
Volume 50, Number 1, 2009                                            ACTA TECHNICA NAPOCENSIS                             

                                                                                         Electronics and Telecommunications 

___________________________________________________________________________________ 

_______________________________________________________________________________________________ 

Manuscript received February 15, 2009; revised April 17, 2009 

1 

FIBER SEGMENTATION IN COMPOSITE MATERIALS USING 

MARKED POINT PROCESSES 
 

Barna KERESZTES
1,2

, Olivier LAVIALLE
1
, Sorin POP

2
, Monica BORDA

2
  

(1) Université de Bordeaux, LASIS - IMS – 351, Crs. de la Libération, 33405 Talence Cedex  

(2) Technical University of Cluj-Napoca 15 Daicoviciu Street, 400020 Cluj-Napoca, Romania  

e-mail: barna.keresztes@ims-bordeaux.fr    tel: +33 540003624 

 

 
Abstract: This paper presents a new method dedicated to unsupervised 2D segmentation of fibers in a section of composite 

carbon-fiber materials. The framework relies on a marked point process algorithm. We shall create random elliptical objects to fit 

the fiber distribution in the image. The interaction rules between the objects complete the model. 

Using a Markov Chain Monte Carlo (MCMC) method, the algorithm converges to a configuration which is close to the fiber 

distribution in the images. At each step, the configuration is evaluated considering its proximity to the target distribution. In order 

to achieve this task, we propose a mixed data model using both grey level values and gradients to evaluate the likelihood of the 

current configuration. This mixed model overcomes the problems of luminance variation, contour discontinuities and high noise 

level. 

Finally, the results on the composite material sections illustrate the efficiency of the segmentation and suggest that the marked 

point processes can be a promising tool for fiber detection.  
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I. INTRODUCTION 

The physical properties of fibrous composites are 

strongly dependent on the quality of their reinforcement. 

Depending on the characteristics required by the application, 

reinforcement is carried out by weaving, stacking or 

needling bundles of glass or carbon fibers. The resulting 

fibrous structure is then densified with an appropriate 

matrix. 

Analyzing 2D or 3D images of material samples can 

provide an accurate description of microstructure, 

particularly of the volume fiber ratio and orientation.  

There are several works which threat the problem of 

fiber segmentation in 3D microtomography blocs [7,2]. In 

this case they use the spatial information and the correlation 

between several planes, and by knowing the orientation of 

the fibers their shape can be simplified to a circle with 

known radius in the perpendicular plane, or, in the 3D case, 

a cylinder.  

Our goal is to detect the fibers using only the surface 

data that can be acquired using a microscope. 

The acquisition methods used to obtain these images, 

and the material imperfections make it quite hard to analyze 

these images. The luminosity across the image varies, the 

contours of the individual fibers can be blurred, therefore it 

is difficult to implement either a pixel-based, or a contour-

based method. So we propose an object-based approach 

where each fiber is considered an elliptical object. 

It is time consuming to analyze in each pixel of the 

image space each possible ellipse, so a marked point process 

will be proposed to achieve a fast convergence towards an 

optimal distribution of the objects. This algorithm is a 

commonly used stochastic model for simulating a set of 

events in space (or time). The marked point processes were 

first used in image segmentation by Baddeley and Van 

Lieshout in [1]. 

The paper is organized as follows: In the next section we 

introduce the marked point process and our object model, in 

section 3 we discuss the bayesian interface of the process, 

and in section 4 the Monte Carlo chain used for the 

convergence of the process will be presented. 

 

II. MARKED POINT PROCESS 

2.1 Notations 

Let I be the actual image, I=[0,w]×[0,h]. A configuration 

of objects in the image I will be noted Y. Using a marked 

point process X we try to approximate the observed 

configuration Y.  

A marked point process X=P×K is a random 

configuration of points P in the image space, where a mark 

K is assigned to each point. This mark is a collection of 

parameters which define an object. 

 

2.2 The object model 
The images representing the composite materials contain 

three main regions: the fibers, the reinforced material 

(matrix), and the holes in the material. In this paper we are 

interested only in the detection of the fibers. 
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Figure 1. Microtomography image of a composite 

material. 

 

A fiber is a cylindrical object, and the analyzed images 

represent an arbitrary section of the material. The fibers can 

be approximated in a 2D case either using a polygonal 

model or an elliptical one.  

Using an elliptical model, each object is approximated 

with an ellipse described by five parameters: the position of 

the center P(x,y) as the marked point, the two radii (r,R), and 

the inclination angle (�) as the mark K.  

 
Figure 2. The object model and its parameters. 

 

Using a more general polygonal model, we can describe 

more complex shapes. An n-sided polygon needs 2n 

parameters in the mark space. Thus the model is more 

complex, and it would have taken a much longer time to 

converge towards the target configuration. This model is 

detailed in [6]. 

Therefore we chose the elliptical model as the object 

model for the marked point process. We have observed that 

the real fibers have similar radii, so the parameter r, which is 

equal with the radius of the fiber, can be considered as 

constant. Thus the object space will simplified to a subset of 
4ℜ   

 

III. THE PROBABILITY DENSITY FUNCTION 

OF THE PROCESS 

Let f(X) be the density of a configuration X of objects, in 

the given image I. According to Bayes’ formula, the 

expression of this density can be expressed as: 

X)|(X)f(IfI)|f(X=f(X) p∝            (1) 

 

The fp(X) contains all the a priori knowledge about the 

configuration, and the f(I|X) the likelihood between the 

image and the current configuration; this will be further 

noted as L(I|X). 
 

3.1. The a priori term 
We can make some restrictions on the object 

configuration based on the a priori knowledge about the 

shape and distribution of the objects. The first restriction we 

can make is that the R (long radius) parameter is greater or 

equal than r, we can consider it to be smaller than 2r (if 

necessary, this limit can be changed). The � angle for the 

ellipses ranges between 0, and 2π, and we can further limit 

its set of values by defining a step size. 

The a priori term can be described using the following 

formula: 

 

)(Xh(X)f p α∝          (2) 

 

The α function defines the probability density of the 

process. In this application the fibers are considered to have 

a homogenous Poisson distribution: 

 
)( xnβα =            (3) 

 

where β is the density of the process and n(x) represents 

the number of objects in the configuration. 

The h function defines the interaction between the 

different objects. Since the fibers cannot intersect, a 

repulsive Strauss pairwise interaction model [9] will be 

used, which penalizes the overlapping object configurations. 

Two objects are overlapping if their silhouettes touch. 

This interaction will be noted ~o and defined by: 

 

∅≠∩⇔ jijoi SSx~x          (4) 

 

Since the neighboring fibers have the same orientation, 

there should be a correlation between their parameters. We 

define the correlation function as the covariance measure 

between the radius R and the angle � of two objects: 

 

),cov(),cov(),( jijiji RRxxC φφ⋅=  (5) 

 

The neighborhood relation (noted ~n) is defined as: 

 

joijijijni x~xRRPPdx~x and)(2),( +<⇔  (6) 

 

We introduce an attraction between two neighboring 

objects based on the correlation function C(xi,xj) 

The final value of the interaction function for a given 

configuration X is: 

R r 
ϕ 

P(x,y) 
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∏∏ +⋅=
jnijoi x~x

ji

x~x

xxCXh )1),(()( γ  (7) 

 

where γ is a constant, 0<γ<1 for a repulsion between the 

objects; C(i,j) defines the correlation between the R and � 

parameters of the neighboring objects, 0 < C < 1. The 

second term will be an attractive term. 

In spite of the fact that in the marked point process 

algorithm each object should be initialized with random 

initial values, we can help the convergence of the process by 

defining the initial values (the fibers have roughly the same 

orientation and radii). 

 

3.2. The data term 

In this step we have to determine the probability of the 

existence of a configuration based on the likelihood function 

L(I|X). 

As a first approach we used the classical luminosity-

based likelihood detection [8]. Two classes will be defined, 

the object class and the background class. A pixel belongs to 

the object class if it is a part of the silhouette of an object; 

otherwise it is considered background. The likelihood of a 

pixel with a class is determined using a Gaussian 

distribution function of the luminosities: 

 

( )









 −−
2

2

2σ

2π

1 φ

φp

φ

)µ(y

e
σ

=XpL   (8) 

 

where φ denotes the class (object or background), µφ 

and σφ are the mean and variation of luminosities of the 

current class. 

The likelihood of the image is the product of the 

pixel likelihood through the image: 

 

∏=
p

XpLXIL )()(   (9) 

Although the material and the empty space are separable 

based on the grayscale value, the luminosity variation 

through the image makes it difficult to define a threshold 

between the fibers and the filling material. These two classes 

cannot be separated based on a Gaussian distribution of the 

luminosities. However we can define two classes, where one 

class will contain only correct detections, while some fibers 

which don’t fall in this class won’t be detected. 

A gradient-based approach was considered then. This 

was a novelty, because it wasn't experimented yet with the 

marked point process, and it is difficult to define a 

convergent function toward the optimal solution in this case. 

The other issue is the presence of the gradients between the 

layers in the interior of the plastic material, and the gradients 

between the material and the empty space.  

In the gradient-based likelihood detection we can’t 

determine the likelihood of the image conditioned by the 

current configuration of objects. The method used in this 

case is based on external fields energy, the likelihood of the 

individual objects is calculated and the final data term will 

be determined based on these values. 

There are three cases of intersection between the contour 

of the object and the contour of a fiber in the figure 3: 

 
Based on the intersection points it is impossible to 

achieve a convergence towards the solution; therefore 

another function will be proposed with the following 

properties: 

• its maxima are at the contour of the detected 

object (maximum likelihood) 

• it is monotonically increasing on each side 

towards these values 

• outside the object the values are all positives 

(we accept the possibility of fiber contours 

outside our contour) 

• close to the center of the object the values are 

negative (we penalize the inside contours) 

There are a lot of functions which fulfill these 

conditions. We can use for example a truncated gaussian 

function, a paraboloid combined with an exponential 

function, a 2d function rotated around its axis, a.s.o. 

 

 
 a b 

Figure 4. a. the 2D section of the proposed function b. the 

proposed 3D function adjusted to match the elliptical 

object shape. 

 

For example, g(x,y) can be described for a circular object 

in the following way: 

Figure 3. The different interactions between the 

object contour and image gradient: a. no 

intersection b. two common points c. identity. 

a. b. c. 

y 

x 

y 
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where th is a truncation threshold. This function is later 

scaled and rotated to mach our elliptical object using a 2 

dimensional transformation matrix. 

The likelihood of an object p will be the correlation 

between the function g and the gradient image: 

 

∫ ∫
− −

⋅
n

n

m

m

G y)dxdy+vx,+(uIy)+ux,+g(u=L(x) (11) 

 

The drawback of this approach is that the image contains 

many contours, between the porosity and the material, 

respectively between the different layers of the filling 

material, which have to be eliminated. Therefore we decided 

to combine the two methods with a voting system. Using this 

system, the results of the different methods could be fused to 

determine if the object position is probable or not. It consists 

on the following decision steps: 

1. The objects belonging to the porosities are 

penalized 

2. Acceptance of the objects which are likely to be a 

fiber based on their luminosity values 

3. Acceptance of the objects with tolerated luminosity 

values and probable boundaries 

The final likelihood value used to determine the validity 

of the object is determined using the likelihood values 

obtained in step 2. and 3. 

 

IV. THE MCMC SIMULATION 

Once we have defined the model, the next step is to 

create an algorithm that assures the convergence of the 

process towards the minimal energy of the system. Here, the 

energy is related to the density of a point process, so the 

optimal configuration is the one that maximizes this density. 

 

( ))(maxarg XfX
X

MAP =   (12) 

 

In the case of marked point processes the most common 

method for this is the Monte Carlo Markov chain (MCMC) 

coupled with simulated annealing. 

To simulate the MCMC, we’ll use the Metropolis-

Hastings-Green (MHG) algorithm [4], which was adapted 

by Geyer and Moller to point processes [3]. 

The MHG algorithm consists in proposing a new, 

random state y for the current state xt. The transition kernel, 

noted with ( ),q ⋅ ⋅  consists in some allowed “movements” 

between the two states. The allowed transitions are: 

- birth (adding an object to the configuration) 

- death (deleting an object) 

- translation 

- rotation 

- dilation 

- rotation and dilation combined 

The algorithm can be described in the following way: 

 
The Metropolis-Hastings-Green algorithm 

 

The initial configuration x0 is considered the empty 

configuration. 

The third step of the MHG algorithm ensures that the 

chain won’t be struck in a local minimum of energy. The 

disadvantage of this approach is that the process will take a 

longer time to converge towards the maximum a posteriori 

configuration.  

To optimize the chain, a simulated annealing will be 

introduced; f(X) term will be replaced by f
1/T

(X), where T is 

the temperature of the system, and it is a parameter with a 

decreasing value towards 0. 

 

 

1. given the configuration xt, we generate y 

using the translation kernel q. 

2. we calculate the ratio between the 

probability of the current configuration 

and the proposed one: 

y),)q(xf(x

)xf(y)q(y,
=r

tt

t
 

3. with the probability α=min(1,r) we accept 

xt+1=y 

 

Image 

name 

Total 

fibers 

Correctly 

detected 

Misdetections Not 

detected 

Multiple 

detections 

Accuracy* 

5.a. 311 299 6 12 3 93.3% 

5.b. 205 191 4 14 5 88.9% 

5.c. 78 78 10 0 0 88% 

5.d. 191 187 10 4 5 90.1% 

5.e. 75 75 10 0 0 86.6% 

5.f. 134 132 17 2 1 85% 

* The real accuracy may be higher, because the multiple detections can be eliminated at the end of the algorithm using a 

simple method 
Table 1. Result statistics. 
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Figure 5.a. 

 

 
Figure 5.b. 

 

 
Figure 5.c. 

 

 
Figure 5.d. 

 

 
Figure 5.e. 

 

 
Figure 5.f. 
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V. RESULTS 

We tested the model on microscopic and 

microtomography images, with a resolution of 512*512, 8 

bits/pixel, greyscale. 

The results are shown in fig. 5. 

The Markov chain used to simulate the marked point 

process converges in around 100 000 steps. The process 

takes between 2 and 5 seconds to simulate using a Pentium 4 

processor at 2.2GHz, its speed depends on the length of the 

chain and the number of objects.The detection accuracy was 

determined manually by counting the number of fibers, the 

correct detections and the misdetections. 

As table 1. shows, the detection accuracy of the point 

process algorithm is around 90%. 

 

VI. CONCLUSIONS 

In this paper we presented a new kind of approach to 

fiber detection in composite materials using an object-based 

model based on the marked point process method.  

In the meantime the likelihood function is also original, 

as the existing applications using marked point processes 

use only a simple approach using the pixel luminosity or 

homogeneity of the object silhouette. We proposed a new 

approach based on the image gradients, and a new decision 

system was created to determine the data term of a 

configuration. 

However the algorithm accuracy still needs to be 

improved. A multi 2D approach is also considered for the 

analysis of microtomography 3D blocs, where the 

correlation between different sections can help improving 

the accuracy of the algorithm. A multi 2D algorithm for 

marked point processes was experimented in [5]. 

 

The authors thank the SPS – groupe Safran for providing 

data and for useful discussions. 
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