates of the proposed techniques, for 10 transaction on 8 processors

Fig. 11 and 12 show the average number of steps executed by the genetic algorithm until a feasible

solution is found, as a function of system utilization. It may be observed that for 6 transactions OPT

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

70% 80% 90% 100%

S
u

cc
e

ss
 r

a
te

System utilization

OPT

LAX-OPT

ORDER-OPT

LAX-EDF

0,00

0,20

0,40

0,60

0,80

1,00

60% 70% 80% 90%

S
u

cc
e

ss
 r

a
te

System utilization

OPT

LAX-OPT

ORDER-OPT

LAX-EDF

Multiprocessor real-time scheduling | 88

has the best results, but note that for utilizations greater than 90%, it finds less feasible solutions than

LAX-OPT. For the case with 10 transactions OPT and LAX-OPT find feasible solutions in fewer

steps.

Fig. 13 and 14 show the average fitness of feasible solutions found with our approach, as a function

of system utilization. In the case of 6 transactions on 4 processors, the solutions obtained by OPT have

the best fitness. The solutions obtained by LAX-OPT have the worst fitness between utilizations of

80% and 97%, but, on the same interval, LAX-OPT has the highest success rate. In the case of 10

transactions on 8 processors ORDER-OPT has the best average fitness. However, considering that

ORDER-OPT has the worst success rate we consider that the best overall results are obtained by LAX-

OPT.

Figure 11. Average number of steps executed until a feasible solution is found, for 6 transaction

on 4 processors

Figure 12. Average number of steps executed until a feasible solution is found, for 10 transaction

on 8 processors

0

200

400

600

800

1000

70% 80% 90% 100%

N
u

m
b

e
r

o
f

st
e

p
s

System utilization

OPT

ORDER-OPT

LAX-OPT

0,00

200,00

400,00

600,00

800,00

1000,00

60% 70% 80% 90%

N
u

m
b

e
r

o
f

st
e

p
s

System utilization

OPT

LAX-OPT

ORDER-OPT

89 | Multiprocessor real-time scheduling

Figure 13. Average fitness of feasible scheduling solutions found, for 6 transaction on 4

processors

Figure 14. Average fitness of feasible scheduling solutions found, for 10 transaction on 8

processors

At this point, we can conclude that the optimization approach is efficient as it improves the results

to as much as 80% for some data sets, compared to an algorithm that does not use optimization

techniques, like LAX-EDF. Overall, the best average performance is obtained by OPT, but in some

cases, LAX-OPT finds more (5-10%) feasible solutions than OPT. During our experiments, we

observed that LAX-OPT and ORDER-OPT perform better for large problems, while for small

problems they fail much more often that OPT.

We further evaluate the performance of our optimization-based approach by making a performance

comparison with related work. Azketa et. al. solve in [90], [91] and [92] a similar problem to ours by

using a genetic algorithm. In [90] they use the genetic approach to optimize the scheduling solution

found by an iterative algorithm that assigns static priorities to tasks in a transaction set. In [91] and

[92] they extend their work and solve the task to processor allocation at the same time with priority

assignment. We highlight the differences between our approach and the one presented in [92] in Table

1.

Table 1. OPT vs GA-Azketa

0

100

200

300

400

500

600

700

70% 80% 90% 100%
F

it
n

e
ss

System utilization

OPT

LAX-OPT

ORDER-OPT

500,00

700,00

900,00

1100,00

1300,00

1500,00

60% 70% 80% 90%

F
it

n
e

ss

System utilization

OPT

LAX-OPT

ORDER-OPT

Characteristics OPT GA-Azketa

Multiprocessor real-time scheduling | 90

The authors evaluate their work in [92] with only one transaction set for which they gradually

increase the execution time of inner tasks to generate greater load, while keeping the other

characteristics (repetition period, deadline, number of tasks) unchanged. In our opinion, our evaluation

method is more general. However, because their implementation and test data set are not available, we

replicated their tests using the description in the article and we applied OPT. We found that our

approach starts failing at 67% load on this particular data set. They report that their genetic algorithm

starts failing at 67% load, too. We can conclude that our approach has similar performance in terms of

success rate, on their evaluation data set.

In [91] the authors make a statistical evaluation of their approach by randomly generating 2 types of

transaction sets, small (6 transactions) and large (12 transactions). They gradually increase the tasks’

execution time to obtain increasing system loads. Their best success rates are for small systems with 6

transactions on 4 processors. In those cases, their algorithm started failing at system loads of around

70%. For large systems, their algorithm starts failing at loads of around 60%. Our approach seems to

be better in terms of success rate, since it starts failing at over 70% systems loads, for larger systems

(10 transactions on 8 processors).

6. Conclusions

In this chapter, we present two solutions for the multiprocessor scheduling of real-time transactions.

The first solution is best suited for small embedded systems, as it minimizes the computation

overhead introduced by a scheduler. Performance evaluation shows that the cyclic executive-based

approach is slightly better than a global EDF runtime scheduler, but only for small systems (e.g. 6

transactions on 4 processors). For larger systems, the runtime EDF scheduler is better. In terms of

execution time, we conclude that our schedule generation technique is faster than the runtime

scheduler, and faster than other cyclic schedules generators know of.

Workload model Chain transactions Chain transactions

Platform model Identical multiprocessor Heterogeneous multiprocessor

Resource restrictions Yes Yes

Scheduler EDF FTP

Chromosome Genes for processor allocation

and task deadline

Gene for processor allocation,

priority is given by the gene’s

position.

Operators Mutation, Crossover Mutation, Crossover, Clustering

Fitness function
Minimize transaction response

time and task response time;

Uniform processors’ utilization

Minimize transaction response

time and resource utilization

Fitness evaluation Fitness computed from

simulation results

Response time computed by

holistic schedulability analysis

91 | Multiprocessor real-time scheduling

 The second solution uses a genetic algorithm combined with a simulation tool to find feasible

system setups. By system setups, we mean:

• Task to processor allocation

• Intermediate tasks deadline assignment

The genetic algorithm searches through the possible solutions, while the simulation tool evaluates

the candidate solutions by means of the fitness function. We demonstrated through experiments that

our approach improves non-iterative scheduling techniques by at least 30%. Compared to other similar

optimization-based approaches, we estimate that our technique is at least 10% better in terms of

scheduling success rate.

The main contributions of this chapter are the following:

1. The development and the evaluation of a cyclic executive-based scheduling technique for real-

time transactions on multiprocessor systems.

a. The formal description of the system model

b. The development of the algorithms for:

• job allocation to processors

• generation of cyclic schedules

c. The comparative evaluation of the cyclic executive-based technique

2. The development and the evaluation of an optimization-based technique for scheduling real-

time transactions on multiprocessor systems.

a. The formal description of the system model

b. The adaptation of the genetic algorithm to the scheduling domain: definition of genes,

chromosomes, adaptation of genetic operators.

c. The definition of a fitness function that optimizes three solution characteristics.

d. The development of a technique that reduces the search space

e. The comparative evaluation of the optimization-based technique.

Published papers:

1. Anca Hangan, Gheorghe Sebestyen,”Cyclic executive-based method for scheduling hard real-

time transactions on distributed systems” iccp, pp.441-444, Proceedings of the 2011 IEEE 6th

International Conference on Intelligent Computer Communication and Processing, 2011 ISBN

978-1-4577-1479-5[IEEE]

2. Gheorghe Sebestyen, Anca Hangan, ”Genetic approach for real-time scheduling on

multiprocessor systems,” Intelligent Computer Communication and Processing (ICCP), 2012

IEEE International Conference on , vol., no., pp.267,272, Aug. 30 2012-Sept. 1 2012 [IEEE]

3. Anca Hangan, Gheorghe Sebestyen, “Multiprocessor real-time scheduling using an

optimization-based technique”, submitted to Euromicro Conference on Real-Time Systems,

ECRTS 2014

