
1

Lab 10 - Memory design
Part 2

This laboratory work presents the second part of the design methodology of memory

modules for microprocessor-based systems.

1. Designing dynamic memories

 Basically, the design process is almost the same as for static memories, with the

following amendments:

 A periodic refresh mechanism must be added

 The addresses must be multiplexed (the row and column addresses are generated

sequentially on the same address signals)

 Validation signals for row (RAS – Row Address Signal) and column address (CAS

Column Address Signal)

 Circuit selection is done by the RAS and CAS signals

 For dynamic RAMs, multiplexing the addresses is necessary in order to reduce the

number of pins of the memory circuit and, by default, its size. Note that dynamic circuits have

a relatively large size, which imposes a large number of addresses for selection. The internal

organization of a dynamic memory is basically a matrix, with columns and rows; selecting a

memory location is done by specifying its row and column address.

A periodic refresh of the memory is necessary because the data is stored for a limited

time after a read or write operation (due to the capacitor which discharges in time). The

control of the refresh process can be done locally, at memory module level, or centralized,

system-wide level. Regardless of the method chosen, a designer must make sure that they

don’t overlap with the regular read or write cycles. The refresh operation is done

simultaneously for each line of the memory matrix. The figures below illustrate the time

diagrams of a read, write and refresh cycle.

 Address Line addr. Column addr.

 RAS\

 CAS\

 WR\

 Data Data read

 tras-cas tcas

 taccess

 tcycle

 Figure 1. Read cycle

2

 Address Line addr. Column addr.

 RAS\

 CAS\

 WR\

 Data Data to write

 tras-cas tcas

 taccess

 tcycle

 Figure 2. Write cycle

 Address Line addr.

 RAS\

 CAS\

 WR\

 Figure 3. Refresh cycle

Design example:

 Memory size: 16 MB

 Structure: word (16 bits), can address the first or last 8 bits of a word

 Bus characteristics

o 28 address lines

o 16 data lines

o Command signals: RD\, WR\, Refresh\

 Start address: D0.0000 H

 Memory circuits of 1M * 8 bits

3

Main block diagram

 Address Bus
 Data Bus Addr. Line and column addr.
Command Bus Mux
 CAS0\ Submodule 0 Matricea de
 memorie
 Dec. CAS1\ Submodule 1

 Control

circuit

 CAS2\ Submodule 2

 RAS\

 Read/Write Submodule n
 Data
 Amp. Data

 Figure 4. Main block diagram of a memory module

Submodule block diagram

 A0 D0 D0

 Line/Col.

Addr.

 A1 D1 D1

 A0-9 ….. 1M*8 bits

 A9 D7 D7

 CAS\

 RAS\ Data

bus
 WR\ WR\

 A0 D0 D8

 A1 D1 D9

 1M*8 bits

 A9 D7 D15

 CAS\

 RAS\ RAS\

 WR\

 CAS-i\

 A0 CAS-iL\

 CAS-iH\

 BHE\

 Submodule i (1M*16 bits = 2MB)

Figure 5. Block diagram of a submodule

4

Memory matrix

This block diagram is similar with the one from the static memory, with the following

changes:

 Instead of Sel-i\ signals, CASi\ signals are used

 Instead of addresses A1-A16, A0-A9 are used

 The RAS\ signal is connected to each submodule

 D0-15

 A0-9, BHE\ 1M

 RAS\ RAS\

 CAS 0\ CAS\

 WR\ WR\

 D0-15

 1M

 RAS\

 CAS 1\ CAS\

 WR\

 ………

 D0-15

 1Mcuv

 RAS\

 CAS 7\ CAS\

 WR\

 Figure 6. Memory matrix

5

Decoder and command circuit

 A21 A O0 CAS0\

 A22 B O1 CAS1\

 A23 C O2 CAS2\

 A24 Decoder ….

 A25

 A26 E1\

 A27 E2\ O7 CAS7\

 E3

 Start addr. D00.0000H

 (1101……..B) + Decoder

 RD\ Sel-module\

 WR\

 RAS\

 Refresh\

 Delay line

 AddrSel

 CAS\

 Command circuit

 Figure 7. Block diagram of decoder and command circuit

Amplification and multiplexing module

 MUX ‘245
SA1 A1 SD0 A B D0

SA2 O A2 SD1 D1

 …. I0

SA10 A10 SD7 D7

SA11 Dir
SA12 CS\

 ….. I1
SA20 ‘245

AdrSel Sel SD8 A B D8

 SD9 D9

SA0 ‘244 A0

SBHE\ BHE\ SD15 D15

RD\ RD\
WR\ WR\ RD\ Dir

 Sel-modul\ CS\

 Figure 8. Amplification and multiplexing module

6

2. Designing cache memories

The cache memory is the fastest memory in a computer system and is used to store

temporarily a portion of data and instructions for immediate use. Because the cache memory

is very fast, it is also very expensive, thus the size is limited and depends from architecture to

architecture.

The placement of the cache memory is between the main memory and CPU. In

order to improve performance, modern processors have multiple interacting levels of cache

memories on the same chip. The cache memory contains copies of some blocks from the main

memory. If a word is requested by the CPU, the cache memory is searched first. In case the

word is found (i.e. cache hit), the data is sent back to the CPU; otherwise (i.e. cache miss), the

word is retrieved from the main memory and then sent back to the CPU.

The memory words are grouped in pages, either blocks or lines. Each block is

marked with an address, referred to as a tag. The collection of tag addresses assigned to the

cache memory is stored in a tag memory (Figure 9).

Figure 9. Basic structure of a cache memory

Consider that the CPU generates a read request. As explained above, when this

request reaches the cache memory, the data is searched within the cache. If the word is not

found, the requested data is supplied by the main memory. But if the word is found in the

cache memory, there is no need to access the main memory. Figure 10 below illustrates an

execution of a read operation.

For a write request generated by the CPU, the cache memory operation is similar

to a read request. If the word is found in the cache, the write operation is performed. If the

word is not found in the cache, a copy of the word is loaded from the main memory into the

cache memory (which is followed by the write operation). Figure 11 below illustrates an

execution of a write operation.

7

Figure 10. Execution of a read operation

Figure 11. Execution of a write operation

8

2.1 Associative Mapping

In a fully associative cache memory, the address and the contents are stored as

separate words in the cache memory (i.e. any location can be used). The organization is a

combination of an associative memory and RAM, thus, only the addresses of the words are

stored in the associative part (Figure 12).

Figure 12. Associative-mapping cache memory

2.2 Direct Mapping

If RAM memories are used instead of associative memories, the cost of the

cache memory can be reduces. Consider that the cache memory M1 is divided into

b=2
s
 regions M1(0), M1(1),..,M1(b-1) called sets; and the main memory M2 divided

into blocks. Each block M2(i) in M2 is mapped into a set M1(j) in M1. The set address j

is j=i mod b.

Now, consider that a cache memory set contains a single word and the

memory addresses are divided into two parts:

 Index – the low-order s bits of the main memory address->

identifies the cache set that can store the memory block

 Tag - the remaining high-order t bits of the main memory address

The address specified by the index points out:

 A tag, which is stored in the tag memory

 A memory block, which is stored in the data memory

9

The tag memory can be a normal RAM and is addressed by the s-bit index.

If there are 2
d

words per set, the low-order d bits of the address form the displacement of the

word within the set. In figure 13 and 14, the architecture of a direct-mapping cache memory is

described.

Figure 13. Direct-mapping cache memory block diagram

Figure 14. Direct-mapping cache memory address structure

10

Direct-mapping cache memories have the advantage of requiring less number of

bits for each word in the cache memory. Also, this type of architecture requires no associative

memory. But the performance can decrease if two or more words (with the same index, but

different tags) are accessed frequently.

Design example of a direct-mapped cache memory

Consider a processor connected to a byte-addressable external memory. The

address bus is 32-bit wide and the data bus is 64-bit wide. The capacity of the cache memory

is 256 KB and the size of a set (block) is 32 B.

Dividing the entire capacity to the size of a set will point out the number of sets.

No. of sets: 256 KB / 32 B = 8 K = 2
13

 (13 bits for selecting the sets)

Thus, the capacity of the tag memory is 8 K * t bits.

The capacity of the data memory must be 256 KB. Dividing it by 8 B, we find the

total capacity for words of 64 bits.

Capacity of data memory: 256 KB / 8 B = 32 K words = 2
15

 words of 64 bits (15

bits address for the data memory)

In order to address a byte within a set, 5 displacement bits must be used, because

there are 32 B in a set (d=5).

To select the sets in the data memory, 13 bits are needed (i.e. set address s=13).

When calculating the number of sets, the exponent reveals the number of bits needed.

 Because the address bus is 32-bit wide, the tag size is:

t = 32 - (13 + 5) = 14 bits

The address for the data memory has 15 bits (exponent revealed when finding out

how many 64-bit words are in the whole memory).

Figure 15 below illustrates the block design of the direct-mapped cache memory

example.

11

Figure 15. Design example of a direct-mapped cache memory

2.3 Set-Associative Mapping

This type of cache memory allows the storage of more blocks with the same index.

The cache memory M
1
 is divided into b=2

s
 sets. Each set can store k = 2

m
 blocks and each set

M1(k) is an associative memory.

Both associative mapping and direct mapping are special cases of set-associative

mapping

 When k=1 : direct mapping

 When b=1 : fully associative mapping

In practice, only small values of k are used. This allows using RAMs to store the

tags. If k memory blocks, the cache memory is k-way set-associative (Figure 16). Note that

each memory block has the same structure as a direct-mapping cache memory.

12

Figure 16. K-way set-associative cache memory

Figure 17. 2-way set-associative mapping cache memory

13

Design example of a 2-way set-associative cache memory

Consider the capacity of a cache memory of 8 KB. Each set (block) has the size of

8 B. The address bus is 32-bit wide, while the data bus is 64-bit wide. The cache memory is 2-

way set-associative, thus k=2.

No. of sets: 8 KB / (2*(8 B)) = 512 = 2
9

To select the sets in the data memory (set addresses), 9 bits are needed s=9 (the

exponent revealed above).

To select a byte within a set, 3 bits are needed d=3.

Tag size: t = 32 – (9 + 3) = 20 bits

Tag memory: 2 * (512 * 20 bits)

No. of words: 8 KB / (2*(8 B)) = 512

Data memory: 2 * (512 * 64 bits)

Figure 18. Block diagram of a 2-way set-associative cache memory example

14

3. Applications

3.1 Design in VHDL a dynamic memory using the structural model. Follow the

design parameters mentioned above, as well as the block diagrams. Simulate the design and

run it on a FPGA board.

3.2 Design in VHDL a cache memory (direct-mapping type or set-associative

type). Use the design parameters from the examples above, as well as the block diagrams.

Simulate and run the design of a FPGA board.

