
Implementation of a MIPS processor in VHDL

This laboratory work describes the design of a simplified MIPS processor and some guidelines for its

implementation in VHDL. The outcome will be an implementation of the simplified MIPS processor, which will

be tested through simulation.

1. MIPS instruction set architecture

MIPS (Microprocessor without Interlocked Pipeline Stages) is a RISC (Reduced Instruction Set Computer)

architecture. This architecture defines 32 general purpose registers. The first register $r0 always contains the

value zero. MIPS has fixed width instructions (32 bit). There are 3 instruction types: I-type (immediate), R-type

(register), J-type (jump). For the scope of this laboratory work, only I-type and R-type will be described and

used. Fig. 1 shows the format of I-type and R-type instructions.

opcode rs rt Address/immediate

 6 5 5 16

 I-Type instruction

opcode rs rt rd Shift Function

6 5 5 5 5 6

 R-Type instruction

Figure 1. I-type and R-type instruction formats

MIPS is a load/store architecture, meaning that all operations are performed on values found in local

registers. The main memory is only accessed through load (copy value from memory to local register) and store

(copy value from local register to memory) instructions.

The fields in the MIPS instructions are the following:

• OPCODE – 6 bit operation code

• RS – 5 bit specifier for source register

• RT – 5 bit specifier for target register

• RD – 5 bit specifier for destination register

• Address/immediate – 16 bit signed immediate used for logical and arithmetic operands, load/store

address offsets

• Shift – 5 bit shift amount

• Function – 6 bit code used to specify functions

2. Instruction execution

Each instruction is divided into a series of steps:

• Instruction fetch: fetch the instruction from the memory and compute the address of the next

instruction.

• Instruction decode: registers indicated by rs and rd are read.

• Execution: the instruction is known, so the function is executed (memory address computation,

arithmetic-logical operation).

• Memory access: the memory is accessed based on the address computed before, or the result is

written in the destination register.

• Write back: the load operation is completed by writing the value from the memory in the register.

Each step of instruction execution is performed in a clock cycle. The datapaths are presented below.

Fetch datapath

Figure 2. Instruction fetch datapath

R-type datapath

Figure 3. R-type datapath

 Register block

 Read

 register 1

 Read

 register 2

 Write

 register

 Write

 data

 Read

 data 1

 Read

 data 2

 ALU

 Instruction

 RegWrite

 ALU operation

 PC

 Address

Memory

MemRead

 Instruction

 Add

 4

Load/store datapath

Figure 4. Load/Store datapath

Figure 5. MIPS multicycle datapath

 Register block

 Read

 register 1

 Read

 register 2

 Write

 register

 Write

 data

 Read

 data 1

 Read

 data 2

 ALU

 Instruction

 RegWrite

 ALU operation

 Sign

 extend

 Memory

 Address

 Read

data

 Write

 data

 MemRead MemWrite

3. Assignments

Design a phase generator

The phase generator will generate the sequence of execution steps as states, based on the clock signal. There

will be a distinct state for each step. Design the phase generator and implement it in VHDL.

Design the control unit

The control unit will generate control signals for each component in the design, based on the current state

(given by the phase generator) and on the instruction code. The control signals are the following:

• MemRead: if 1, read from memory;

• MemWrite: if 1, write to memory;

• RegDst: if 0, the register file destination number for the Write register comes from the rt field; if 1, it

comes from rd field;

• RegWrite: if 1, the general-purpose register selected by the Write register number is written with the

value of the Write data input;

• AluSrcA: if 0, the operand is PC; if 1, the operand is A register;

• AluSrcB: if 0, the operand is 4; if 1, the operand is B register;

• MemtoReg: if 0, The value fed to the register file Write data input comes from ALUOut; if 1, it

comes from Memory data register (MDR);

• IRWrite: if 1, write instruction in IR;

• PCWrite: if 1, write the PC;

• ALU control (see ALU control unit design)

Step R-Type actions Memory reference actions

Fetch IR = Memory[PC]

PC = PC + 4

Decode A = Reg[IR[25-21]]

B = Reg[IR[20-16]]

Execution ALUOut = A op B ALUOut = A + sign-extend

(IR[15-0])

Memory Reg[IR[15-11]] =

ALUOut

Load: MDR = Memory[ALUOut]

or

Store: Memory[ALUOut] = B

Write back Load: Reg[IR[20-16]] = MDR

Design the state machine for the control unit, and then implement it in VHDL.

Design an ALU control unit

The table for the ALU control is the following:

Instruction opcode function ALU action ALUop

Load 100011 - add 00

Store 101011 - add 00

R-Type/add 000000 100000 add 00

R-Type/sub 000000 100010 sub 01

R-Type/and 000000 100100 and 10

R-Type/or 000000 100101 or 11

Design the state machine for the ALU control unit, and then implement it in VHDL. It can be part of the

main control unit.

Implement the MIPS

Given previous design, implement the MIPS in VHDL. There are some already implemented components:

PC, IR, ALU, Register block (from [1]). At first, do not use a real memory module; just generate some

instructions and data to test your implementation. Simulate the VHDL code.

Constants

PACKAGE ProcMem_definitions IS

-- globals

CONSTANT width : NATURAL := 32;

-- definitions for regfile

CONSTANT regfile_depth : positive := 32; -- register file depth = 2**adrsize

CONSTANT regfile_adrsize : positive := 5; -- address vector size = log2(depth)

END ProcMem_definitions;

The ALU

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

-- use package

USE work.procmem_definitions.ALL;

ENTITY alu IS

PORT (

a, b : IN STD_ULOGIC_VECTOR(width-1 DOWNTO 0);

opcode : IN STD_ULOGIC_VECTOR(1 DOWNTO 0);

result : OUT STD_ULOGIC_VECTOR(width-1 DOWNTO 0);

zero : OUT STD_ULOGIC);

END alu;

ARCHITECTURE behave OF alu IS

BEGIN

PROCESS(a, b, opcode)

-- declaration of variables

VARIABLE a_uns : UNSIGNED(width-1 DOWNTO 0);

VARIABLE b_uns : UNSIGNED(width-1 DOWNTO 0);

VARIABLE r_uns : UNSIGNED(width-1 DOWNTO 0);

VARIABLE z_uns : UNSIGNED(0 DOWNTO 0);

BEGIN

-- initialize values

a_uns := UNSIGNED(a);

b_uns := UNSIGNED(b);

r_uns := (OTHERS => '0');

z_uns(0) := '0';

-- select desired operation

CASE opcode IS

-- add

WHEN "00" =>

r_uns := a_uns + b_uns;

-- sub

WHEN "01" =>

r_uns := a_uns - b_uns;

-- and

WHEN "10" =>

r_uns := a_uns AND b_uns;

-- or

WHEN "11" =>

r_uns := a_uns OR b_uns;

-- others

WHEN OTHERS => r_uns := (OTHERS => 'X');

END CASE;

-- set zero bit if result equals zero

IF TO_INTEGER(r_uns) = 0 THEN

z_uns(0) := '1';

ELSE

z_uns(0) := '0';

END IF;

-- assign variables to output signals

result <= STD_ULOGIC_VECTOR(r_uns);

zero <= z_uns(0);

END PROCESS;

END behave;

The PC

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

-- use package

USE work.procmem_definitions.ALL;

ENTITY pc IS

PORT (

clk : IN STD_ULOGIC;

rst_n : IN STD_ULOGIC;

pc_in : IN STD_ULOGIC_VECTOR(width-1 DOWNTO 0);

PC_en : IN STD_ULOGIC;

pc_out : OUT STD_ULOGIC_VECTOR(width-1 DOWNTO 0));

END pc;

ARCHITECTURE behave OF pc IS

BEGIN

proc_pc : PROCESS(clk, rst_n)

VARIABLE pc_temp : STD_ULOGIC_VECTOR(width-1 DOWNTO 0);

BEGIN

IF rst_n = '0' THEN

pc_temp := (OTHERS => '0');

ELSIF RISING_EDGE(clk) THEN

IF PC_en = '1' THEN

pc_temp := pc_in;

END IF;

END IF;

pc_out <= pc_temp;

END PROCESS;

END behave;

The IR

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

-- use package

USE work.procmem_definitions.ALL;

ENTITY instreg IS

PORT (

clk : IN STD_ULOGIC;

rst_n : IN STD_ULOGIC;

memdata : IN STD_ULOGIC_VECTOR(width-1 DOWNTO 0);

IRWrite : IN STD_ULOGIC;

instr_31_26 : OUT STD_ULOGIC_VECTOR(5 DOWNTO 0);

instr_25_21 : OUT STD_ULOGIC_VECTOR(4 DOWNTO 0);

instr_20_16 : OUT STD_ULOGIC_VECTOR(4 DOWNTO 0);

instr_15_0 : OUT STD_ULOGIC_VECTOR(15 DOWNTO 0));

END instreg;

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

-- use package

USE work.procmem_definitions.ALL;

ARCHITECTURE behave OF instreg IS

BEGIN

proc_instreg : PROCESS(clk, rst_n)

BEGIN

IF rst_n = '0' THEN

instr_31_26 <= (OTHERS => '0');

instr_25_21 <= (OTHERS => '0');

instr_20_16 <= (OTHERS => '0');

instr_15_0 <= (OTHERS => '0');

ELSIF RISING_EDGE(clk) THEN

-- write the output of the memory into the instruction register

IF(IRWrite = '1') THEN

instr_31_26 <= memdata(31 DOWNTO 26);

instr_25_21 <= memdata(25 DOWNTO 21);

instr_20_16 <= memdata(20 DOWNTO 16);

instr_15_0 <= memdata(15 DOWNTO 0);

END IF;

END IF;

END PROCESS;

END behave;

The Register block

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

-- use package

USE work.procmem_definitions.ALL;

ENTITY regfile IS

PORT (clk,rst_n : IN std_ulogic;

wen : IN std_ulogic; -- write control

writeport : IN std_ulogic_vector(width-1 DOWNTO 0); -- register input

adrwport : IN std_ulogic_vector(regfile_adrsize-1 DOWNTO 0);-- address write

adrport0 : IN std_ulogic_vector(regfile_adrsize-1 DOWNTO 0);-- address port 0

adrport1 : IN std_ulogic_vector(regfile_adrsize-1 DOWNTO 0);-- address port 1

readport0 : OUT std_ulogic_vector(width-1 DOWNTO 0); -- output port 0

readport1 : OUT std_ulogic_vector(width-1 DOWNTO 0) -- output port 1

);

END regfile;

ARCHITECTURE behave OF regfile IS

SUBTYPE WordT IS std_ulogic_vector(width-1 DOWNTO 0); -- reg word TYPE

TYPE StorageT IS ARRAY(0 TO regfile_depth-1) OF WordT; -- reg array TYPE

SIGNAL registerfile : StorageT; -- reg file contents

BEGIN

-- perform write operation

PROCESS(rst_n, clk)

BEGIN

IF rst_n = '0' THEN

FOR i IN 0 TO regfile_depth-1 LOOP

registerfile(i) <= (OTHERS => '0');

END LOOP;

ELSIF rising_edge(clk) THEN

IF wen = '1' THEN

registerfile(to_integer(unsigned(adrwport))) <= writeport;

END IF;

END IF;

END PROCESS;

-- perform reading ports

readport0 <= registerfile(to_integer(unsigned(adrport0)));

readport1 <= registerfile(to_integer(unsigned(adrport1)));

END behave;

Bibliography

[1] M. Linder, M. Schmid, “Processor Implementation in VHDL”

