

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

Manuscript received December 26, 2009; revised March 21, 2010

1

POLYMORPHIC AND METAMORPHIC CODE APPLICATIONS

IN PORTABLE EXECUTABLE FILES PROTECTION

Liviu PETREAN
“Emil Racoviţă” High School Baia Mare, 56 V. Alecsandri, tel. 0262 224 266

Abstract: Assembly code obfuscation is one of the most popular ways used by software developers to protect their intellectual

property. This paper is reviewing the methods of software security employing metamorphic and polymorphic code

transformations used mostly by computer viruses.

Keywords: code, polymorphic, portable

I. INTRODUCTION

The illegal copying of computer programs causes huge

revenue losses of software companies and most of the

time these losses exceed the earnings. As a consequence

the software companies should use strong protection for

their intellectual property, but surprisingly, we often

encounter the absence of such protection or just a futile

security routine. Many software producers argued these

frailties affirming that sooner or later their product will be

reversed with or without protection [1], [3], [6]. They are

right but only partially, because even if everything that

can be run can be reversed, the problem is how long is the

reversing process going to take and how experienced

must the reverser be?

After studying many reversing tutorials on different

websites we reached the conclusion that many reversers

have a minimal knowledge of assembly language and

they have no idea why or how this process works, calling

themselves newbies. Most of the time the easiest trick or

diversion from the standard protection procedures can

drive them out or make them quit.

In this paper we are reviewing self-modifying code

techniques used to improve computer programs’ security

helping the software developers to add one more

protection layer to their products.

II. SELF-MODIFYING CODE

In computer science terminology, self-modifying code

[5] is a code that alters its own instructions at runtime. It

was used in the early days of computers in order to save

memory space, which was limited. It was also used to

implement subroutine calls and returns when the

instruction set only provided simple branching or

skipping instructions to vary the flow of control. Self-

modifying code was used to hide copy protection

instructions in 1980s DOS based games. The floppy disk

drive access instruction “int 0x13” would not appear in

executable program’s image but it would be written into

the executable’s memory image after the program started

to execute. Nowadays self-modifying code is used by

programs that do not want to reveal their presence such as

computer viruses and executable compressors and

protectors.

Self modifying code is quite straightforward to write

when using assembly language but it can also be

implemented in high level language interpreters as C and

C++. The usage of self modifying code has many

purposes. Those which present an interest for us in this

paper are mentioned below:

1. Hiding the code to prevent reverse engineering,

through the use of a disassembler or debugger.

2. Hiding the code to evade detection by

virus/spyware scanning software and similar

programs.

3. Compression of the code to be decompressed

and executed at runtime, e.g. when the

executable file is protected by a compressor.

The self-modifying code is used by executable

compressors and computer viruses in combination with

the following types of assembly language obfuscations:

Polymorphic code [5] is the code that mutates while

keeping the original algorithm intact. This technique is

sometimes used by computer viruses, and computer

worms to hide their presence. Most anti-virus software

and intrusion detection systems attempt to locate

malicious code by searching through computer files and

data packets sent over a computer network. If the security

software finds patterns corresponding to known computer

viruses, it will apply a scanning strategy by rewriting the

unencrypted decryption engine each time the virus or

worm is propagated. The first known polymorphic virus

was written by Mark Washburn in 1990, and the virus

was called “1260”. Later in 1992, a more well-known

polymorphic virus was invented by the Bulgarian reverser

Dark Avenger as a means of avoiding pattern recognition

from antivirus-software.

Metamorphic code [5] is the code that can reprogram

itself. This is possible often by translating its own code

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

2

into an equivalent temporary representation; the code

edits this temporary representation of itself, and then

writes itself into the normal code again. Metamorphic

code is more effective than polymorphic code. This is

because most anti-virus software will try to search for

known virus-code even during the execution of the code.

Diversion code [5] is the code that is not executed at

runtime and is meant to draw the attention of reversers.

Most of the time it is composed of junk code instruction

generated by a polymorphic engine.

The three terms defined above usually appear in articles

related to computer viruses whose major problem was to

hide their bodies from anti-virus programs. But the

polymorphic and metamorphic codes have many

applications in software security when the developers

want their intellectual property hidden from the prying

eyes of the reverse engineers.

III. DESIGN AND USAGE OF SELF MODIFYING

CODE

Self-modifying code represents one of the strongest

weapons used by the developers of the commercial

executable programs compressors today. In our previous

sections we looked at the definitions and the basic

principles of self-modifying code. In this section we will

explore more deeply advanced techniques like

polymorphism and metamorphism.

As we have already mentioned, polymorphism was

used for the first time to write the body of a virus and was

meant to hide this body through encryption. The principle

is simple: the virus starts with a decryption routine that

decrypts the body of the virus in memory and after that,

the actual virus code is run. The same concept may be

used when protecting an executable program encrypted

using polymorphism. The executable starts with a

decryption routine that decrypts the rest of the program in

memory then the actual code of the application runs

normally. The decryption routine must be injected in the

code of the protected executable by the compressor.

The easiest way to approach polymorphism looks like

this:

pushad

mov edi, pStart

mov ecx, dwLen

decr_next_byte:

xor byte ptr [edi],byteKey (1)

dec ecx

jz Done

inc edi

jmp decr_next_byte

Done: popad

This kind of polymorphism is easy to implement but let

us take a look at this code from a reverser’s point of view:

the code starting with the byte indicated by the pointer

pStart with the length in bytes of dwLen is encrypted. The

encryption can be made by a standalone encrypting

application or even easier with a hex-editor. In this

example we have chosen a simple XOR encryption with

the key byteKey. Starting with the byte at pStart all the

following bytes are decrypted in memory at runtime

revealing the real assembly code hidden by the

encryption. The easiest way to go through this routine

using a debugger is to place a memory breakpoint on the

POPAD instruction and wait for the code to decrypt.

The point of polymorphism is to force the reverser to

run our program, static disassembling being impossible

because of the encryption, and thus useless. The problem

with this small polymorphic engine is that it is too

obvious and an experienced reverser doesn’t even have to

run the program. All he has to do is study the decryption

routine and write a small program in assembly language

designed for IDA Pro Disassembler, Olly Debugger, or a

similar disassembler to decrypt the hidden code. To patch

the application the reverser will use the NOP assembly

language instruction to decrypt the code of the

application.

In the following paragraphs we will refer to Olly

Debugger, this being the most popular debugger among

the crackers’ communities on the web. Although designed

to help programmers to debug and repair programs’

flaws, Olly is used by reversers to crack and patch

commercial applications and almost all the reversing

tutorials available on the web today are based on Olly

Debugger.

IV. ADVANCED POLYMORPHISM

A more powerful polymorphic engine not only randomly

generates the encryption key protecting the encrypted

code but it also alters the encryption routine. The features

of a strong polymorphic engine are:

1. Generating different instructions to do the same

thing.

2. Swapping sets of instructions.

3. Creating calls to diversion routines.

4. Generating lots of conditional jumps.

5. Encapsulating of complicated anti-debugging

tricks.

6. Inserting a lot of junk code into the real code.

A combination of the features above results in a more

complicated debugging, drastically increasing the

reversing time or even make it impossible for less

experienced reversers.

Generating different instructions to do the same thing is

based on the fact that in computers programming there is

always more than one way to write a code. For example,

let us consider the following instruction:

mov eax, 33 (2)

 Equivalent forms of instruction (2) are:

push 33 or mov eax, 56

pop eax xor eax, 65

The representation using an intermediate language can

also assist us in implementing the remaining features of a

polymorphic engine. The theory behind representation

using an intermediate language is explained in books

about compiler design [2], [8].

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

3

Nevertheless, there is a vulnerability of classical

polymorphism which consists in the fact that after

finishing the polymorphic routine, the sensitive code is

left decrypted in memory. This means that if the reverser

manages to get through the hard-to-debug mechanism of

the polymorphic engine and all the computer-generated

code, he will find the comprehensible original code. This

is something that the protection must prevent.

The solution of this problem is the division of our code

into smaller modules and put each of them into its own

polymorphic envelope. This will make reversers life

harder, because he will never see the whole code at once

and he will have to trace through the polymorphic

decryptors annoyingly often.

To make the polymorphic encryption more secure, each

block of code will be encrypted using algorithms similar

to Tiny Encryption Algorithm (TEA) based on Feistel

cipher with at least three rounds, see [17].

V. METAMORPHISM AS AN EFFECTIVE

WEAPON

The solution to the problem exposed in section 5 is called

metamorphism. From the outside it is similar to

polymorphism because it creates a different code for each

application. The key difference between polymorphism

and metamorphism is that while polymorphism encrypts

the sensitive code and creates a unique decryptor for it,

metamorphism morphs the sensitive code to make it

almost impossible to understand by a human. With

metamorphism it is possible to create kilobytes of

morphed code from several bytes of original code.

Manual tracing of such code can easily take days or even

weeks of difficult debugging with poor results (the

reverser will never see the original code as with

polymorphism).

Metamorphic engines first take existing code, analyze it

using an internal disassembler, morphs the internal

representation of code then generate the morphed native

code. Let us have an example:

mov eax, 23

mov ecx, 3

The resulting morphed code can look like this:

 xor eax,eax

 or eax, 22

 inc eax

 sub ecx, ecx

 inc ecx

 add ecx, 1

 inc ecx

The major difference between the implementation of

polymorphism and metamorphism lies in the fact that

polymorphism does not change the original code. It only

hides it. On the other hand metamorphism alters the

original code and thus has to cope with several problems:

1. Code flow: because each instruction is replaced

with several new instructions, the length of the

code blocks changes. The engine has to detect

and repair all jumping coordinates or function

calls within the code to match new positions of

code blocks.

2. Registers used as pointers: it basically

represents the same problem like the code flow.

3. Detecting data in code: most compilers today

place some data in the text section of executable,

together with the code. An attempt to handle data

as code would have fatal consequences. This is

the reason why metamorphism is never used for

the whole application but only for the part of it

containing the sensitive code like the protection

itself.

Because of great complexity of the task of writing a

metamorphic engine, many of the available commercial

protectors resort to partial metamorphism. They decide

not to write a full morpher but select only a small subset

of instructions that will be morphed. The other

instructions are left without change.

This approach fulfills the goal of metamorphism only

partially. Even though it is difficult to understand the

generated code, it is even more difficult or impossible to

understand it with full metamorphism. The reason for this

is that the subset of affected instructions is usually too

small to generate sufficient amount of confusing code.

Metamorphic code may be written using the following

techniques:

1. Permutations: By permutating n different

sequences of code among themselves we may

obtain n! different copies that perform the same

task.

2. Transformations: Experienced programmers

know that there are many ways to write the code

for a special task. Assembly code

transformations or metamorphic code

transformations are special sequences of code

injected into the assembly code of a portable

executable file to make the code more difficult to

follow and to discourage reversers. The

transformations that we used in our project are

based on the 8086 instructions set, see [4], [7],

[8], [9], [15].

3. Garbage instructions: Garbage or junk code is

the code that performs practically nothing. It is

inserted in the assembly code of portable

executable programs to make debugging a long

and painful task. Experienced reversers identify

garbage code and avoid it by setting breakpoints

to bypass its execution.

For example, the insertion of unconditional jumps to

the very next instruction alters the program’s code as

we may observe in the figures 1 and 2 below captured

from OllyDebugger.

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

4

Figure 1. Original assembly code before inserting

the jump instruction

Figure 2. Transformed assembly code after inserting

the jump instruction

Using arithmetic and logical operations, certain pieces

of code may be transformed as in the example below. Let

us consider the original instruction:

mov eax, 100

This instruction can be altered using a table containing

more metamorphic transformations equivalent to the

original one like in table 1 below:

 T #1: xor eax,eax

 add eax, 100

 T #2: push eax

 mov eax, 35

 pop eax

 mov eax, 123

 sub eax, 23
 T #n: mov eax, A4

 add eax, B4

 sub eax, 14

 xor eax, 120

(144H XOR 120H = 64H = 100(10))

Table 1. Transformations equivalent to instruction

mov eax,100

where T#i means transformation number 1, and 100(10)

means the decimal integer 100 equal to the hexadecimal

64H. The transformations can be implemented in a text

file and a metamorphic engine will be designed to insert

randomly such transformations in the protected code.

VI. THE EFFICIENCY OF ENCRYPTION

The most commonly method to achieve polymorphism is

code encryption [1], [2], [3], [6]. To evaluate the

advantages and disadvantages of using self-modifying

(polymorphic) code and thus encryption, we develop a

small assembly program designed to encrypt/decrypt

itself at runtime and thus altering its own instructions.

The program is implemented using Winasm Studio

5.1.3.0 and its execution at runtime is studied with Olly

Debugger 1.10. Both of these products are distributed

freely on the internet and can be downloaded from

www.winasm.net and www.ollydbg.de.

Our application starts with a message box that lets us

know that we have only fifteen days left to use it. After

pressing OK, the rest of our small program is a window

containing some text. This is a typical pattern used in

many trial versions of commercial computer applications.

From a reverser’s point of view we are particularly

interested in the starting message box, called “nag-

screen”, and we want to remove it from the execution of

our target and thus have a clean copy of the program for

ourselves.

From a developer’s point of view we want our software

tried for only fifteen days and then registered or removed

from the hard disk. To reach this goal we must be able to

hide the sensitive code specific only to trial versions in

the best possible way. This code launches the message

box when running the unregistered program every time.

The sensitive code characterizing only the trial version

may contain also other important sections like a

registration routine or time based verifications.

Now, back to our program, as a method of protection

for the code that handles our “nag-screen” we choose

polymorphism. The unprotected debugged message box

code looks like this:

Figure3 . MessageBox assembly code in OllyDebugger

Figure 3 shows how the parameters of MessageBox

function are pushed to the stack from left to right starting

at the relative virtual address 1032H accordingly to the

“STDCALL” model. We must choose if we want to

encrypt just the code handling the message box or the

whole application’s code. Let us apply both methods to

observe the results better. The encryption starts at address

1032H.

We encrypt the nineteen bytes of the message box code

by XOR-ing each one with 51H. To be able to study the

application’s execution correctly we must insert a

decryption routine before the encryption one. Then,

before quitting the program we encrypt one more time the

same nineteen bytes. The encryption/decryption routine

(1) has been already presented as a small XOR encryption

with a static key of byteKey=51H. After encryption, the

bytes of the message box code look like in figure 4

below:

Figure 4. Encrypted MessageBox assembly code in

OllyDebugger

First, we must observe, like in figure 4, that all the code

generated by the polymorphic routine and replacing the

original one, starts at the same relative virtual address

1032H. The instructions that follow are completely

altered but this method does not provide a strong

protection because encrypting only a part of the code

leaves the rest of it unprotected at the reverser’s

discretion [16].

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

5

To improve the previous method we will encrypt all the

executable code, thus providing a stronger stealth factor

for our sensitive code. This time the first executed routine

will be the decryption routine, to be able to normally run

the application. Let us examine with Olly Debugger the

first unencrypted instructions of our program:

Figure 5. Entire program assembly code in

OllyDebugger

In figure 5 we may notice the entry point of our

executable program with the relative virtual address

1000H, where the API function GetModuleHandle is

called with the NULL parameter. GetModuleHandle then

returns a handle to the current running process whose

address is stored in the EAX registry. The message box

code starts at address 100CH. The parameters of the

MessageBox function are visible between the addresses

100CH and 1018H. Then the assembly code contains the

parameters of the routine that calls the main body of our

application at address 102FH, and the exit function at

address 1035H. By applying the polymorphic routine to

all this assembly code we obtain the code in figure 6

below:

Figure 6. Entire program encrypted assembly code in

OllyDebugger

After the encryption of the whole application’s body

the only instructions left visible are the instructions that

prepare the polymorphic routine. These instructions start

at the executable’s entry point with the relative virtual

address 1000H and are followed by the call at the address

100EH. Below this call we may see only the junk code

generated again by our polymorphism. This is the call of

the routine that decrypts the rest of the application which

is necessary to run it correctly.

None of the presented encryption methods is not

recommended to be used in commercial applications.

Such protection methods might thwart the plans of a

beginner reverser but would not stand a chance in front of

an experienced one because of the static encryption keys

used in each example presented in figures 3, 4, 5, and 6.

Instead, we may use encryption keys generated using

serial numbers of hardware components belonging to the

computer where the protected program will be used.

VII. IMPROVEMENTS AND CONCLUSIONS

This article represents a review of the basics of the

polymorphic and metamorphic codes and their

implementation in assembly language. To improve such

protection methods based on self-modifying code we

should use more complex encryption and compression

algorithms. The following set of features adds

considerably more improvement when protecting an

application:

1. Application integrity check.

2. Compression of the application.

3. Counteraction to debuggers and disassemblers.

4. Creation and verification of registration keys

using public keys algorithms.

5. Counteraction to memory patching.

6. Generating of registration keys based on the

computer systems.

7. Possibility to create trial versions, that limit

application functions based on evaluation times

and number of runs.

8. Deletion of import information and API

redirecting.

When deciding to use a commercial compressor it is

very important to make sure that there are no automatic

unpacking programs for it or that methods of unpacking

are not made public. The self-modifying code and

assembly code obfuscation represents the ultimate

weapon of a software developer against reversing. For the

better use of executable programs compressors and the

features above, developers should program their own

packers providing different protection schemes for

different products of the same developer.

The bottom line of using polymorphic and

metamorphic code as methods of protection should be the

delay of the reversing process or even the impossibility of

reversing the protected program.

This article is also one of the results, see [10], [11],

[12], [13], [14], of the study of more than 800 commercial

applications during the last 4 years among which we

enumerate, photo, video, sound converters and players,

educational software, anti-spyware and anti-virus

programs, business and office programs, games, etc

developed by more than 210 software companies. If only

half of this information falls into the wrong hands, the

prejudice produced to the programmers who dedicated

time and money to their products would be devastating in

time. This is the major reason why we must emphasize

the security problems, their solutions and vulnerabilities

and we must bring new solutions to combat software

piracy more efficiently.

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

6

REFERENCES
[1] Eldad Eilam, Reversing – Secrets of Reverse Engineering,

Wiley Publishing, Inc. 2005.

[2] Garry McGraw, Software Security: Built Security In, Pearson

Education, Inc. 2006.

[3] Kris Kaspersky, Hacker Disassembling Uncovered, A-LIST

Publishing, 2003.

[4] Michael Howard, David LeBlanc, John Viega, 19 Deadly

Sins of Software Security – Programming Flaws and How to Fix

Them, The McGraw-Hill Companies, 2005

[5] Michal Strehovsky - “Advanced Self-Modifying Code”,

http://www.free-articles-zone.com/print.php?id=42171

[6] Pavol Cerven, Crackproof Your Software – The Best Way to

Protect Your Software Against Crackers, No Starch Press, Inc.

2002.

[7] R. Hyde, The Art of Assembly Language, No Starch Press,

2003

[8] S. Steven Muchnik, Advanced Compiler Design and

Implementation, Morgan Kaufmann Publishers, Inc. 1998.

[9] G. Toderean, A. Caruntu, O. Buza, A. Nica,

Microprocesoare – Indrumator de Laborator, editia 2007,

Risoprint 2007

[10] L. Petrean, “Software Security – Polymorphic and

Metamorphic Code Applications”, SIITME 2007 International

Symposium for Design and Technology of Electronic

Packaging, pp. 212-217, Baia Mare, Romania, ISSN 1843-5122

[11] L. Petrean, “Software Security – General Method of Literal

Strings Obfuscation”, IWCIT 2007 International Workshop

Control and Information Technology, pp. 41-46, Ostrava, Czech

Republic, ISBN 978-248-1567-1

[12] L. Petrean, G. Toderean, “Portable Executable Format

Security Patterns”, IWCIT 2008 International Workshop

Control and Information Technology, pp. 170-174, Gliwice,

Polland, EAN-978839047438

[13] L. Petrean, G. Toderean, “Portable Executable File Format

– Import Address Table Redirection and Reconstruction”,

microCAD 2008 International Scientific Conference 20-21

March 2008, pp. 49-54, Miskolc, Ungaria, ISBN 978-963-661-

812-4

[14] L. Petrean, G. Toderean, “Assembly Metamorphic Code

Transformations as a Protection Method Of Portable Executable

Files”, microCAD 2009 International Scientific Conference 19-

20 March 2009, Vol. XXIII, pp. 35-40, Miskolc, Ungaria, ISBN

978-963-661-866-7

[15] G. Muscă, Programare în Limbaj de Asamblare, Teora,

1996

[16] C.E. Landwehr, “A taxonomy of computer program

security flaws, with examples”, ACM Computing Surveys, vol.

26, no. 3, pp. 211–254, September, 1994

[17] B. Schneier, Applied Cryptography, Second Edition:

Protocols, Algorithms and Source Code in C, John Wiley &

Sons Inc., 1996

