
Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

1__
Manuscript received February 19, 2008; revised April 17, 2008

26

A MULE BASED STRATEGY FOR WIRELESS SENSOR MOTES TO REDUCE

POWER CONSUMPTION

Adina ŢOPA, Anghel-Vasile CONŢIU, Vasile Teodor DĂDÂRLAT
Technical University of Cluj-Napoca, Str. C-tin Daicoviciu nr. 15, 400027 Cluj-Napoca, Romania

E-mail: Vasile.Teodor.Dadarlat@cs.utcluj.ro

Abstract: The paper presents an application for wireless sensors, which focuses on reducing power consumption of the wireless

sensor devices. The project uses a new technology, having a very big potential: motes called Tmote developed at Moteiv. The goal

of this application is to investigate the use of the Tmote nodes as mules, to implement a power consuming strategy, so that the

sensors deployed through the network will consume as little power as possible.

Key words: wireless sensor motes, power consumption strategy, data collection

I. INTRODUCTION

The research area of the wireless sensor network has
witnessed an increased attention in last few years, making it
one of the most important technologies of the 21st century.
The wireless microsensor comes with a cheap and smart
idea: now one can create a wireless network using the
Internet and these small devices with multiple onboard
sensors on them. Because they are low-cost, low power and
multifunctional, one can deploy a large number of devices,
creating a network big enough to be able to control the
environment [1]. The position of the sensors nodes does not
need to be engineered or predetermined, so these devices
can be placed in inaccessible terrains or disaster relief
operations. Sensor nodes are fitted with an onboard
processor, so they are capable to process locally simple
computations and transmit only the required and partially
processed data. [2]. The sensor boards, called motes can
gather large range information, from temperature or light to
velocity.

In our project we used motes developed at Moteiv and
called Tmote [10]. They have a special operation system
called TinyOS. The applications that can be deployed on
them are developed in NesC [6], which was especially built
for these motes and which is an extension of the well-known
programming language, C/C++. The idea behind the project
is to create a power consumption strategy, so that the
sensors deployed through the network will consume as low
power as possible. Because the sensors can be spread all
over the area that we want to investigate, some sensors can
be placed in rather inaccessible terrains, in which case only
the batteries will generate the sensor’s power and also the
gathering of data directly from them, e.g. using your PC, is
unpractical. The problem of collecting data was resolved
using a mobile mote, called mule.

The paper is devoted to the investigation of Tmote nodes
and is constructed as follows: Section 2 presents the
architecture of the application, Section 3 the power
reduction strategy. Next some experimental results are
discussed in section 4 and in the last section conclusions are
drawn.

Figure 1. The architecture of the Mule Project

II. THE ARCHITECTURE OF THE PROJECT

The architecture of the project is depicted in Fig. 1. The
mule mote moves around the network, so that every mote
can be reached once every round. Basically, the mule’s job
is to make a logical connection between a base mote and all
the sensors in the network. All the information gathered by
the mule will be dumped on the base, which is a mote
directly connected to a PC. The computer runs an
application that makes the user view all the information
transmitted through the network. The base will be the one

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

27

issuing the requests that the sensor motes must interpret and
execute, but it will also be responsible for receiving the
information from the mule and forwarding it to a PC.

In order to fulfill the communication task, we developed
different applications for the motes, corresponding to the
three types of motes: base, mule and sensor. The project
consists of the following applications:

• The UsbUserbuttonDeluge application, written in
NesC;

• The PC application – it is an intermediate between
the user and the motes, written in Java;

• The applications for the sensors written in NesC–
they make the transition between the wireless sensor
motes and Java.

II.1 THE USBUSERBUTTONDELUGE

APPLICATION

This application has been developed for giving the user the
ability to switch as easily as possible from running one of
the three applications (the base, the mule and the sensor) to
another one, because at one point only one application can
run. It uses the Deluge component, which is part of the
NesC components and which permits the deployment of
more than one application on a mote. The transition between
different applications called images is done by the
USBDetectExtendedC component.

When a mote is running the UsbUserbuttonDeluge
application, the component will verify whether the mote is
connected to USB or whether it is working on batteries. By
default, the mote will upload the image for the base if the
mote is connected to the USB; otherwise, the mote will
upload the image for the sensor. We have also given the
possibility to change the default images by pressing the user
button which resides on the mote:

• For red light, the image of the base application will
be loaded on the mote;

• For blue/yellow light, the image of the mule
application will be loaded on the mote;

• For green light is on, the image of the sensor mote
application will be loaded on the mote.

On every mote there is a 4th image uploaded, which is used
for installation and debugging purposes. After the user has
selected the application that he wants to run on the mote, a
timer will start. As long as the timer does not expire, the
user can change the image to be uploaded on the mote.

II.2. THE PC APPLICATION

The main purpose of the PC application is to be an
intermediate between the user and the motes. It is a Java
application, installed on the PC, which must be directly
connected to the base mote via USB. This application has a
graphical interface, which permits the user to send new

requests for different nodes from our network and also
visualize the data received by the mule from them (see Fig

2).

Figure 2. Screenshot of the Java Application

II.3. THE APPLICATIONS FOR THE SENSORS

The base application will make the data transfer between the
wireless sensor motes and the Java application (see Fig. 1).
The functions of a base are:

• Forwarding to the mule the requests created by the
user in the Java application;

• Forwarding to the Java application all the
information received from the mule, like:
� Information about the state of the sensor motes

from our network;
� Data collected by the sensor motes from our

network.
The mule application is the application which makes the

communication between the base and the sensor motes
possible, it logically connects them. It will store all the
requests received from the base and also all the data
received from the sensors, in order to forward it to the
corresponding devices.

The sensor motes are the only motes that are gathering
information from their sensors, so in fact they are the only
motes that need to have sensors on them.

III. POWER CONSUMPTION STRATEGIES

One major issue for the sensor application is the power
consumption. In order to reduce it as much as possible, we
have taken into consideration two components: the
processor and the radio.

III.1. PROCESSOR APPROACH

The processor of the Tmote device, MSP430, was designed
in such a manner that it will automatically go in low power
mode when no tasks are in the queue. MSP430 has defined
five low power modes for the processor: LMP0 – LMP4 and
one active, normal power mode. The operating modes take
into account three different needs:

• Ultralow-power;
• Speed and data throughput;

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

28

• Minimization of individual peripheral current
consumption [3].

The MSP430 typical current consumption is shown in
Figure 3.

Figure 3. Typical Current Consumption of 13x and 14x

Devices vs Operating Modes

Often, the most important factor for reducing power

consumption is using the MSP430’s clock system to
maximize the time in LPM3. LPM3 current consumption is
less than 2 µA typical with both a real-time clock function
and all interrupts active. A 32-kHz watch crystal is used for
the ACLK and the CPU is clocked from the DCO (normally
off) which has a 6-µs wake-up.

III.2. RADIO APPROACH

The radio uses most of the power of all the Tmote device’s
components. Typically, the current consumption in receive
mode is 19.7mA and in transmit mode it can go from 8.5mA
(P=-25dBm) to 17.4 mA (P=0dBm) [4].

The sensor mote will have to use the radio as little as
possible, so we have developed our sensor application that it
turns off the radio as long as no mule is visiting him; the
sensor mote will only turn on the radio when it knows that
the mule should be coming. This information is received
from the mule in the message which encapsulated
SetWhen2WakeUpMsg_t and which is now a fixed value.

III.3 INTEROPERABILITY BETWEEN

APPLICATIONS

The communication between the user and the sensor motes
is done in two major steps:

• Communication between the PC and the base mote;
• Communication between the different types of motes.
The user does not know how the network looks like; the

only interaction with the network is done using the PC. The
PC is the tool used to visualize the data exchanged in the
network and also to create new requests for the sensor motes
to interpret.

For the implementation of the communication between
the three types of devices, we have made the following
assumptions:

• The user must press the user button of the mule, in
order to send all the information back to the base;

• The base application will continuously send the
requests to the mule, so that the mule receives all the
requests issued by the user;

• The mule can store only a limited number of
requests;

• The sensor can deal only with a limited number of
requests;

• The mule has a fixed route;
• The mule will tell the sensor when it will visit it

again, which is an invariable value.
We have developed an algorithm for data compression

so that the sensor sends as few information as possible. For
achieving this, we have used two arrays: valueArray
(contains the values of the readings) and bitArray (is a mask
that encrypts the values read from the sensor).

These arrays are created using the following steps:
• We take the first (r1) and the second (r2) values from

the readingArray:
� If r1 is equal to r2, then in the bitArray, in the

first and second position we place the same
binary value (1/0);

� If r1 is not equal to r2, then inside the bitArray, in
the first and second position we place different
binary values;

• We take next look at the third value read from the
sensor (r3):
� If r1 is equal to r2, then we compare r3 with r1

and apply the same algorithm as before;
� If r1 is not equal to r2, then we compare r3 with

r2 and apply the same algorithm as before;
• We continue this algorithm for all the values read

from the sensor;
• Next, we will take all the consecutive values from the

readingArray that have the same values in the
bitArray and compute their average. This value will
be added in the valueArray. This way, we will not
send approximately the same values, making the
packets sent from the radio smaller.

We consider that two readings have the same value, if
the absolute difference between them is below a threshold!

Example: We have 10 readings and the threshold is 2.
� The list of bits will look as follows:

Reading 10 11 9 20 19 20 21 23 23 22

bitArray 1 1 1 0 0 0 0 1 1 1

� readingArray: 10, 20, 23

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

29

IV. EXPERIMENTAL RESULTS

The tests have been done on tmote devices [5] and on a PC
with the following configuration: AMD Athlon 64
Processor, 2.1 GHz and 512 RAM.

For the measurement of the temperature, humidity and
light, we have done the following tests:

A. The sensors (temperature, humidity and light) must
be read every 2 seconds and the minimum number of
samples that must be sent back to the base is 3;

B. The sensors (temperature, humidity and light) must
be read every 2 seconds and the minimum number of
samples that must be sent back to the base is 5.

CASE

A B

Temperature
26.1
26.1
150.1

26.1
26.3
26.5
26.9
155.5

Light
5.5
5.3
1549.3

5.5
5.5
5.5
5.3
1543.0

R
es

ul
ts

Humidity
13.6
13.3
-6581.9

12.5
12.5
12.5
12.6
 -6441.0

Table1. Test results

As we can see from the results shown in Table 2, the last

data from every package is corrupted.

V. CONCLUSIONS AND FUTURE WORK

This project is a very good approach of the mule problem. It
can be used for monitoring different environments, even if
the allocated budget is not very big. The project uses a new
technology, which is not very known, but which has a very
big potential. It also deals with some issues that are very
important for this field: power consumption. There are
papers that dealt with the mule problem, but they are all
theoretical and from our knowledge nobody has tried to
implement them.

One of the biggest advantages of the whole project is
that the user of this application does not need to have any
knowledge about NesC [6], TinyOS [7] or wireless sensor
networking when using it. Everything is transparent to him.
He just needs to know how to run the graphical interface
(from the cygwin[8] bash shell) and how to deal when the
mule arrives in the range of the base, by pressing the user
button. The only person that needs to have some basic

knowledge about TinyOS or NesC is the person that has to
install the applications on the wireless sensor motes.

For the future work we would like to implement an
algorithm so that the sensor learns when its data might
change and only then, we should begin to read data from his
sensors. This way the data will only be transmitted when
new information is being read from the sensors and so the
radio will be used even fewer than before. We would also
want to implement a security algorithm, so that the
transmission between our entities will be as safe as possible.

REFERENCES

[1] Chee-Yee Chong; Kumar, S.P., Sensor networks: Evolution,

opportunities, and challenges, Proc IEEE, August 2003, p.1-10.
[2] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam,

Erdal Cayirci - A Survey on Sensor Networks

[3] MSP430x1xx Family, User’s Guide (available at
http://focus.ti.com/lit/ug/slau049f/slau049f.pdf)

[4] CC40 Data Sheet

[5] CC2420 Data Sheet (available at
http://www.btnode.ethz.ch/pub/uploads/Projects/CC2420_datas
heet.pdf)

[6] Moteiv documents - /cygwin/opt/moteiv/doc/nesdoc

[7] NesC: A Programming Language for Deeply Networked

Systems (available at http://nescc.sourceforge.net/)
[8] www.tinyos.net
[9] www.cygwin.com
[10] Tmote-sky-datasheet (available at www.moteiv.com)

