
FPGA Synthesis

1. Introduction

In order to design digital systems using programmable logic devices such as FPGAs,

computer aided design (CAD) software products are used. These software solutions offer the

whole package, from the early designing stage to the final FPGA implementation stage. Thus, 5

steps can be distinguished:

• Description: VDHL source code

• Synthesis: compile VHDL code, transform description into a netlist (basic logic gates

and interconnections)

• Functional simulation: simulation based on test benches and waveforms (usually from

the IDE, such as Xilinx ISE Simulator, ModelSimetc.)

• Implementation: adapting the netlist to the available resources of the device

(technology mapping, place and route)

• Configuration: programming the device

Each stage mentioned above is important in order to design a fully working digital system, on

a FPGA development board. This laboratory work will focus on the last 2 steps because the first

3 steps are already known from the previous lab. The purpose of this laboratory work is to

perform the programming of a FPGA device.

2. FPGA synthesis

This section presents a couple of design examples that are based on the VHDL language and

uses the Xilinx ISE environment for implementation.

Applications

Real-time clock

This a design that implements a real-time clock maintaining time in hours, minutes and

seconds, with the capability to set the time. The design is targeted for the Nexys 2 development

board (Xilinx Spartan-3E FPGA, 500k gates) or for the Nexys 3 development board (Xilinx

Spartan-6 FPGA). For this example, the system clock is generated by the 50 MHz on-board

oscillator (100 MHz for the Nexys 3 development board).

The input signals are the following:

• clk: system clock with a frequency of 50 or 100 MHz

• reset: reset signal, used for initializing and resetting the time to 00:00

• hour: displays how many hours have passed.

Output signals:

• segments(7:0): data bus for the 7 segments display

• anode(3:0): anode 4-bit bus for the 7 segments display

The design consists of a single functional block.

Below are the steps necessary to implement and run the real-time clock on the FPGA board.

1. In the Project Navigator window, create a New Project. Choose HDL source type and

enter any desired name.

2. In the following window, choose Spartan-3E as the development board, with the

device as XC3S500E, package FG320 and speed -4. For the Spartan-6 development

board, use Xilinx ISE 14.4, with the device set as XC6SLX16, package CS324, speed

-2. Leave the other options unchanged and finish the creation of the project.

3. Extract the file from clock2.zip. In the Hierarchy pane, Project->Add Copy of Source

and select the .vhd file from the unzipped folder.

4. Select the top module counter (clock.vhd) and run Synthesize – XST from the

Process/design pane.

5. (optional) Modify the maximum fanout. Open the Synthesis Report from the

Synthesize - XST tab and find the maximum fanout (and the corresponding resource).

Modify the default fanout value of 500 to 50 in the Process Properties of the

Synthesize tab (right-click the tab to access it). The fanout value can be changed in the

Xilinx Specific Options tab. Re-run Synthesize – XST and check again the maximum

fanout value from the Synthesis Report.

Explanation: large fanouts can cause difficulties during the routing phase. The Xilinx

environment allows limiting the fanout by duplicating gates with large fanouts or by

inserting buffers. Note that by reducing the maximum fanout value, the time needed

to do a complete Synthesize operation will be lower.

6. (optional) In the Process/design pane, double-click the View RTL Schematic process.

This will open a new window which illustrates the schematic representation of the

synthesis result.

7. Select the top-level clock module from the Hierarchy pane. Expand User Constraint

from the Process/design pane and double-click the Floorplan Area / IO / Logic – Post

Synthesis (I/O Pin Planning (PlanAhead) – Post-Synthesis in Xilinx 14.4).

8. In the I/O Ports panel, expand the segments entry and select segments[0]:

a. In the Site column of this port, select M13

b. I/O Std column, select LVCMOS33

c. Keep default values for the other options

9. Repeat the previous step to assign constraints to the remaining I/O ports, according to

the table below (only for Nexys 3 – Spartan 6 development board). Note that the

values in the Site column are different for the Nexys 2 development boards.

Port Site I/O Standard

clk V10 LVCMOS33

reset D9 LVCMOS33

hour C4 LVCMOS33

anode[0] N16 LVCMOS33

anode[1] N15 LVCMOS33

anode[2] P18 LVCMOS33

anode[3] P17 LVCMOS33

segments[7] T17 LVCMOS33

segments[6] T18 LVCMOS33

segments[5] U17 LVCMOS33

segments[4] U18 LVCMOS33

segments[3] M14 LVCMOS33

segments[2] N14 LVCMOS33

segments[1] L14 LVCMOS33

segments[0] M13 LVCMOS33

10. Save the I/O port constraints and exit the PlanAhead software.

11. (optional) The new .ucf file is added to the project. Select this file in the Hierarchy

pane and in the Process/design pane, double-click the Edit Constraints (Text) line.

Review the file to check if the constraints have been set correctly.

12. In the Process/design pane, right-click the Generate Programming File process,

select the Startup Options category and change the CLLK option to JTAG Clock.

Click OK to finish.

13. Run the Generate Programming File process.

14. Connect the development board (Spartan-3E or Spartan-6) to a USB port of the

computer, through the provided USB cable. Make sure the SELECT pin is set on

USB and move the power switch near the power connector to the ON position.

15. In the Process/design pane, expand Configure Target Device and double-click the

Manage Configuration Project (iMPACT).

16. In the ISE iMPACT window, create a new project. In the new dialog box, the

Configure devices using Boundary-Scan (JTAG) option should be already selected.

Ensure that the Automatically connect to a cable and identify Boundary-Scan chain

option is selected.

17. If the Auto Assign Configuration Files Query Dialog window appears, select the Yes

button to continue assigning the configuration file. The Assign New Configuration

File dialog window opens. Browse to the project folder, select the .bit file

(counter.bit), and click the Open button.

18. In the Attach SPI or BPI PROM dialog box, select the NO button.

19. The Device Programming Properties – Device 1 Programming Properties dialog

window will open, with the FPGA Device Specific Programming Properties property

automatically selected. Select the OK button.

20. In the device chain area, right-click on the device (xc3s500e or xc6slx16) and select

Program. If programming succeeds, the clock should start counting from 00:00.

21. There are 2 buttons below the display which are programmed as follows:

a. Left button (BTNL) shows how many hours have passed

b. Right button (BTNR) resets the clock to 00:00.

FIFO Memory

The goal of this application is to implement a FIFO memory on a Nexys 2 or Nexys 3

development board.

Figure 1 below illustrates the block diagram of the FIFO memory. The capacity is 8 words of

8 bits each.

Figure 1. Block design of the FIFO memory

When the read signal rd is asserted, the output data_out of the memory must be enabled.

When the read signal is not asserted, the output must be placed in the high-impedance state.

When the write signal wr is asserted, the value from the data_in input of the memory must be

written into one of the 8 registers. The read and write pointers indicate which register to read and

which register to write. To increment the read pointer, the rdinc signal is used, and to increment

the write pointer, the wrinc signal is used.

Create a new project in Xilinx 14.4, input a name and select the Spartan-3E or Spartan-6

board. Set the following settings:

Nexys 2 development board:

• Device XC3S500E

• Package FG320

• Speed -4

Nexys 3 development board:

• Device XC6SLX16

• Package CS324

• Speed -2

Create a new VHDL module for the FIFO memory. Specify the inputs and outputs according

to Figure 1. Write a process for each of the following elements of the memory:

• Read pointer

• Write pointer

• Decoder

• Register set

• Multiplexer

• Tri-state buffer

The processes will communicate via internal signals, which should be defined in the

declarative part of the architecture.

The design also needs a control module/unit. The block design of such a unit is visible in

Figure 2.

Figure 2. Block design of the control unit for a 8x8 FIFO memory

The control unit has as main inputs the read and write signals of the memory (rd and wr),

which generate the rdinc and wrinc signals for incrementing the read and write pointers from the

FIFO memory module. Also, the control unit will generate the empty and full status signals

(optional):

• Empty signal is set to logical 1 when no words have been written in the FIFO memory

or all words have been read

• Full signal is set to logical 1 when the FIFO memory contains 8 words that have not

been read.

The filtr block from Figure 2 is a debouncing module for the buttons used to generate the rd

and wr signals. When one of these buttons is pressed, the corresponding pin of the FPGA device

will be connected to logical 1. This module will be instantiated 2 times in the top-level module

and will generate a single pulse when the corresponding button is pressed.

The debouncing module is created as follows:

• Select Edit-> Language Templates, expand Synthesis Constructs->Coding Examples,

then Misc and select the template called Debounce circuit.

• Insert the signal declaration from the template before the begin keyword of the filtr

module, and the other lines of the template after the begin keyword of the same

module.

• Replace the strings <clock> and <reset> with clk and rst, then save the file.

The block displ_7seg from Figure 2 is the 7 segments display module, which you can find in

the archive fifo.zip.

Create a new VHDL module for a decoder for the 7 segments display and name it hex2sseg.

This module has as input a 4-bit hex code and outputs the 7-bit vector to drive the segments of

the display (sseg). In this file, after the begin keyword, select Edit->Language Templates->

Synthesis Constructs-> Coding Examples-> Misc, right-click on the template 7-Segment Display

Hex Conversion and select Use in File. Save the hex2sseg.vhd file.

In order to implement the FIFO memory on a development board, we must first define the

peripherals of the board which will be used:

• Input data will be entered from the SW7-SW0 slide switches

• The status of the slide switches will be displayed on the 2 left-hand side digits of the

7 segments display

• The byte read from the memory will be displayed on the 2 right-hand side digits of

the 7 segments display

• rst signal assigned to button left (BTNL)

• rd signal assigned to button up (BTNU)

• wr signal assigned to button down (BTND)

• full status signal will be displayed on LD0 Led

• empty status signal will be displayed on LD1 Led

Perform the following steps to implement and run the design on the Spartan-3E or Spartan-6

development board:

1. Select the top-module from the Hierarchy pane and the run the Synthesize process

from the Process/design pane for the whole design. Correct any errors that may

appear.

2. Expand User Constraints and run I/O Pin Planning (PlanAhead) – Post-Synthesis.

Assign to the ports the corresponding sites. Use the table below as a reference for a

Spartan-6 development board.

Port Site I/O Standard

clk V10 LVCMOS33

rst C4 LVCMOS33

btn_rd A8 LVCMOS33

btn_wr C9 LVCMOS33

empty U16 LVCMOS33

full V16 LVCMOS33

an[0] N16 LVCMOS33

an[1] N15 LVCMOS33

an[2] P18 LVCMOS33

an[3] P17 LVCMOS33

sseg [6] T17 LVCMOS33

sseg [5] T18 LVCMOS33

sseg [4] U17 LVCMOS33

sseg [3] U18 LVCMOS33

sseg [2] M14 LVCMOS33

sseg [1] N14 LVCMOS33

sseg [0] L14 LVCMOS33

data_in[7] T5 LVCMOS33

data_in[6] V8 LVCMOS33

data_in[5] U8 LVCMOS33

data_in[4] N8 LVCMOS33

data_in[3] M8 LVCMOS33

data_in[2] V9 LVCMOS33

data_in[1] T9 LVCMOS33

data_in[0] T10 LVCMOS33

3. In the Process/design pane, right-click the Generate Programming File process,

select the Startup Options category and change the CLLK option to JTAG Clock.

Click OK to finish.

4. Run the Generate Programming File process.

5. Connect the development board (Spartan-3E or Spartan-6) to a USB port of the

computer, through the provided USB cable. Make sure the SELECT pin is set on

USB and move the power switch near the power connector to the ON position.

6. In the Process/design pane, expand Configure Target Device and double-click the

Manage Configuration Project (iMPACT).

7. In the ISE iMPACT window, create a new project. In the new dialog box, the

Configure devices using Boundary-Scan (JTAG) option should be already selected.

Ensure that the Automatically connect to a cable and identify Boundary-Scan chain

option is selected.

8. If the Auto Assign Configuration Files Query Dialog window appears, select the Yes

button to continue assigning the configuration file. The Assign New Configuration

File dialog window opens. Browse to the project folder, select the .bit file, and click

the Open button.

9. In the Attach SPI or BPI PROM dialog box, select the NO button.

10. The Device Programming Properties – Device 1 Programming Properties dialog

window will open, with the FPGA Device Specific Programming Properties property

automatically selected. Select the OK button.

11. In the device chain area, right-click on the device (xc3s500e or xc6slx16) and select

Program.

12. Verify the operation of the FIFO memory on the development board.

