
Design of ALU components 

 

1. Introduction 
 

The ALU (Arithmetic and Logic Unit) is a digital circuit that performs arithmetic and logical 
components. This circuit is the basic block of the CPU and GPU and even for the simplest 
microprocessors.  

An ALU must be able to calculate most operations. If there are more complex operations, the 
value of ALU is higher (i.e. more expensive), uses more space in the processor and dissipates 
more power. Thus, the design is a tradeoff between computational power and area 
overhead/power consumption.  

Almost all processor operations are done by one or more ALUs. An ALU loads the data from 
the input registers. The external control unit tells the ALU which operation (i.e. operation code) 
to perform on the data, and then the ALU stores the result into an output register. The control 
unit is responsible for moving the processed data between these registers, ALU and memory.  
Many of the ALU designs also contain a status register that indicates different cases, such as: 
carry-in or carry-out, overflow, divide-by-zero and so on.  

This laboratory work contains the basic designs of the ALU components: adders, multipliers 
and divisors. The focus is on how to write VHDL code for each ALU component and how to 
simulate them in VHDL.  

2. Addition 
 
The addition operation is the most frequently used arithmetic operation in any computer 

system. If there are more complex arithmetic functions, they are reduced to a series of additions. 
Note that by increasing the speed of addition, the speed of the ALU is also increased; but the 
speed and cost of adders are directly proportional to their complexity. 

 
 
Full Adder 
 
This circuit is the basic addition block, which adds three 1-bit inputs: 2 bits to be added (Xi 

and Yi) and a 1 bit carry-in (Ci). It generates 2 outputs: the sum bit (Si) and the carry-out (Ci+1) 
bit. The figure below illustrates a full adder symbol.  



 

Figure 1. Full adder 

Table 1. Full adder truth table 

Xi YiCi Si  Ci+1 
0   0   0 0    0 
0   0   1 1    0 
0   1   0 1    0 
0   1   1 0    1 
1   0   0 1    0 
1   0   1 0    1 
1   1   0 0    1 
1   1   1 1    1 

 

Given the truth table above, the Boolean expressions of the outputs (after reduction) are: 

 푆 = 푥 ⨁푦 ⨁퐶  
 퐶 = 푥 ∙ 푦 + (푥 + 푦 ) ∙ 퐶  

A half adder is basically a full adder without the carry input and generates a sum bit and a 
carry bit.  

Ripple Carry Adder 

This type of adders are implemented by several full adders in series, each carry output is 
connected to the input of the next one. This is a parallel adder and is used for adding n-bit 
number. It has the advantage of simplicity and low cost, but at the cost of reduced speed. The 
figure below illustrates the block diagram of a ripple carry adder for adding 4-bit numbers. 



 

Figure 2. Ripple carry adder using 4 full adders, for 4-bit numbers 

 

Carry Lookahead Adder 

In order to reduce the time required to form the carry signals, this type of adders use a 
separate block which calculates the carry output of each full adder. Thus, there is no “wait time” 
for carries to ripple from stage to stage (like in the ripple carry adder design). In the figure 
below, the block diagram of a carry lookahead adder that adds 4-bit integers is exposed.   

 

Figure 3. Carry lookahead adder design for adding 4-bit numbers  

Given the design above, two functions are used to generate (G) and propagate (P) the carry 
output. 

 푔 = 푥 ∙ 푦  
 푝 = 푥 + 푦  



Using the 2 functions, an output carry is: 퐶 = 푔 + 푝 ∙ 퐶 . Thus, each carry output can be 
formed using the g and p functions from the same stage and from the previous stages. The carry 
blocks from the picture above can be joined in a single carry lookahead generator and each carry 
output can be generated by a combinational circuit.  

 

Other types of adders  

Besides the adders described above, there are several types of adders that have advantages 
and disadvantages over regular designs and which are worth mentioning. 

Carry Select Adder 

This type of adder uses redundant hardware to speed up the addition process. It divides the 
adding operation into 2 parts: the high-order half and the low-order half. First, the high-order 
half of the sum is calculated for both possible input carries. When the carry from the low-order 
half of the sum is known, the proper high-order half can be selected.Note that there is the 
possibility to divide the adder into quarters, so even lower complexity. This is why the 
complexity of this type of adder overcomes the carry lookahead adder disadvantages.  

Carry Save Adder 

This type of adder is used when more than 2 numbers are to be added because it reduces the 
carry propagation time. The design consists of n independent full adders (for n-bit numbers), 
with the inputs being the n-bit numbers and the outputs are an n-bit sum word and an n-bit carry 
word. Basically, each full adder works independently from the others and the carry signals are 
not propagated between the individual full adders. To get the final result, both parts (sum and 
carry) must be added together using a normal type adder.  

Serial Adder 

This is the simplest type of adder because it uses a single full adder and a D-latch. Basically, 
it performs the addition step by step from the Least Significant Bit (LSB) to the Most Significant 
Bit (MSB). The D-latch is used to propagate the carry of the previous sum to the next bits that 
are going to be added. 

 

3. Multiplication 
 
The multiplication of binary numbers is similar to that of decimal numbers. There are various 

methods of multiplying 2 n-bitnumbers: 
- Shift-and-Add Multiplication 



- Booth’s Technique 
- Higher-Radix Multiplication 
- Array Multiplier 
- Wallace Tree 

In the following sections, only 2 out of the 6 methods will be explained in detail. 

Shift-and-Add Multiplication is one of the basic and simplestmethod for adding 2 
numbers.Basically, the whole idea is to add the multiplicand (let’s say X) to itself for Y 
(multiplier) times. The algorithm is based on taking each digit of the multiplicand in turn and 
multiplying it by a single digit of the multiplier. Each intermediate product is placed in the 
appropriate positions, to the left of the earlier results. Finally, all the intermediate products are 
added together, to get the final result. The block design of the shift-and-add multiplication 
technique is illustrated in the figure below. 

Figure 4. Block design of the shift-and-add multiplication technique 

The Wallace Tree technique is based on combining pairs of partial products with the help of 
multiple levels of Carry Save Adders:  

- at each level of the tree, the numbers are grouped into three and are added together 
- the levels continue until only 2 numbers are left to be added 
- a Carry Propagate Adder is used to add the last 2 numbers and deliver the final result 

This design reduces the number of terms to be added by a factor of 1.5, thus resulting in a 
total time of O(log . 푛). Note that the preceding multipliers have a time of O(n), where n is the 



number of bits for each number. Below is a figure of a block design of a Wallace Tree for 
multiplying two 8-bit numbers. 

 

Figure 5. Block diagram of the Wallace Tree design for multiplying two 8-bit numbers 

The Wallace Tree method can be combined with other methods to further increase the speed. 
For example, the Booth technique can be used to produce the partial products, while a Wallace 
Tree adds the partial products.  

 
4. Division 

 
In any division operation, we have the first operand called dividend (X), the second operand 

called divisor (Y) and the results are the quotient (Q) and remainder (R). The mathematical 
expression is: 푋 = 푄 ∗ 푌 + 푅,푅 < 푌. 

The algorithm for decimal division is explained below: 
1. Choose a digit and subtract the product between this digit and the divisor from the 

partial remainder 
2. If the result is smaller than the divisor, the digit was chosen correctly 
3. Otherwise, choose another digit and repeat the subtraction 

The binary division algorithm is based on repeated subtractions of the divisor Y from the 
partial remainder R, but are executed only if Y≤ R, which results in a quotient digit of 1 
(otherwise is 0).  



The basic block design of the division operation is illustrated below in figure 6.  

 
Figure 6. Basic block design of the division operation 

Note that this block design can be improved in order to reduce the time and to simplify the 
hardware needed. For example, shifting the partial remainder to the left (instead of shifting the 
divisor to the right) produces the same alignment and simplifies the hardware of the ALU and the 
divisor register (n bits instead of 2n). Another idea is based on the fact that the first step cannot 
generate a digit of 1 in the quotient, thus the order of the operations can be switched: first shift, 
then subtract (one iteration removed). Also, the size of the A register could be reduced to half 
and could be combined with the Q register. So, the bits of the dividend are shifted into the A 
register instead of shifting zeros, and both A and Q registers are shifted left together. 
Considering the above, the improved block design is in figure 7 below. 



 

Figure 7. Improved block design of the division operation 

 

5. SimulatingVHDL designs in Xilinx ISE 
 
There are 2 ways to simulate in Xilinx: either by creating a Test Bench file or by using the 

Test Bench Waveform Editor. 
A test bench file contains VHDL code:  

 which unit is tested (by using the component declaration block) 
 initial/default signal values (e.g. initial value for reset is 0, enable signal is 0, etc.) 
 clock signal process (e.g. every 0.5ns, the clock signal changes its value) 
 general process which describes how the simulation flows (e.g. use of wait for 

statements, toggle some signals from 1 to 0 or vice versa, etc.) 
 
The test bench waveform editor is similar to the simple test bench file, but it is graphical. 

Basically, you can setup at any time (the max time is the simulation time, typically 1000ns) a 
value for any signal which was declared in the entity, just by clicking on the waveform. In 
general, the test bench waveform editor is simpler and more convenient than the test bench file 
creation when simulating simple and small designs. For more complex ones, the test bench file is 
more appropriate.  

In the following paragraphs, the basic steps for simulating VHDL designs in Xilinx ISE are 
explained. 



Before simulating, the project must be already created and must contain at least one VHDL 
source file. In order to compile, first select the source file from the Hierarchy pane, right-click 
and select “Set as Top Module”. Then, in the Processes pane, double-click the Synthesize – XST 
line. This will check the syntax of the VHDL code, compile it and prepare it for simulation.  

 
Creating a Test Bench File 
 

1. In the Hierarchy pane, right-click the project name and select New Source. In the new 
window, select VHDL Test Benchand enter a name (should be different than the 
source file). In the Associate Source page, select the association with the desired 
entity.  

2. The test bench file is now declared as a component and instantiated with the label uut 
(Unit Under Test). In the Hierarchy pane, select from the drop-down menu Sources 
for: Behavioral and below, double-click the test bench file. The test bench can be 
modified to satisfy needs.  

3. In the Processes pane, expand the Xilinx ISE Simulator and double-click the Check 
Syntax line. Correct any errors if any reported and recompile the file.  

 
Performing Simulation 
 

1. The default time for the entire simulation is 1000ns. This can be changed in the 
Process pane, by right-clicking the Simulate Behavioral Model and selecting Process 
Properties. In the new window, change the Simulation Run Timeproperty to any 
desired value.  

2. In the Process pane, double-click the Simulate Behavioral Model line. Now the ISim 
simulator is launching, which compiles the source file and the test bench file, builds 
simulation files and performs the actual simulation for the time specified. The results 
are shown in a Wave window.  

 
Simulation using the Test Bench Waveform Editor 
 

1. In the Hierarchy pane, right-click the project name and select New Source. In the New 
Source Wizard, choose Test Bench Waveform, input a name and press Next. Select 
which is the unit under test and then finish the wizard. In the new Initial Timing and 
Clock Wizard window, choose and setup the clock signal timings (if necessary).  

2. Select Behavioral Simulation in the top menu from the Hierarchy pane and then 
double-click the test bench waveform created in the previous step. 

3. In the waveform editor, the value of a signal can be changed by clicking on the 
waveform which corresponds to the desired signal. Note that a value can be changed 
once per clock cycle. Save the changes. 



4. From the Processes pane, expand Xilinx ISE Simulator and double-click Simulate 
Behavioral Model. This will launch the simulator and the simulation results (as 
waveforms) will be visible in a new Wave window.  

 
6. Applications 

 
6.1. Implement and simulate in VHDL a 4-bit counter (check the previous laboratory work).   
6.2. Design and implement in VHDL the modified version of the carry lookahead adder for 

4-bit numbers.  
 Form the 4 carry outputs using the g and p functions 
 VHDL implementation 
 Test and simulate the design for 2 random 4-bit numbers 

 
6.3. Design and implement in VHDL Carry Save Adder for three 4-bit numbers.  
6.4. Make a comparison chart that shows the advantages and disadvantages of each 

multiplying technique.   
6.5. Implement in VHDL the Wallace Tree for multiplying two 4-bit numbers. Simulate the 

design for 2 random numbers. 

 

 


