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Abstract: Certain approaches to phase approximation ask as a first step in implementation for a piecewise linear fitting of
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gain data are corrupted or altered.
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I. INTRODUCTION
Hilbert transform and the related Bode relationships [1]
have been recognized as very important methods in circuit
theory, communications and control science. Their sam-
pled derivations have been encountered in different appli-
cations from science and engineering. In some situations
the domain is restricted or other explicit conditions are im-
posed. A critical issue is related to the singularities in-
volved in the Hilbert transform computation, since we are
confronted with an improper integral (Section II). If the in-
tegral cannot be evaluated in a closed form, as it is the case
with discrete input data, numerical implementation is in
general complicated [2], as localized errors in gain should
lead to localized errors in phase approximation. Hilbert
transform has the advantage of not requiring derivatives,
but the serious disadvantage that it is not a bounded oper-
ator L∞ to L∞. To solve the problem, different approaches
for gain-phase relationships in logarithmic frequency do-
main have been proposed. A suitable change of variable
can give the bounded operator (6) from Lr to L∞ for any
r > 1 [3].

In many applications the goal is to obtain the phase at
any desired frequency. To this end, there were proposed
many approaches for phase approximation. Almost all of
them are based on some quadrature formulas of Hilbert
transform, where the knots of quadrature are specified a pri-
ori. However, in practical situations the values of gain are
available only at certain frequencies, which may not be the
exact knots of quadrature formula. The method proposed in
[4] can deal with gain samples at arbitrary frequencies, but
it requests for a piecewise linear approximation (PWLA)
of gain. Although one can provide such PWLA by using
all available gain samples, a PWLA with a reduced number
of slopes and breakpoints is more attractive in implementa-
tion, as the number of added terms is much smaller.

The goal of this paper is to show how to determine the
breakpoints of a piecewise linear fitting of gain by using
a divide-and-conquer approach, then to use this technique

for computing a phase approximation. For this purpose we
first remind Hilbert transform and Bode relationships (Sec-
tion II), then the gain non-compact phase approximation
method is recalled (Section III). In Section IV we present
the divide-and-conquer piecewise method, respectively in
Section V the framework is illustrated. Finally numerical
examples are provided (Section VI).

II. BODE RELATIONSHIPS AND HILBERT
TRANSFORM

Let us consider H( jω) the Fourier transform of a causal
function h(t):

H( jω) =
∫ ∞

0
h(t)e− jωtdt = R(ω)+ jI(ω), (1)

then we have [1]

R(ω) = R(∞)− 1
π

∫ ∞

−∞

I(ω)
y−ω

dy, (2)

I(ω) =
1
π

∫ ∞

−∞

R(y)
y−ω

dy, (3)

which establish the Hilbert pair of R(ω) and I(ω). One
can easily obtain the gain-phase relations (or Bode rela-
tionships) from (2) and (3) directly by taking logarithms
[5], after fulfilling the requirements needed to satisfy the
right half plane analyticity conditions of the Hilbert trans-
form, i.e. the stable and minimum phase conditions. Under
the assumption that H(s) is not only analytic, but has no
zeros for Re(s)≥ 0, then:

lnH( jω) = α(ω)+ jβ (ω), (4)

will also be analytic in the right-hand plane. Thus the phase
β (ω) will be uniquely determined from the gain (in nepers)
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β (ω)
(3)︷︸︸︷
=

1
π

∫ ∞

−∞

α(y)
y−ω

dy
(7)︷︸︸︷
=

1
π

∫ ∞

−∞
α ′(y) ln

∣∣∣∣
y+ω
y−ω

∣∣∣∣dy
(9)︷︸︸︷
=

1
π

∫ ∞

−∞
α ′′(y)×

(
2ω−ω ln

∣∣ω2− y2∣∣− y ln
∣∣∣∣
y+ω
y−ω

∣∣∣∣
)

dy

(11)︷︸︸︷
=

1
π

∫ ∞

−∞
∑
n

an [δ (y)−δ (y−ωn)]×
(

2ω−ω ln
∣∣ω2− y2∣∣− y ln

∣∣∣∣
y+ω
y−ω

∣∣∣∣
)

dy

=
1
π ∑

n
an

(
2ω−ω ln

∣∣ω2∣∣−0−2ω +ω ln
∣∣ω2−ω2

n
∣∣+ωn ln

∣∣∣∣
y+ω
y−ω

∣∣∣∣
)
≡ βa(ω). (5)

α(ω):

β (ω) =
2ω
π

∫ ∞

0

α(y)−α(ω)
y2−ω2 dy. (6)

III. GAIN WITH NON-COMPACT SUPPORT
The formula between the imaginary and real parts of a com-
plex function of real frequency as expressed in (3) can be
rewritten in many ways [4]. By integrating the right mem-
ber of (3) by parts we find:

I(ω) =
1
π

∫ ∞

−∞
R′(y) ln

∣∣∣∣
y+ω
y−ω

∣∣∣∣dy, (7)

provided

lim
y→∞

R(y)
y

= 0. (8)

Alternatively, we can continue by integrating the right
member of (8) by parts, i.e. a double integration by parts
of the right member of (3) and the integrand will be:

R′′(y)
(

2ω−ω ln
∣∣ω2− y2∣∣− y ln

∣∣∣∣
y+ω
y−ω

∣∣∣∣
)

, (9)

provided

lim
y→∞

R(y)
y

= 0, and lim
y→∞

R′(y) < ∞. (10)

Previous relationships are seldom integrated analyti-
cally and in practice it is customary to use approximations
to find the relationship between phase and gain. An idea is
to use straight-line segments so that the second derivative
α ′′(ω) is a set of impulses [4]. Gain functions will satisfy
the following:
• Second derivative consists of groups of two impulses;
• Each group has a positive impulse at the origin and a

negative impulse at a frequency denoted by ωn;
• Only positive ωn’s need to be considered.

The second derivative of the gain is given by:

α ′′(ω) ≈ ∑
n

[δ (ω)−δ (ω−ωn)]. (11)

It follows successively the relationships presented
in (5). Finally we get:

β (ω) ≈ βa(ω) =
1
π ∑

n
anωnφ

(
ω
ωn

)
(12)

where

φ(v) = (v+1) ln |v+1|+(v−1) ln |v−1|−2v ln |v|.
Remarks:

1. The an numbers are determined by a broken-line ap-
proximation to the gain-versus-arithmetic-frequency
characteristic;

2. This procedure cannot be employed when the gain
characteristic has slopes different from zero, when fre-
quency is near zero or at very high frequency.
To compute βa(ω) one can follow the steps:

• Given the pairs frequency-gain samples (ωi,α (ωi)),
i = 1, I, find the piecewise-linear approximation
(ωn,α (ωn)), n = 1,N; for ω0, α(ω0) is needed or
should be evaluated;

• For n = 0,N−1, compute slopes sn as follows: sn =
[α (ωn+1)−α (ωn)]/(ωn+1−ωn);

• a0 = s0 and an = sn−1− sn for n = 1,N−1;
• Compute βa(ω) from (12), by summing of n from 0 to

N−1.

IV. DIVIDE-AND-CONQUER PIECEWISE
METHOD

There have been many piecewise linear approximations
presented in literature. Usually any PWLA is described
by its breakpoints and slopes, however the major issue is
the selection of breakpoints. If the breakpoints are known,
optimal slopes can be obtained [6, 7], and the PWLA re-
sults. However, when the breakpoints are not known, a
certain random selection of breakpoints does not guaran-
tee always that by applying optimal approaches one can
obtain an overall optimal or even rather a good approxi-
mation. In the following the goal is to show a way how
to determine the breakpoints of a piecewise linear fitting.
The naive solution of this problem consists in computing
of all successive slopes for all available points. Then one
can detect significant changes between successive slopes,
and when such change is detected, a new breakpoint is set.
Such a strategy can be implemented, but it may require a
great amount of computation, especially when the number
of available points is very large.

To improve on the naive algorithm, we shall make use
of a powerful technique, called divide-and-conquer algo-
rithm. Such procedure if often encountered in science and
technology, e.g. FFT (Fast Fourier Transform) or quick-
sort algorithms [8, 9]. Basically, it consists in partitioning
the problem into two parts, then solving the parts indepen-
dently, i.e. conquered individually. Finally, the results are
put back together in some way.

For our purpose, we shall now describe the basic mod-
ule of the algorithm:
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Figure 1. Gain (-) and gain samples (o) obtained by divide-
and-conquer PWLA.

1. Let us consider two breakpoints, usually denoted by the
smallest point xmin and the largest point xmax, and we
compute the slope for these two points:

F (xmax)−F (xmin)
xmax− xmin

;

2. then we select the point from the middle of the interval

xmean =
xmax + xmin

2
;

3. and compute the slopes of function for the middle point

F (xmax)−F (xmean)
xmax− xmean

;

F (xmean)−F (xmin)
xmean− xmin

.

If these new slopes are very close to the previous slope,
then there is no need to add the middle point; otherwise
the middle point is added to the set of breakpoints. This
completes the basic module of the PWLA algorithm.

For the given set of data, we shall start with the mini-
mum and the maximum available point, and they both de-
fine the first set of breakpoints. We apply the basic module
of the algorithm and we get the second set of breakpoints.
Recursively we apply the basic module for the obtained set
of breakpoints, to get a new set of breakpoints. This proce-
dure is applied until a satisfactory PWLA is reached.

Example: The gain together with its divide-and-
conquer PWLA are shown in Fig. 1, for the frequency
ω ∈ [0, 6 · 108] Hz. We obtained 32 points by divide-and-
conquer method that provide us a good PWLA of gain. A
zoom of the PWLA for the highest values of gain is also
depicted in Fig. 2.

We shall note that this approach is always convergent
since in practical situations we have a finite number of
available points. However, it may not converge always to
a satisfactory approximation. This may happen when the
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Figure 2. Gain (-) and gain samples (o) obtained by divide-
and-conquer PWLA (zoom of Fig. 1).

function to be approximated has many local minimum or
maximum points (gain with multiple peaks). In such sit-
uation, we suggest to compute the mean squared error be-
tween the function and its approximation. Thus one can de-
cide whether the recursive process has been finished prop-
erly.

V. FRAMEWORK
Before proceedings with experimental results, we have to
consider some preliminary discussions. First we recalled
that the technique mentioned in Section III cannot be used
when the gain characteristic has slopes different from zero
near zero or at very high frequency. According to New-
ton, Gould and Kaiser [4], this restriction is not a great
problem: the phase characteristic of a factor in a transfer
function whose gain characteristic does not have the above
mentioned property can be evaluated alone. This may be a
sensitive problem only when a small number of gain sam-
ples are available.

Now we are going to test the given approach. For
phase approximation in linear frequency domain using
non-compact gain technique, Bode circuit function [1] was
modified as bellow:

H(s) = Zin(s) =
Es+F |
|As

+
1|
|Bs

+
1|
|Cs

+
1|
|D (13)

by inserting a new zero in the transfer function in order to
smooth the gain behavior at zero frequencies. Note that E
and F must be positive in order to keep the transfer func-
tion as a minimum-phase one. In what follows we shall
demonstrate the required slopes conditions for these modi-
fied transfer functions. Equation (13) can be rewritten as:

H(s) = Zin(s)

=
BCDEs3 +B(CDF +E)s2 +(BF +DE)s+DF

ABCDs3 +ABs2 +D(A+C)s+1
.

The corresponding magnitude for the frequency response
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Zin(s) =
(R0 +R1)s3 +

R0C1L2 +R0R1C1C3R4 +R1C1L2 +L2C3R4

C1L2C3R4
s2

s3 +
L2 +R1C3R4

L2C3R4
s2 +

C1R4 +R1C1 +C3R4

C1L2C3R4
s+

1
C1L2C3R4

(14)

+
R0C1R4 +R0R1C1 +R0C3R4 +R1C1R4 +L2

C1L2C3R4
s+

R0 +R4

C1L2C3R4 .

function H ( jω) = H(s)|s= jω is given by:

|H ( jω)|=
√

B2C2D2E2ω6 +B(BC2D2F2 +BE2
√

A2B2C2D2ω6 +AB(AB−2ACD2

−2CD2E2)ω4 +(B2F2 +D2E2−2BCD2F2)ω2 +D2F2

−2C2D2)ω4 +(A2D2 +2ACD2 +C2D2−2AB)ω2 +1
.

The first order logarithmic gain derivative is given in
[10]. The gain characteristic must have zero slope at zero
and at very high frequencies. We shall evaluate these slopes
and impose the needed conditions to demonstrate that the
modified Bode’s transfer functions can be used as test func-
tions for non-compact gain technique. The slope at the in-
finity should satisfy:

lim
ω→∞

α ′(ω) = 0,

so the 12th order term from U(ω)V (ω) must has nonzero
value:

A2B4C4D4E2 6= 0,

from where we have: A 6= 0,B 6= 0,C 6= 0,D 6= 0,E 6= 0.
The slope at zero should satisfy:

lim
ω→0

α ′(ω) = 0,

so:
• the free term (the coefficient for ω0) from U(ω)V (ω)

must have nonzero value:

D2F2 6= 0,

from where we have D 6= 0,F 6= 0.
• the free term from U ′(ω)V (ω) − V ′(ω)U(ω) must

be zero; because U ′(ω) and V ′(ω) are odd func-
tions, U(ω) and V (ω) are even functions results that
U ′(ω)V (ω)−V ′(ω)U(ω) is an odd one, so:

U ′(ω)V (ω)−V ′(ω)U(ω)
∣∣
ω=0 = 0.

It follows that the necessary and sufficient condition for
the modified Bode’s transfer functions to be applied in the
case of gain with non-compact support is: A 6= 0,B 6= 0,C 6=
0,D 6= 0,E 6= 0,F 6= 0, or equivalent:

A ·B ·C ·D ·E ·F 6= 0. (15)

The modified Bode transfer function (13) corresponds
to the circuit from Fig. 3. Its input impedance is:

Zin(s) = R0 +
1|∣∣∣∣
sC1

1+ sR1C1

+
1|
|sL2

+
1|
|sC3

+
1|
|R4

(16)

The extended form of the input impedance is presented
in (14).

Figure 3. Modified Bode circuit.

Threshold value No. of points Threshold value No. of points
2.170e−009 32 6.247e−010 118
1.860e−009 34 5.941e−010 125
1.674e−009 41 5.632e−010 131
1.507e−009 44 5.320e−010 137
1.424e−009 46 5.005e−010 139
1.382e−009 53 4.687e−010 144
1.315e−009 56 4.366e−010 148
1.269e−009 60 4.042e−010 151
1.222e−009 65 3.715e−010 169
1.149e−009 68 3.385e−010 205
1.022e−009 71 3.052e−010 244
9.415e−010 73 2.716e−010 262
8.587e−010 75 2.377e−010 279
8.305e−010 77 2.035e−010 302
8.020e−010 80 1.690e−010 432
7.732e−010 83 1.342e−010 557
7.441e−010 87 9.910e−011 646
7.147e−010 90 6.370e−011 1145
6.850e−010 104 2.800e−011 2437
6.550e−010 113 1.100e−011 6207

Table 1. The relationship between the threshold value and
the number of breakpoints – ω ∈ [0, 6 ·108].

VI. NUMERICAL EXAMPLES
The considered values for the components are as follows:
R0 = 100Ω, R1 = 50Ω, C1 = 56pF, L2 = 5µH, C3 = 56pF
and respectively R4 = 50Ω.

VI.1 Threshold value vs number of breakpoints
We are interested to observe how variate the breakpoints
number for the piecewise linear approximation (PWLA),
using the divide-and-conquer approach, regarding the
threshold value.

For ω ∈ [0, 6 · 108], in Table 1 we show the relation
between the threshold value and the number of the PWLA
breakpoints, and in Fig. 4 this relationship is plotted.

In Table 2, respectively in Fig. 5 the relation between
the threshold value and the number of the PWLA break-
points is illustrated for ω ∈ [0, 109].

From Figs. 4 and 5 respectively Tables 1 and 2, we can
conclude that the number of breakpoints for the PWLA in-
creased exponentially by decreasing the threshold value.
However, for a given threshold value there is almost no
difference between the obtained number of breakpoints
and the frequency range used for approximation. Instead,
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Figure 4. The relationship between the threshold value and
the number of breakpoints – ω ∈ [0, 6 ·108].
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Figure 5. The relationship between the threshold value and
the number of breakpoints – ω ∈ [0, 109].

the frequency range influence the maximum value for the
threshold, and implicitly the minimum number of PWLA
breakpoints. The number of the breakpoints increase expo-
nentially by increasing the frequency range, as one can see
in Fig. 6.

VI.2 Approximated phase vs number of breakpoints
In what follows, we are interested to see how the non-
compact gain technique [4], for phase approximation from
the gain samples in the linear frequency domain, behaves
regarding the number of the PWLA breakpoints. For an
exact evaluation for the difference between phase and the
corresponding approximated one, we have been evaluated
the squared error.

For ω ∈ [0, 6 · 108], the phase approximations for dif-
ferent values of the breakpoints are illustrated in Fig. 7,
together with the real phase, and the corresponding square
error is shown in Fig. 8.

For ω ∈ [0, 109], the phase approximations for different
values of the breakpoints are illustrated in Fig. 9, together

Threshold value No. of points Threshold value No. of points
4.890e−010 160 2.334e−010 326
4.799e−010 162 2.189e−010 339
4.700e−010 164 2.040e−010 353
4.637e−010 166 1.887e−010 366
4.484e−010 168 1.730e−010 382
4.394e−010 170 1.569e−010 444
4.295e−010 173 1.404e−010 576
4.187e−010 176 1.235e−010 659
4.070e−010 179 1.062e−010 688
3.714e−010 185 9.740e−011 717
3.615e−010 188 8.850e−011 750
3.512e−010 190 7.950e−011 822
3.405e−010 194 7.040e−011 1032
3.237e−010 203 6.120e−011 1258
3.120e−010 212 5.190e−011 1388
2.999e−010 222 4.250e−011 1520
2.874e−010 250 3.300e−011 2285
2.745e−010 269 2.340e−011 2914
2.612e−010 291 1.370e−011 5396
2.475e−010 317 3.900e−012 19870

Table 2. The relationship between the threshold value and
the number of breakpoints – ω ∈ [0, 109].
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Figure 6. The relationship between the frequency range
and the minimum number of breakpoints needed.

with the real phase, and the corresponding square error is
shown in Fig. 10.

From Figs. 7 and 9 we can conclude that the number
of breakpoints used for PWLA influence the quality of the
phase approximation. For a given frequency range, increas-
ing the number of breakpoints, the square error between
phase and approximated phase decreases. However, for the
same number of breakpoints, as we increase the frequency
range, the phase approximation behaves better. This can
be explain by the fact that the gain slopes tend ’much bet-
ter’ to zero, at zero and at very high frequencies, thus the
quality of the approximation increases. If the number of
the breakpoints is too high, then the evaluation time is also
high, which may be not desirable. Thus the investigator
must impose the highest admissible value for the square er-
ror, bellow which there is no need to increase the number
of the breakpoints.

VI.3 Gain corrupted data
The above illustrations were done for frequency response
data generated by ideal responses of the transfer function.
The ideal responses could also be corrupted by various
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Figure 7. Phase (-) and approximated phase –
ω ∈ [0, 6 ·108].
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types and levels of noise. In what follows we will evalu-
ate the non-compact support gain technique performances,
for phase approximation in the linear frequency domain,
when the circuit function is noise corrupted.

We will start with the case for which on the true param-
eters we add a percent error (tolerance). The true param-
eters and their associated nominal values will be available
for use as initial estimates [11]. A percentage error of
1. ±1%;
2. ±5%;
3. ±10%.
will be added to test the the phase approximation method
in the linear frequency domain.

To compare the effect of the number of breakpoints
used for PWLA regarding the approximated phase, when
the nominal values of the circuit function (14) are toler-
ated, we will use the well known norms L1, L2 and L∞. All
the tables contain on the left the value of the tolerance, then
the number of breakpoints used for PWLA approximation,
and on the last three right columns the values obtained for
the L1, L2, respectively L∞ norms.
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Figure 9. Phase (-) and approximated phase – ω ∈ [0, 109].
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Figure 10. Square error – ω ∈ [0, 109].

For ω ∈ [0, 6 ·108], the results are shown in Table 3. To
compare the results obtained for the approximated phase
when the nominal values of the parameters are altered by
the corresponding tolerance, we also show the results for
0% tolerance. In Table 4 are shown the results for ω ∈
[0, 109].

From Tables 3 and 4 we can conclude that the behavior
of phase approximation using gain altered data by a per-
cent error is the same as in the case of non-corrupted gain
data: increasing the number of breakpoints, the error be-
tween phase and approximated one decreases, and also, for
the same number of breakpoints, considering the same tol-
erance, increasing the frequency range, the error decreases.

Another case, is the one when the circuit functions
are corrupted by noise. At any ideal frequency response,
H ( jωk), noise corrupted data were taken as:

H ( jωk) = H ( jωk)+∆H ( jωk), (17)

where Re{∆H ( jωk)} and Im{∆H ( jωk)}, are generated
using a normal distribution with zero mean and σ2 vari-

________________________________________________________________________________

Volume 50, Number 1, 2009 ACTA TECHNICA NAPOCENSIS
 Electronics and Telecommunications

12



Tol. Points L1 L2 L∞

32 6.182e−002 6.507e−002 1.040e−001
400 7.078e−002 7.472e−002 9.842e−002

0% 1730 4.004e−002 4.247e−002 5.348e−002
6437 3.283e−002 3.493e−002 4.407e−002

15770 3.017e−002 3.215e−002 4.071e−002
31 6.417e−002 6.850e−002 1.111e−001

400 7.289e−002 7.775e−002 1.016e−001
1% 1730 4.403e−002 4.671e−002 5.643e−002

6437 3.732e−002 3.954e−002 4.689e−002
15770 3.485e−002 3.691e−002 4.365e−002

36 6.041e−002 6.337e−002 9.792e−002
400 6.922e−002 7.261e−002 9.523e−002

−1% 1730 3.746e−002 3.983e−002 6.822e−002
6437 3.000e−002 3.228e−002 6.461e−002

15770 2.725e−002 2.952e−002 6.329e−002
40 8.207e−002 8.799e−002 1.834e−001

400 9.063e−002 9.602e−002 1.914e−001
5% 1730 6.614e−002 7.149e−002 2.047e−001

6437 6.046e−002 6.620e−002 2.077e−001
15770 5.836e−002 6.430e−002 2.088e−001

9 9.345e−002 1.314e−001 5.891e−001
400 6.346e−002 7.585e−002 3.003e−001

−5% 1730 3.113e−002 5.044e−002 2.819e−001
6437 2.475e−002 4.591e−002 2.762e−001

15770 2.421e−002 4.556e−002 2.755e−001
41 1.058e−001 1.183e−001 3.812e−001

400 1.132e−001 1.245e−001 3.867e−001
10% 1730 9.264e−002 1.062e−001 3.975e−001

6437 8.785e−002 1.023e−001 3.998e−001
15770 8.609e−002 1.009e−001 4.007e−001

24 5.288e−002 1.018e−001 5.699e−001
400 6.288e−002 1.050e−001 5.605e−001

−10% 1730 4.423e−002 9.317e−002 5.387e−001
6437 4.550e−002 9.354e−002 5.319e−001

15770 4.608e−002 9.373e−002 5.311e−001

Table 3. ω ∈ [0, 6 ·108] – tolerance altered parameters.

Tol. Points L1 L2 L∞

160 2.268e−002 2.389e−002 3.913e−002
400 2.557e−002 2.688e−002 3.502e−002

0% 1730 2.588e−002 2.732e−002 3.603e−002
6442 1.454e−002 1.542e−002 1.942e−002

15770 1.191e−002 1.267e−002 1.589e−002
163 2.659e−002 2.804e−002 4.530e−002
400 2.951e−002 3.067e−002 4.018e−002

1% 1730 2.984e−002 3.106e−002 4.037e−002
6442 1.917e−002 1.989e−002 4.420e−002

15770 1.669e−002 1.739e−002 4.505e−002
154 1.992e−002 2.151e−002 6.098e−002
400 2.289e−002 2.471e−002 5.902e−002

−1% 1730 2.322e−002 2.519e−002 5.880e−002
6442 1.173e−002 1.391e−002 5.470e−002

15770 9.349e−003 1.156e−002 5.379e−002
173 4.452e−002 5.069e−002 2.106e−001
400 4.668e−002 5.193e−002 2.120e−001

5% 1730 4.743e−002 5.247e−002 2.124e−001
6442 3.818e−002 4.466e−002 2.158e−001

15770 3.603e−002 4.303e−002 2.165e−001
79 1.765e−002 3.513e−002 2.395e−001

400 2.158e−002 3.705e−002 2.713e−001
−5% 1730 2.222e−002 3.736e−002 2.710e−001

6442 1.786e−002 3.603e−002 2.663e−001
15770 1.809e−002 3.644e−002 2.652e−001

180 6.533e−002 7.983e−002 3.699e−001
400 6.582e−002 8.023e−002 3.704e−001

10% 1730 6.779e−002 8.093e−002 3.714e−001
6442 5.997e−002 7.518e−002 3.743e−001

15770 5.998e−002 7.518e−002 3.743e−001
90 3.333e−002 7.386e−002 5.323e−001

400 3.425e−002 7.402e−002 5.259e−001
−10% 1730 3.456e−002 7.415e−002 5.257e−001

6442 4.223e−002 7.778e−002 5.200e−001
15770 4.588e−002 7.905e−002 5.187e−001

Table 4. ω ∈ [0, 109] – tolerance altered parameters.

ance (N
(
0,σ2)), with

3σ =
η

100
|H ( jωk)|,

η being the level of noise [12]. Frequency response data
will be generated using the modified Bode transfer func-
tion (14), with:
1. η = 1%;
2. η = 5%.

To compare the effect of breakpoints number used for
PWLA regarding the quality of the approximated phase,
when frequency response data are noise corrupted, we will
use the same three norms L1, L2 and L∞. We used the same
threshold values as in the case for 0% tolerance.

For ω ∈ [0, 6 · 108], the results are shown in Table 5,
for ω ∈ [0, 8 ·108] in Table 6, for ω ∈ [0, 109] in Table 7,
respectively for ω ∈ [0, 2 ·109] the results are illustrated in
Table 8.

Noise level Points L1 L2 L∞

203 5.087e−002 5.464e−002 8.726e−002
3068 7.252e−002 7.652e−002 9.961e−002

η = 1% 8402 1.350e+002 1.419e+002 1.725e+002
15845 1.973e+001 2.074e+001 2.522e+001
16251 7.846e+001 8.246e+001 1.003e+002

250 3.839e−002 4.273e−002 6.589e−002
3304 7.471e−002 7.882e−002 1.016e−001

η = 5% 8000 8.193e−002 8.594e−002 1.166e−001
15980 4.402e+001 4.627e+001 5.627e+001
16255 1.740e+002 1.829e+002 2.224e+002

Table 5. ω ∈ [0, 6 ·108] – noise corrupted data.

Noise level Points L1 L2 L∞

1100 3.529e−002 3.707e−002 6.017e−002
2337 4.566e−002 4.797e−002 6.234e−002

η = 1% 7414 3.466e−002 3.679e−002 4.953e−002
14272 6.995e+001 7.353e+001 8.940e+001
16191 2.773e+001 2.914e+001 3.544e+001

1147 3.508e−002 3.684e−002 5.943e−002
27823 5.400e−002 5.704e−002 7.829e−002

η = 5% 7470 2.811e−002 3.021e−002 4.696e−002
15345 1.573e+002 1.653e+002 2.010e+002
16378 7.442e+001 7.822e+001 9.513e+001

Table 6. ω ∈ [0, 8 ·108] – noise corrupted data.

Noise level Points L1 L2 L∞

794 1.815e−002 1.942e−002 3.108e−002
2320 2.146e−002 2.275e−002 3.069e−002

η = 1% 5287 2.555e−002 2.689e−002 3.493e−002
12262 5.011e+001 5.267e+001 6.404e+001
15993 5.762e+001 6.057e+001 7.365e+001
1065 1.287e−002 1.451e−002 2.081e−002
3707 1.614e−002 1.791e−002 2.518e−002

η = 5% 6538 2.479e−002 2.611e−002 4.055e−002
12247 1.120e+002 1.177e+002 1.431e+002
16378 1.285e+002 1.351e+002 1.642e+002

Table 7. ω ∈ [0, 109] – noise corrupted data.
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Noise level Points L1 L2 L∞

1637 3.717e−003 5.383e−003 1.364e−002
3532 5.228e−003 5.716e−003 1.152e−002

η = 1% 6363 3.102e−003 3.614e−003 1.229e−002
13900 2.479e+001 2.605e+001 3.169e+001
16219 9.659e+001 1.015e+002 1.235e+002
1847 1.433e−002 1.693e−002 3.135e−002
3780 5.840e−003 6.735e−003 2.655e−002

η = 5% 7963 5.627e−003 8.795e−003 3.044e−002
12096 5.537e+001 5.820e+001 7.078e+001
16385 2.160e+002 2.270e+002 2.761e+002

Table 8. ω ∈ [0, 2 ·109] – noise corrupted data.

VII. CONCLUSION
In this paper we have presented a phase approximation
using a piecewise linear fitting of gain. The slopes and
the breakpoints of the broken line approximation are de-
termined using a divide-and-conquer approach. Results in
phase approximation are relatively accurate, even if fre-
quency response data are corrupted by perturbations, and
complexity of implementation is not very large. Compar-
isons with other numerical methods can be found in [10].
We have to note that this approach is always convergent
since in practical situations we have a finite number of
available points. However, it may not converge always
properly, for instance when the gain has multiple peaks.
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