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Chapter 5. Real-time systems simulation 

1. Introduction 

Multiprocessor systems are becoming the execution environment for most of today’s real-time 

applications. In consequence, developers need theoretical methods and experimental tools for 

evaluating the feasibility and time behavior of such systems.  As showed in many recent papers 

[7][25], real-time analysis on multiprocessor systems is not a trivial task, and in the general case when 

different restrictions (synchronization, casual dependencies, data race conditions, etc.) are considered, 

beside the time conditions, the problem has a non-polynomial complexity.  

In this context, empirical methods like simulation have become a more practical alternative to 

complex mathematical schedulability analysis. Even though simulation is mainly used to assess 

systems’ defects, it can be used to generate system schedules during a preset time interval. The authors 

of [105] and [104] showed that fixed priority algorithms (including RM and EDF) generate periodic 

schedules in the case of feasible periodic task systems. Therefore, an exact schedulability test would 

be to check the task set’s schedulability during this period. This type of test can be implemented in 

practice through a simulation tool.  

On the other hand, empirical methods such as simulation are used for the evaluation of new 

scheduling techniques. As we already mentioned in Chapter 1, the lack of standard methodologies and 

tools is an issue in the area of real-time systems. When we first started to evaluate our work in the area 

of real-time multiprocessor scheduling, we noticed that there were just a few multiprocessor 

simulation tools. We were not able to use any of those simulators, since some were very hard to extend 

with new features and new algorithms, while others were not even available for public use. Therefore, 

we started to develop our own simulation tool. 

 The goal was to develop a real-time simulator that can cover a multitude of cases from parallel 

architectures to distributed ones and from independent task sets to transactions or fork-join parallel 

tasks. We also included aspects of network communication.  

The resulting tool called RTMultiSim is a discrete time simulator that can be used to measure the 

time parameters of such systems and in predefined scenarios to demonstrate the feasibility of a real-

time scheduling policy. It can be useful in evaluating the statistical influence of different parameters 

(e.g. CPU utilization, parallelism degree) over the real-time behavior of multiprocessor systems. In 

addition, we developed a synthetic workload generation tool, which provides input for the simulation 

tool.  

The simulation tool is useful in system modeling and design phases in order to establish the number 

of required processors, the maximum utilization/load factor, the worst-case response time of critical 

tasks, or to demonstrate the feasibility of a given setup.  
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2. Related work 

In the field of real-time system’s analysis and simulation, there are a number of solutions and tools, 

offered as open source software (e.g. STORM [106], MAST [107]) or as commercial products (e.g 

Simulink [113], SymTA/S [114]). The first ones are more generic and are dealing with the real-time 

behavior of systems at higher abstraction levels. The commercial ones are more related to some 

pragmatic solutions or to specific platforms.  

The differences between these tools are regarding the following aspects: 

• The workload model used in simulation – types of executing units (tasks, threads), 

periodicity of jobs, processor affinity, clustering, etc. 

• The execution environment model – uniprocessor, parallel or distributed systems, uniform 

or heterogeneous execution, with or without communication (networking).  

• The scheduling model – fixed or dynamic priorities, time-triggered or event-triggered. 

• The real-time parameters and restrictions model – discrete time, global or local time. 

• Non-real-time conditions accepted in the model – task synchronization, causal 

dependencies, and concurrent access to common resources. 

In our approach, we tried to cover as many scenarios as possible, allowing seamless variation 

between different models. The above-mentioned model types may be obtained as particular cases 

through the tool’s parametric configuration. This is not the case for a number of existing simulation 

tools, specialized for a given workload and system model.  

There are several simulation or analysis tools for real-time systems, but many do not have proper 

documentation, they are not extendable (e.g. add new scheduling policies), nor open source. Moreover, 

there isn’t any tool imposed as standard in this area. That is why many researchers choose to develop 

their own performance evaluation tools. As result of this context, there are a lot of very specialized 

tools that work only for a specific workload model or test only a specific problem.  

We will mention four simulation tools that have documentation, seem to be extendable, some of 

them are open source and provide automatic task set generation. These tools are STORM [106], 

MAST [107], FORTAS [108] and YARTISS [109].  

The closest tool to our approach is STORM (Simulation tool for real-time multiprocessor 

scheduling) [106]. STORM can handle multiprocessor architectures and data exchange between 

periodic or aperiodic tasks. The simulated system’s description is specified through an XML file that 

contains simulation parameters, tasks set, data exchanged by tasks, CPU and scheduler specification. 

Compared to our tool, this simulator does not cover intra task parallelism (e.g. multi threading or fork-

join model). It uses only global scheduling strategies and it does not allow partitioned and clustered 

scheduling approaches. STORM isn’t reported to have a task set generation tool. STORM is written in 

Java, it is not open source but one can easily write their own scheduler as long as they don’t need a 

different task or platform model.  

Another similar tool is YARTISS [109], an event-based real-time systems simulator obtained as 

result of the extension and redesign of RTSS simulator [110]. This tool is able to handle real-time 
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periodic tasks (the Liu & Layland model) and transactions (graph) executed on multiprocessor 

systems. The task model is augmented with energy related parameters. The scheduling policies 

implemented are uniprocessor and global multiprocessor variants of RM, DM, EDF and LLF. 

Moreover, this tool provides a task set generator based on the UUniFast-Discard [112] algorithm and 

simulation results visualization facilities. YARTISS is written in Java and is extendable as it is open-

source.       

MAST (Modeling and analysis suite for real-time applications) [107] allows the analysis of 

uniprocessor and complex distributed systems. It uses an event-triggered execution model with the 

possibility to handle complex task dependencies. As scheduling strategies, it supports fixed priority 

and EDF. The main features of MAST are worst-case response time schedulability analysis, sensitivity 

analysis and optimized priority assignment. The file that contains the model received by MAST as 

input is quite complex. Moreover, they do not provide automatic model generation. Due to the 

complexity of the input model specification and the lack of an automatic model generator, some will 

argue that MAST is difficult to use for performance evaluation. Because it is written in Ada, many 

will consider MAST hard to extend. 

FORTAS (Framework for real-time analysis and simulation) [108] is a real-time system analyzer 

and simulator. It offers functionalities for feasibility testing of various multiprocessor scheduling 

algorithms as well as for viewing task schedules with different uniprocessor and global multiprocessor 

scheduling algorithms (RM, DM, EDF, LLF and PF). It also provides a task set generation tool that 

uses UUniFast algorithm. The task generator has as parameters the interval for task priorities (and 

deadlines) and the distribution for task utilizations. FORTAS is written in Java, but it is not open 

source and consequently, not extendable. 

Compared to MAST and FORTAS, which are focused on analytical scheduling evaluation, our 

approach is mainly concentrated on simulation-based evaluation offering step-by-step information 

about the evolution of the system under test. Our tool implements a clustered scheduling approach and 

it allows intra-task parallelism. Moreover, in the same simulated system, different scheduling 

strategies can be defined for each particular executing element (processor, or network). 

Another research problem closely related to real-time systems performance evaluation and 

simulation is the automatic generation of task sets. Researchers use various methods to generate tasks 

sets that are used to demonstrate the performance of scheduling algorithms. Some of these methods 

can produce biased experimental results, as shown in [111]. This happens in the context in which there 

aren’t any reference task sets to be used as benchmarks, or any standard methods for conducting the 

performance evaluation of real-time systems. 

 The authors in [111] identify the requirements of automatic task set generation. In their opinion, the 

tool has to be efficient, independent and unbiased. The efficiency refers to the number of generated 

task sets that has to be large in order to achieve statistically significant results. Independence refers to 

the possibility of generating task sets by varying certain parameters such as number of tasks or task set 

utilization independent of other (constant) parameters. Finally, the distribution of the generated task 
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Figure 1. The RTMultiSim simulation environment 

sets should be equivalent to randomly choosing a task set from all possible ones, and discarding those 

that do not match the predefined parameters. 

For task sets that are used to validate uniprocessor systems (total utilization equal to 1), there is a 

very good method based on the UUniFast algorithm presented in [115]. This method was extended to 

multiprocessor task sets (total utilization can be greater than 1) by [112]. But the UUniFast-Discard 

algorithm proposed in [112] proved inefficient when the total utilization is equal to half the task set 

cardinality (nearly all task sets are discarded). The authors in [111] argue that Randfixedsum algorithm 

is appropriate to be used for multiprocessor task sets generation and provide a python implementation 

of the generator. Randfixedsum is able to efficiently generate a predefined number of task utilization 

values that add up to a predefined total utilization. We will demonstrate later in this Chapter that the 

algorithm we propose for task sets automatic generation is comparable to Randfixedsum, while easier 

to implement. Moreover, we propose an algorithm that generates chain transactions. 

In the following sections, we describe the simulation environment that we developed.  

3. The simulation environment 

Through the RTMultiSim simulation environment, we provide a set of tools that aim to assist 

researchers or real-time systems designers in: 

• Assessing new scheduling methods,  

• Comparing existing scheduling methods,  

• Studying the behavior of real-time applications in different execution scenarios  

• Finding settings (e.g. timing parameters assignation, processor allocation) that would 

improve the real-time applications’ schedulability  

As seen in Fig.1, the RTMultiSim Simulation Tool is the main component. It receives as input 

specifications of the workload and 

platform models, executes the simulation 

and stores the results in a database. The 

simulation results (e.g. statistics, 

execution traces) are later manually 

interpreted, or viewed using the 

Visualization Module. The workload and 

platform models and other simulation 

settings have to be specified in XML files 

that have predefined structures. 

Alternatively, the user can configure the 

platform model and the simulation 

settings configured through the graphical 

interface.  

The Workload Generation Tool 

automatically generates synthetic task or transaction sets that can be used for statistical analysis of 

real-time systems, according to some predefined parameters (e.g. total utilization, hyperperiod, 
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cardinality). The generated workload models are produced in the XML format required by the 

Simulation Tool. 

The Visualization Module provides a graphic representation of the simulation results. The user can 

view the execution trace of a task set and its corresponding jobs on processors and general information 

about the simulation (e.g. number of migrations, number of deadline misses, processors utilizations). 

The design and main features of the RTMultiSim simulation environment will be detailed as follows. 

4. The simulation tool 

The workload and platform models specifications as well as the simulation settings received as 

inputs are transformed into components of the Simulation Tool, as shown in Fig. 2. The simulator 

executes the task set on the 

platform’s available CPUs 

according to the selected 

scheduling strategy. During the 

simulation process, the 

simulator records relevant time 

parameters related to the 

behavior of the system that are 

later stored as results. 

The characteristics of the 

workload and platform models 

implemented in the simulator, 

as well as the simulation engine 

will be described next. 

 

 

Figure 2. The RTMultiSim simulation tool components 

4.1. The Workload Model  

The workload model used in RTMultiSim allows the representation of a variety of real-time 

applications that fall in the following general categories: sequential (single threaded), parallel (multi 

threaded) and distributed (with network communication).  

We propose a task model that is general enough to represent precedence dependencies and parallel 

execution and that, in the most simplified case, is able to represent sequential independent tasks that 

have a repetition period. We have already described the workload model in Chapter 2, so we will use 

that description as reference. 

The RTMultiSim workload model is implemented as a set of tasks with dependencies like depicted 

in Fig. 3. The model contains periodic and aperiodic tasks that produce and consume events. We 

implement the dependencies between tasks with events. A task can produce events, which are 
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Figure 4. Tasks that create a 

transaction through precedence 

dependencies 

consumed by other tasks, creating an execution dependency between producer and consumer. With 

this model, we can represent chain or graph transactions.  

 

 

 

 

 

 

 

 

 

Figure 3. Workload model implementation (class diagram) 

Fig.4 shows five tasks that create a graph transaction. Each task has P (produce) and C (consume) 

event lists. The execution precedence between tasks is created by the fact that a tasks that has to 

consume an event will be blocked (not scheduled for execution) until that event is produced and put in 

the global event queue.   

The task’s execution requirements are represented as a 

sequence of execution segments. An execution segment 

may be a sequential portion of a task and generate a single 

thread, or it can generate multiple threads that could be 

executed in parallel on a number of processors (if 

available). Each thread will have the execution time of the 

segment to which it belongs. Depending on the execution 

model, the task can be fork-join, or multiframe. In the case 

of a fork-join task, the execution segments represent the 

task’s sequential and parallel portions. These portions are 

executed in the same order each period. In the case of 

multiframe tasks, the execution segment represents the 

execution behavior during a period. Each task instance 

will have the execution requirements of a single execution 

segment, in the order given by the execution segments list. 

Fig. 5 shows the difference between the fork-join execution model and the multiframe execution 

model. Note that our task model supports both execution models, but in our experiments, we used only 

the fork-join model.   
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4.2. The Platform and Scheduling Models 

The platform is modeled as a sum of identical processing units (CPUs). The execution speed of all 

tasks is the same on all processors. Job context switch time and job migration time can be taken into 

consideration as constant values. This type of platform model can represent parallel systems as well as 

distributed systems. In the case of distributed systems, the networks are represented as processing 

units.   

   

 

 

 

 

 

 

 

 

 

 

Figure 5. Two uses of execution segments: fork-join parallel tasks and multiframe tasks   

From the allocation point of view, there are three main approaches for multiprocessor scheduling: 

• Global 

• Partitioned 

• Clustered 

In the global approach, jobs can be allocated to any available processor and can migrate to other 

processors during execution with no restrictions. Partitioned scheduling assumes that each processor 

has its own scheduler and job queue. A task is allocated to a single processor. In clustered scheduling, 

job migration is restricted to a subset of the available processors. Processors are grouped into clusters. 

Each cluster has its own scheduler and job queue. First, tasks are allocated to clusters, and then each 

cluster scheduler globally schedules jobs inside the cluster.  

In RTMultiSim, we implemented the loose clustered approach, which we described in Chapter 2. 

We can configure the scheduling mechanism to be partitioned, global, clustered or loose clustered.  

The RTMultiSim implementation of the scheduling model (Fig. 6) contains a cluster manager and a 

set of clusters. The cluster manager applies a partitioning heuristic to allocate all tasks to the existing 

clusters. If there is only one cluster (global scheduling), all tasks are allocated to that cluster. 
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A cluster contains the allocated task set, the list of CPUs and two schedulers (the cluster’s own 

scheduler and the alternative scheduler). The alternative scheduler can be excluded if the user does not 

want to use the loose clustered mechanism. The local scheduling algorithm decides the execution 

order of jobs. In our model, each cluster can use a different scheduling algorithm.   

 

 

 

 

 

 

 

 

 

 

Figure 6. The RTMultiSim scheduling implementation (class diagram) 

 The partitioning heuristics available in RTMultiSim are: Next Fit and Affinity. In Next Fit, tasks are 

sorted in a decreasing order according to their utilization factor (execution time divided with period). 

Each time, the first task is allocated to the next available cluster. In Affinity, tasks with largest 

utilization factor and the shortest CPU Affinity list are allocated first. Each task is allocated to the first 

available cluster, which contains a CPU from its CPU Affinity list. New partitioning heuristics can be 

added by writing classes, which implement a predefined abstract interface (IPartitioningAlgorithm). 

In RTMultiSim, we implemented priority-based scheduling algorithms. A scheduling algorithm of 

this category chooses the jobs with the n highest priorities to be executed on n available processors, 

after it has computed the priority for each job. The available scheduling algorithms are: Rate 

Monotonic (RM), Earliest Deadline First (EDF), Least Laxity First (LLF) and First In First Out 

(FIFO). RTMultiSim supports preemptive (e.g. RM, EDF, LLF) and non-preemptive (e.g. FIFO) 

scheduling algorithms. The simulator may be extended with other user-defined scheduling algorithms 

by creating classes, which implement a predefined abstract interface (ISchedulingAlgorithm). 

4.3. The Simulation Engine 

The simulation is performed for a fixed time interval or until the feasibility interval is covered. For 

instance, according to [105] and [104] the feasibility interval for fixed priority algorithms on 

multiprocessor systems is a multiple of the task set hyper-period. The simulation engine receives as 

input the system model in order to perform the simulation. The most important components of the 

simulation engine are: 
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• System model (tasks, CPUs, schedulers) 

• Clock 

• Job generator 

• Jobs and threads 

Simulation time and job generation. The simulation time is modeled as a global clock. All CPUs 

are synchronized to this clock. The global clock advances every time with one simulation time unit 

(STU). At each clock tick (transition), the state of the system is recomputed. There can be new job 

releases and, depending on the scheduling strategy, there can be schedule updates that generate 

preemptions. A job’s execution time is equal to an integer number of STUs. In a time step, each CPU 

executes exactly one time unit from the total execution time of a running job.  

The job generator creates new jobs according to the workload model. After each global clock 

transition, this component gets from the workload model all the tasks that have to release new jobs at 

the current simulation time. Based on those tasks, it creates new jobs, which are copied in the global 

job queue. 

Jobs and threads. In RTMultiSim, jobs inherit all task parameters. The job release time is set to its 

creation time. Job execution is performed according to the task’s sequence of execution segments.  

A job contains a list of threads, which can be started and executed in parallel. Threads are created at 

the start of an execution segment. When all the threads in an execution segment are completed, the 

threads for the next segment are created. A thread can pass through several states during its existence, 

from creation to completion. The possible thread states are:  

• Ready 

• Scheduled 

• Running 

• Blocked  

• Completed 

In “ready” state, a thread is prepared to be scheduled. If it was chosen by the scheduler and assigned 

to a CPU, the thread is in “scheduled” state. During execution, the thread is in “running” state. In the 

thread is preempted, it returns in “ready” state. The thread is “blocked” if it waits for an event to be 

produced, in order to start or resume its execution.    

Scheduling. The cluster manager takes the jobs from the global job queue and places them in the 

clusters’ job queues, according to task partitioning. Then, each cluster’s scheduler chooses the jobs 

that will be executed on each of its CPUs, according to the scheduling algorithm. Threads belonging to 

the same job have the same priority. Ready threads will not interrupt running threads that belong to the 

same job. A multithreaded job can be allocated to more than one CPU at the same time. For real-time 

transactions, deadlines have to be assigned to intermediate tasks before these will be scheduled. The 

simulator has some heuristic algorithms that assign deadlines to tasks. It also has an extension that 

finds optimized deadlines by using a genetic algorithm. 
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Figure 7. Simulation execution flowchart 

Execution. A simulation execution step, as shown in Fig. 7, starts with job generation. Generated 

threads that do not meet the requirements to enter ready state (e.g. the thread can start only if a certain 

event is produced) are blocked. Blocked threads that meet the requirements to enter the ready state are 

unblocked. 

New jobs, if any, are placed in the clusters’ job queues. Each cluster scheduler allocates jobs 

(threads) to its CPUs. Next, the threads are executed on CPUs. During thread execution, events can be 

consumed or produced, execution time is increased and execution statistics are recorded. If the thread 

is completed, it is removed from the jobs’ current threads list. If the job is completed, it is removed 

from the cluster’s queue and placed in the results. 
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Finally, the simulation time is increased and the simulation execution moves to the next time step. 

Results. Simulation results are periodically written in a database, until simulation completion. 

Results for each simulation are recorded separately. For each released job, the simulator records the 

response times and deadline. For each thread, release time, start time, completed time, execution time, 

number of migrations and CPU visitation sequence are recorded. Based on the recorded raw data, a 

number of statistical parameters may be computed such as: the number of successfully finished tasks, 

number of deadline misses, number of migrations, effective utilization of CPUs, etc. 

4.4. Simulation examples 

RTMultiSim can simulate a variety of systems, defined through configuration parameters, without 

any changes in the code. From the platform point of view, these systems can span from multiprocessor 

(parallel) to distributed architectures. The scheduling strategies may be global, partitioned, clustered or 

loose clustered. The workload can be represented as independent parallel or sequential tasks, periodic 

or aperiodic tasks and distributed transactions. 

The workload and other simulation parameters such as number of processors, cluster configuration, 

scheduling and partitioning strategies are specified in XML or text files. 

An independent task set may have the following specification: 

<Tasks> 

   <Task type="periodic" id="1" C="10" T="15" D="12" />  

   <Task type="parallel" id="2" C="5,4,6" P="1,3,1" T="15" D="15" />   

   … 

</Tasks>  

Where id is the task identifier, C is the execution time or list of execution times (for each execution 

segment), T is the period, D is the deadline, and P is a list of parallelism values, one for each execution 

segment. 

A transaction is specified as follows: 

;60,60 

t1 child m1 

m1 child t2 

t2 child 

Where the first two values are the period and the deadline t1, t2 are tasks and m1 is a message. For 

each task or message, the user has to specify the execution time and the processors (networks) on 

which they can execute like: 

t1, 23, 1, 2 

t2, 11, 2 

m1, 10, 0 
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Task t1, for example, has execution time equal to 23 and can be executed by processors with id’s 1 

and 2. 

A DAG transaction is specified as follows: 

;30,40 

t1 child t2, t3 

t2 child t4 

t3 child t4 

t4 child 

Task t1 has two children, t2 and t3 that have a common child, t4. 

The platform and other simulation parameters can be specified in an XML file or configured 

through the simulation tool's GUI. An example of platform XML is as follows: 

<Platform> 

<CPU No="4" Cluster="{0 1 2 3}" Sched="EDF" Part="Affinity" LinkClusters="false" /> 

<Settings WriteResults="true" SimTime="5000"/> 

</Platform> 

“Cluster” attribute describes the scheduling approach. In the previous example, it is the global 

approach. For partitioned approach, each CPU ID is put in separate brackets like “{0}{1}{2}{3}”. For 

clustered approach, the CPU IDs are grouped (one pair of brackets for each cluster) like “{0 1}{2 3}”. 

“LinkClusters” is “true” if the user chooses the loose clustered approach and “false” if it chooses 

traditional clustered approach. “Sched” and “Part” are the scheduling and the partitioning algorithms. 

 

Figure 8. The RTMultiSim user interface.  

The RTMultiSim GUI allows choosing the workload and platform model files and the manual input 

of some configuration parameters. Moreover, there are controls for starting the simulation or other 

types of evaluation. Fig. 8 shows the RTMultiSim GUI, the Simulation tab. 
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5. Synthetic workload generation tool 

In order to generate different simulation scenarios that fit statistically to some globally defined 

parameters (e.g. processor utilization) we developed a tool for automatic workload generation. The 

goal is to establish for every simulation scenario some parameters that statistically cover the most 

relevant cases. Our tool can generate periodic independent task sets or periodic transaction (chain of 

tasks) sets. 

5.1. Task Set Generation 

Task sets used for evaluations are generated automatically in the majority of cases. The method 

used to generate tasks is essential, as some task set characteristics like the task set cardinality, the 

distribution of task periods or the distribution of individual task utilizations may influence the 

evaluation. For instance, for the same task set utilization factor, we obtained different schedulability 

results when we used uniform and exponential task utilization distribution. On 6 processors, with 

utilization factor of 4.8 and global EDF scheduling, task sets generated with a uniform distribution 

were better scheduled then those obtained with an exponential task utilization distribution.  

We needed a tool that generates task sets that do not produce misleading simulation results. The 

parameters that can be configured for the task set are:  

• Total utilization 

• Number of tasks 

• Task set maximum hyperperiod (LCM of repetition periods)  

The main problem to be solved is to generate n individual utilization values of which the sum is 

equal to U. Even though there are two important results, which address this problem, the UUnifast-

Discard algorithm [112] and the Randfixedsum algorithm [111], we decided to use a new approach. 

We made this decision because, in the UUniFast-Discard case, the algorithm fails to generate task sets 

for particular values of n and U [111], and because Randfixedsum is very complex and difficult to 

understand and implement.   

To obtain a task set with n independent periodic tasks with implicit deadlines and utilization equal 

to U, we developed the following methodology: 

1. Randomly choose n task periods (Ti) uniformly distributed in the interval [Tmin, Tmax], having the 

least common multiple (LCM) less than a given LCMmax.  

2. Generate n random task utilization values (ui) for which the sum is equal to a given U. Each ui 

has to be equal or greater than 1/Ti and less than 1 (because the computed execution time Ci has 

to be greater than 0).  

3. For each pair (Ti, ui), compute the execution time Ci=ui*Ti of task i. 

4. Verify if the task set satisfies the requested parameters. If not, the task set is discarded.       

For step 2, we propose an algorithm that generates n task utilization values with the sum equal to U. 

The algorithm starts with assigning each ui the mean value (U/n). To obtain a random distribution of 

the utilization values inside the task set and keep the total utilization equal to U, at each iteration step 

we randomly choose two ui values which will be modified by adding and subtracting a random value 
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from the interval [0,U/n]. After a large number of iterations, we obtain task utilization values, which 

are well spread in the interval [1/Ti, 1].  The proposed algorithm’s pseudocode is listed below. 

Algorithm:  generate n utilization values of sum equal to U. 

Input: n, U, T1,T2,…,Tn 

Output: u1, u2, …,un 

Begin 

 

For(i=1; i<=n){ ui=U/n;} 

Repeat n
4
 times 

{ 

  d = random(0,U/n); 

  x = random(1,n); 

  y = random(1,n);     

  if(x!=y)&&(1/Tx<=ux-d<=1)&&(1/Ty<=uy-d<=1) 

  { 

     ux = ux+d; 

     uy = uy-d; 

  } 

} 

 

End 

 

Figure 9. Comparison between Randfixedsum (blue) and our algorithm (red) 

We compared our results with the results of Randfixedsum [111] and we concluded that the two 

approaches are equivalent because they generate similar distributions of individual utilization values. 

We generated task sets with 40 tasks per set and with total utilization of 4 with both algorithms 

(Randfixedsum and ours). Fig. 9 shows the distribution of individual task utilizations we obtained by 

using the two algorithms. In terms of execution time, our algorithm is slightly less efficient, but it 

produces results in an acceptable time for less than 100 tasks per task set.   

Moreover, our algorithm does not have the problem of UUnifast-Discard [112], being able to 

generate without any problem task sets having the total utilization equal to half the task set cardinality. 
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5.2.  Transaction Set Generation 

We generate periodic transaction sets, using a similar methodology. The transactions are in fact 

chains of tasks, meaning that each task has at most one predecessor and at most one successor. 

Processing tasks may alternate with communication tasks.  

The parameters that can be configured for the transaction set are:  

• Total utilization 

• Number of transactions 

• Maximum number tasks per transaction 

• Transaction set maximum hyperperiod (LCM of repetition periods)  

The methodology for automatically generating a transaction set based on the previous preset 

parameters is the following: 

1. Randomly choose n periods (Ti) uniformly distributed in the interval [Tmin, Tmax], having the 

least common multiple (LCM) less than a given LCMmax.  

2. Generate n random transaction utilization values (ui) for which the sum is equal to a given U. 

3. Based on the generated periods and utilizations, create n transactions.  

4. For each transaction, create a task set using the methodology presented in section IV.A. All 

tasks will have the same period, equal to the transaction’s period. The precedence relations 

between them will be based on the order in which they are generated.  

This version of the Workload Models Generation Tool does not generate platform related 

constraints for tasks. The user can add this type of constraints (e.g. task to CPU affinity) manually to 

the task or transaction set specification files.  

6. The Visualization Module 

After the simulation has ended, the Visualization Module can generate statistics and graphic 

representations of the simulation results. The user has to choose a simulation for which the module 

will show the results.  

The user can view statistical data such as: 

• Number of task migrations 

• Number of job migrations 

• Number of deadline misses 

• Actual utilization per processor 

The user can also view execution traces of tasks and jobs on processors, or the execution trace for 

all processors in parallel in the same window. Fig. 10 and 11 are graphic representations generated by 

the module. 
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Figure 10. Task migrations in the Visualization module 

 

Figure 11. Task execution trace on one processor in the Visualization module 

7. Comparison with other simulation tools 

To highlight the main characteristics of RTMultiSim, we compare it with similar tools. We selected 

three of the most representative and recent real-time systems simulation tools: STORM, YARTISS, 

MAST. Table 1 shows the comparison. We highlighted the most general approach for each 

characteristic.  

Table 1. Comparison between RTMultiSim and other real-time systems simulation tools 
Characteristics RTMultiSim STORM YARTISS MAST 

Simulation Yes Yes Yes No 

Schedulability 

analysis 

Yes No No Yes 

Set and optimize 

scheduling parameters 

Yes No No Yes 
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(processor allocation, 

deadline assignation ) 

Workload model Parallel tasks, 

periodic tasks, 

non-periodic 

tasks, 

transactions, 

tasks with 

precedence 

dependencies 

Sequential periodic 

tasks, data 

messages between 

tasks 

Sequential periodic 

tasks (energy 

aware), graph 

transactions 

Chain transactions 

Platform model Homogeneous 

multiprocessor 

Homogeneous 

multiprocessor 

Homogeneous 

multiprocessor 

Heterogeneous 

multiprocessor 

Scheduling model Clustered, Loose 

Clustered, Global, 

Partitioned 

Global Global Partitioned 

Scheduling algorithms RM, EDF, LLF, 

FIFO 

FP, EDF, FIFO FP, EDF, LLF, 

FIFO 

FP, EDF 

Partitioning heuristics Next fit, Affinity No No Partitioning is done 

manually 

Energy aware No No Yes No 

Task set generation Yes No Yes  No 

Transaction set 

generation 

Yes No No No 

Language C# Java Java Ada 

OS Windows Windows, Linux Windows, Linux Windows, Linux 

Open source Yes No Yes Yes 

Visualization Yes Yes Yes Yes 

 

We conclude that, compared to these other tools, RTMultiSim‘s has the following advantages: 

• The most general workload model 

• The most general scheduling model 

• It implements partitioning heuristics 

• Has task set and a transaction set generation tools 

• The task and transaction set generation tools rely on a more efficient algorithm than 

UUnifast-Discard, while others rely on UUnifast-Discard. 

As for the disadvantages: 

• It is not available on Linux; however, with some minimum effort it can be compiled with 

Mono [116], to obtain its Linux version. 

• The Visualization module is weak compared to others; however, by using some external, 

more complex tools we can achieve good graphical results analysis.  

• It is not energy-aware; but only YARTISS has this characteristic. 
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8. Conclusions 

In this chapter, we presented RTMultiSim, a versatile simulation tool that covers most of the typical 

cases of multitasking and multiprocessor real-time systems. First, we described the conceptual model 

of the simulator and its functioning. The workload model used by the simulator allows representation 

of various types of real-time tasks such as independent periodic tasks, dependent tasks, parallel tasks, 

fork-join tasks, and transactions. The scheduling strategy may be global, partitioned, or clustered. 

RTMultiSim provides multiple partitioning and scheduling algorithms and an easy method to integrate 

new algorithms. We also presented a method for automatic task and chain transaction set generation, 

used to generate different simulation scenarios that fit to some predefined parameters.  

The RTMultiSim tools (source code and executables) and documentation are available at 

http://users.utcluj.ro/~ancapop/research.html. 

The main contributions of this chapter are the following: 

1. A comparative study of existing real-time simulation tools. 

2. The development of a real-time systems simulation environment called RTMultiSim that 

contains: 

a. A simulation tool that covers a wide variety of system models, including parallel and 

distributed real-time systems. As far as we know, it is the only tool that can simulate 

clustered scheduling and parallel task sets. 

b. An automatic workload generation tool that generates task sets as well as chain 

transaction sets. Only a few performance evaluation tools provide automatic task set 

generation, and none of those provides automatic transaction set generation. 

c. A visualization module. 

3. The development of an algorithm that generates random task sets based on some predefined 

parameters. 

4. The development of an algorithm that generates random chain transaction sets based on some 

predefined parameters. 
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