
Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications
__

__
Manuscript received February 19, 2008; revised April 17, 2008

20

 A VIRTUALLAB APPROACH FOR WIRELESS SENSOR MOTES AND

WIRELESS SENSOR NETWORKS

Anghel V. CONŢIU, Adina ŢOPA, Vasile T. DĂDÂRLAT
Technical University of Cluj-Napoca, Str. Ctin Daicoviciu nr. 15, 400027 Cluj-Napoca, Romania

E-mail: Vasile.Teodor.Dadarlat@cs.utcluj.ro

Abstract: The VirtualLab project was developed to fill the need of exploring the world of sensors, to make it available to younger

students and to increase their interest in studying real sciences like physics, electronics or computer science. It is also a solution for

low budget laboratories, making the motes available remotely.

Key words: Mote, Radio, Remote, Sensor, Wireless.

I. INTRODUCTION

Wireless sensor networks provide features for monitoring
different aspects of the environment starting with the
humidity and ending with moving elements.

The research labs are in their early phase of developing
the devices, but they have already made enough progress in
order to present them in schools and to capture the student’s
attention. A lot of challenges are yet to be considered [1] for
Wireless sensor networks regarding the real-world
protocols, real-time data, power management, programming
abstractions, security and privacy still require a lot of
attention from the developers.

The VirtualLab project was developed to fill the need of
exploring the world of intelligent sensors, considering the
fact that nowadays the laboratories must invest a lot of
money to keep up with the latest technologies and to make
them available for their students. The VirtualLab represents
a very handy solution for low budget school labs or low
budget research labs, until they are able to buy the devices.

This paper is devoted to the presentation of the virtual
laboratory concept that was developed by us in the
VirtualLab project. We used the nesC programming
language (a component oriented extension of C), the TMote
Sky sensor motes developed by Moteiv and a Java API that
was specially designed for the applications using sensor
motes.

Section II describes the developed design concept, the
mote components that were created to be wired to user’s
own components (II.1), the server application together with

its specific features (II.2) and the client application that was
developed for a high level interaction between the users and
the remote motes (II.3). The experimental results are further
on presented on section III. Section IV is devoted to the
conclusions of our work and considerations for the future.

II. VIRTUALLAB DESIGN CONCEPT

The application is made out of three major components that
have the purpose of getting the user in a virtual contact with
the motes. This implies remote connectivity over the local
area network or over the internet. The entities are:

• the motes inside the laboratory;
• the server application running on the computer that

the motes are connected to;
• the client application - it represents the user’s tool for

handling the motes.

Figure 1 – The architecture of the VirtualLab project

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications
__

21

The entities must benefit of a good communication in

order to provide the user with reliable data on one hand and
for the motes to understand real time settings that the user
sends via the server. The application needs speed in data
transmission, but very important, it needs reliable data to be
received by one entity or another. This is why the server and
the client applications were developed to communicate
using the socket technology [2] and the TCP/IP protocol.
The mote – PC communication is made by USB, via the
PC’s serial port.

II.1. THE MOTES

The application uses the Tmote Sky motes developed by
Moteiv [3]. A sensor node is made up of four basic
components: a sensing unit, a processing unit, a transceiver
unit and a power unit [3]. They use the TinyOS operating
system [4] and [5], an operating system that is able to deal
with the several constraints implied by the devices. The
applications that run on the motes were developed using the
NesC programming language, a component oriented
extension of C [6].

There are two important types of applications that are
installed on the motes, in order to provide the required
features:

• The first one is the Deluge application; it is able to
handle multiple applications that are installed on the
mote [7] on one hand and it is able to program a
network of motes on the other hand, using its radio
message epidemic [8].

• The second type of applications is represented by the
ones that were developed as part of VirtualLab
(LedsObserver,USB_Autodetect,OscilloscopeTmote
Sky) together with the applications that are created
by the user and downloaded on the motes. The user is
provided with ease in monitoring his applications by
wiring them to our components. This way he will
benefit of all the features that our applications
provide. The user’s applications are handled by
Deluge.

The Deluge application can be considered as an
intermediary element, being placed between the operating
system and the user’s application as seen in the next figure:

Figure 2 – The stack of application types

. The motes are able to receive two types of messages,

considering the two types of applications, while they are
approached by the VirtualLab. These are:

• Deluge level messages – commands that are directly
addressed to Deluge and they handle the applications
that are currently installed on the mote or inject new
applications. Examples of this kind of commands are:
“application list”, “erase”, “reboot & run”, “inject”.

• Application level messages – commands that are
addressed directly to the currently running
application on the mote. These commands are
created by the user with respect to the application
that is running, taking into consideration the type of
messages possible to be received.

VirtualLab provides some nesC components in order to
help the user retrieve important pieces of information about
the mote. One of those components is the LedsObserver. It
observes the state of the leds at some custom defined time
intervals.

Figure 3 – The “Live Leds View” The red, green and

blue leds inside the window are activated at the same time

NesC

DelugeBasic

TinyOS

Handles the
other NesC
applications

Tiny
Operating
System

Custom
developed

applications

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications
__

22

as the corresponding leds on the mote

This component is important because by sending the
data to the server the leds state will reach the VirtualLab
client application, making its graphical user interface able to
actually display the on/off state of each led in real time. It is
well known the fact that once a nesC application is installed
on the mote and it is not supposed to send any data to the
PC, the only way to debug it is to observe whether the
mote’s leds behave as they should. The big advantage of the
LedsObserver component is that once it is wired to the
user’s application, it allows the user of the VirtualLab to
debug its new nesC application by observing on its monitor
the way the mote’s leds change their state in real time, so he
can observe the way its application is working and take the
necessary actions accordingly.

The user can start or stop the mote from sending its leds
state, meaning that its timer will start/stop until the user will
send another command to the component.

The OscilloscopeTmoteSky application deals with all
the sensors on the Tmote Sky modules and communicates
the sensor values over the radio to a base station running the
TOSBase application and by UART to the PC the mote is
connected to (ie. the PC running the VirtualLab server
application).

Here are the currently supported sensors: Sensirion
Relative Humidity Sensor, Sensirion Temperature Sensor,
Hamamatsu Photo Synthetically Active Radiation Light
Sensor, Hamamatsu Total Solar Radiation Light Sensor, TI
MSP430 Internal Temperature Sensor, TI MSP430 Internal
Voltage Sensor [3]. Each sensor is assigned a channel for
sending its data.

In order to send the sensor readings to the PC or to the
other motes by radio, the OscilloscopeTmoteSky component
is wired to the CommOscope component. The same
component is used to change the application’s parameters.
While the application is working, the user can change the
sensor that is currently reading the data, the number of
sample readings the application will send and he can also
adjust the time interval the readings are made. The user can
use its VirtualLab client to set those parameters and to send
the command to the server. The server creates a
VLabOscope message type containing the new parameters
and sends it to the mote. The mote receives that message by
UART using the CommOscope component and calls the
setParameter (sensor, readings, freq) command through the
ComponentComm interface. The OscilloscopeTmoteSky
component provides this interface and implements the
setParameter (sensor, readings, freq) command. The mote
accepts the sensor parameter setting as a coded number, so
it is decoded by the NesC application in order to establish

the sensors that must be read.
The OscilloscopeTmoteSky component is also wired to

the LedsObserver component so the user can actually see
the state of the leds while the OscilloscopeTmoteSky
application is running.

The USB_Autodetect is a component that is able to
check whether the mote is connected to the PC by USB or
whether it works as a stand alone mote, powered by
batteries. The component is based on the interruptions that
result when the user connects/disconnects the mote from the
USB. Wiring this component to the application provides the
user with important information related to this aspect. This
way he can develop his entire NesC application telling the
mote to perform as a stand alone mote (start communicating
by radio because there is no USB connection) or to perform
as a mote that is connected to the PC and send data by
UART or by both radio and UART, according to the user’s
needs. More work can be done for the interoperability
between the USB_Autodetect component and Deluge’s
epidemic feature

.
II.2 .VIRTUALLAB SERVER

The server uses the TinyOS Java tool chain in order to
provide PC – mote communication. Two of the most
important objects coming from the tool chain are the
PhoenixSource (built on BuildSource) and the MoteIF.
They provide the basics for this type of communication. A
PhoenixSource builds upon a PacketSource to provide the
following features:

• Automatic reading and dispatching of packets:
registerPacketListener and deregisterPacketListener;

• Automatic source restarting (via setResurrection); it
is off by default.

PhoenixSources are threads and hence they need to be
started. The default MoteIF constructor uses the
MOTECOM environment variable to determine how Java
application connects to the mote; VirtualLab Server
application hides this setting from the user and sets the
variable automatically.

The FreshMessageParser object determines the type of
objects coming from the client; it acts as a handler by
creating tasks and assigns them to other objects.

The object representing the message type the MoteIF
sends and receives from the mote must be fully compatible
with the message type the mote expects; these objects are
built with respect to the .h files from the NesC code. In
order to archive this, one can use the MIG tool [9]. It will
automatically generate a Java class based on the .h file. MIG
reads the NesC struct definitions for message types in the
mote application and generates a Java class for each

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications
__

23

message type that takes care of the gritty details of packing
and unpacking fields in the message's byte format. Using
MIG saves the developer from the trouble of parsing
message formats in its Java application.

The motes are assigned a COM port on the PC when
they connect to it and the MOTECOM environment variable
must be set in order to communicate to the mote. Depending
on the way VirtualLab’s MoteIF messages are sent /
received from the mote and the way the TinyOS Java tool
chain (with its own MoteIF objects) approaches the COM
port in order to send / receive messages, several problems
needed to be solved. As the mote is communicating with the
computer using a certain MoteIF object, the port becomes
busy and another application, with its own MoteIF object
can not begin communicating on the same port. VirtualLab
uses three MoteIF objects in order to provide all its features.
There are the VirtualLab’s MoteIF, the Deluge’s MoteIF
object (for deluge level messages) and another MoteIF that
is used by the “Listen” feature. Part of the problem is
approached by the FreshMessageParser object, because it is
the handler for the client’s request so it is assigned the
responsibility of making sure that the request can be
fulfilled. There are three main problems that had to be
solved:

• providing transparency for setting the MOTECOM
environment variable, meaning that it must be set
automatically;

• creating the conditions for sending MoteIF objects as
application level messages to the mote;

• sending deluge level messages or Listen commands
handling their own MoteIF object.

A new process is built for a command. The
FreshMessageParser object passes the job to an object that
handles the command. The first step for handling the
problem is to assign a different thread for the deluge level
commands; each thread will create a new process that will
have set the necessary environment variables. In order to
archive this, the ProcessBuilder and Process [10] classes are
used. Before starting the thread, all the necessary parameters
for the new process are set using the ProcessBuilder and the
first step inside the thread is to start the process. This way,
before starting the process, each message that the client
sends to the mote will have all the necessary conditions
fulfilled on the server side, providing its own “environment”
(the new process) where the MOTECOM variable is
correctly set, so that everything will go as planned. A watch
timer is started above each of this type of processes and it
will close the process if something goes wrong.

II.3. THE VIRTUALLAB CLIENT

The goal of the VirtualLab application is to make the users
able to use the sensor motes in such a way that even though
they don’t actually have their own devices, they can
remotely explore the new technology, develop their own
application, download it on the motes, test the mote’s limits
and increase their interest in this area.

The client application provides the right pieces of
information that will get to the mote in the end and it must
also be able to receive data, interpret it and display it in an
efficient and understandable way for the user.

Serializable objects are used in order to communicate to
the server. Once the user has selected the settings he wants
to send to the mote by using the GUI, the client application
creates the necessary data structures that will be sent to the
server, containing the user’s settings. The data structures are
known to the server, so it will know how to handle the
incoming objects in order to transform them into commands
that will be sent to the mote.

III. EXPERIMENTAL RESULTS

In order to test the applications, the virtual laboratory was
provided with a computer and motes. The computer runs the
VirtualLab server application and it is connected to the
internet so the communication with the client can be
achieved. The motes run the nesC applications and they
receive commands from the client through the internet and
through the server application.

The following hardware was used for testing the
applications for the:

• VirtualLab Server: Desktop PC:Pentium III, 1.8
Ghz, 256 RAM, Laptop PC Athlon XP 2500, 1800
Mhz, 512 RAM;

• VirtualLab Client: Laptop PC Athlon XP 2500,
1800 Mhz, 512 RAM;

• NesC applications: Tmote Sky wireless sensor
motes

The OscilloscopeTmoteSky application ran on the motes
being wired to LedsObserver, Usb_Autodetect.

The Usb_Autodetect component of each mote

acknowledged the fact that its mote was connected through
USB and the communication was ready to be started
through USB. After that, the user has the possibility to use
its client application in order to check the list of connected
motes, to select a mote and to start sending commands to it.

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications
__

24

Figure 4 - the “Mote List” window was developed so

the user can select the mote he wants to address inside the

virtual lab.

After selecting a mote, the user can start sending deluge

level messages to the mote, and see the list of installed NesC
applications, remove or inject applications. He can also
reboot the mote.

Having the OscilloscopeTmoteSky application installed,
the user selects the sensors he wants to read using the image
panel by clicking on the right sensor, as seen in the next
figure:

Figure 5 – the image panel; the sensors are marked by

the yellow circle and a tool tip will be displayed when the

mouse pointer is placed over one of the sensors. The

sensors that are on the other side of the mote are marked by

the orange arrows. A sensor is selected when the user clicks

on it.

The client application asked for the sensor readings to be

performed in the following manner:
• the sensor readings must be executed using samples

of 4 readings;
• the samples must be taken at intervals of 726ms.
The experiments provided the following results for each
of the available sensors:
The TmoteSkyOscilloscope application:
• Internal Voltage readings: a sample of 4 readings,

taken at 726ms interval: 2.17mV, 2.17mV, 2.17mV,
2.17mV;

• Internal Temperature readings: a sample of 4
readings, taken at 726ms interval: 26.56oC, 26.56oC,
26.56oC, 26.56oC;

• Outside Temperature readings: a sample of 4
readings, taken at 726ms interval: 28.78oC, 28.85oC,
29.05oC, 28.91oC;

The Listen command:
One mote runs a NesC application that counts

continuously and sends each value to our mote that runs the
TOS_Base application. The TOS_Base application receives
messages by radio and forwards them by the serial port to
the computer running the VirtualLab server application.Here
are the messages that the client application receives in the
end:

Listen: 04 01 08 9F FF FF FF FF 04 7D 9F 01 01 00
Listen: 04 01 08 A0 FF FF FF FF 04 7D A0 01 01 00
Listen: 04 01 08 A1 FF FF FF FF 04 7D A1 01 01 00
Listen: 04 01 08 A2 FF FF FF FF 04 7D A2 01 01 00
The values are sent by the mote in the little-endian

coding and one can see here that the client receives the
hexadecimal values from 019F to 01A5.

The LedsObserver feature was created to work close to
perfect accuracy, although it has a disadvantage, as its
performance depends on the networks delays because of the
remote connection between the computers running the
VirtualLab Server application and VirtualLabClient
application. It might be influenced by a low performance
computer because of the GUI’s requirements.

IV. CONCLUSIONS

Openness is the propriety of a system to be easily extended
and modified. More work has to be done in including MIG
as part of VirtualLab in order for it to provide the new Java
classes based on the structures in the “.h” file that is used by
the NesC application.

A stronger support for radio communication can be
provided by creating a component that will work together
with our current USB_Autodetect component, and by
researching the customization of Deluge message epidemic.

The VirtualLab concept was implemented having three
important entities (the server, the client and the nesC
applications) that are not coupled, having their own, well
defined responsibility, and providing the possibility to be
extended. The NesC components that were provided offer
students the possibility to become familiar with an area of
computer science that seems difficult and not very attractive
at first sight. They have the chance to enjoy experimenting
low level languages and programming hardware

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications
__

25

components. VirtualLab can also be used together with
other types of motes like mica, mica2 or telos, as long as
they support the TinyOS operating system. Some of the new
motes explore some Java platforms, yet the principles are
the same, so VirtualLab together with NesC and TinyOS can
still be used for education purposes.

To develop the project’s features, several other elements
were implemented: it uses the TCP/IP connection for
supporting the new concepts of Deluge level messages and
application level messages; messages that are also sent
between the client and the server are also more reliable. The
server was implemented to be multithreading, and to
provide message handling and serial connection with the
motes; some important features that are specific to
VirtualLab’s server are the port handling and message
object handling in order to avoid communication problems
and the watch timers for avoiding process stagnation; it uses
MIG (message interface generator) for server – mote
communication objects and TinyOS Java tool chain for a
proper server – mote communication.

One of the targets of VirtualLab was to provide a high
level interaction between the user and the motes, so a very
friendly graphical user interface was provided on the client
side; the necessary tools were implemented for displaying
the list of available motes inside the VirtualLab, allowing
the management of the installed applications and providing
flexibility; more than that it provides the necessary nesC
components and graphical user interface elements for the
user to be able to do real time debugging on its own fresh
NesC applications that he installed on the motes using the
VirtualLab, while a lot of nasty operations are transparently
executed in the background.

REFERENCES

[1] Stankovic, J.A., Research Challenges for Wireless Sensor

Networks, ACM Press, July 2004
[2] Ken Backlawski, Java Socket Tutorial, (available at

http://www.ccs.neu.edu/home/kenb/com1335/socket_tut.html)
[3] Tmote-sky-datasheet (available at www.moteiv.com)
[4] Philip Levis, “TinyOS Programming”, Feb 14th 2006
[5] Jonathan Hui, “TinyOS Network Programming”, July 25th

2005
[6] David Gay, Matt Welsh, David Culler, “The nesC Language: A

Holistic Approach to Networked Embedded Systems”, ACM
Press, May 2003

[7] Deluge: TinyOS Network Programming (available at
http://www.cs.berkeley.edu/~jwhui/research/deluge/)

[8] The Deluge manual
[9] The MIG tool (available at http://www.tinyos.net/tinyos-

1.x/doc/nesc/ncg.html)
[10] Java API (available at http://java.sun.com/j2se/1.3/

docs/api/java/lang/Process.html)

