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Abstract: This paper presents the design of a system intended to be used for automatic control applications. The system 

consists of a signal acquisition module, a programmable high speed Digital Signal Processing (DSP) core, a Microcontroller 

Unit (MCU), an output module and a communication module. Both analog and digital signals can be given as input to the 

system. The analog signals are digitized by a high speed analog to digital converter, while the digital signals are read through 

an I2C bus. The programmable DSP core can perform basic arithmetic operations, finite and infinite impulse response 

filtering and fuzzy logic operations at high speed and with a high degree of parallelism on the data received from the signal 

acquisition module. The MCU is a soft processor core with a RISC instruction set and it is used for controlling the operation 

of all the other modules and for implementing more complicated control algorithms that cannot be performed by the DSP 

core. The output module contains multiple Pulse Width Modulated (PWM) signal generators and high speed Digital to 

Analog Converters (DAC) for analog control signals generation from the digital control signals received from the MCU or 

DSP core. The communication module transfers data to/from a PC through a USB connection. By integrating all the above 

mentioned modules into one single chip a complete real time control core is provided. 
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I. INTRODUCTION   

Nowadays in the cases where accurate control is needed 

Microcontroller Units (MCU) or Digital Signal 

Processors (DSP) are used to implement the control 

algorithm. Control dominated software functions are 

better suited to MCUs while DSPs are preferred for 

computation intensive signal processing tasks. This kind 

of control systems also provide great flexibility since they 

are programmable and can perform a variety of functions 

without modifying the hardware itself. Compared to 

analog systems, performing signal manipulation with 

digital systems has numerous advantages: systems 

provide predictable accuracy, they are not affected by 

component aging and operating environment, and they 

permit advanced operations which may be impractical or 

even impossible to realize with analog components. For 

example, complex adaptive filtering and error correction 

algorithms can only be implemented using digital signal 

processing techniques [1]. 

Modern control systems are implemented as Systems 

on Chip (SoC) and combine the advantages provided by 

the MCUs and DSPs. This kind of chip is a high-

performance multiprocessor system which incorporates 

various types of hardware cores: programmable 

processors, Application Specific Integrated Circuit 

(ASIC) blocks, on-chip memories, peripherals, analog 

components, and various interface circuits [2]. Having the 

complete controller on a single chip allows the hardware 

design to be simple and very inexpensive [3]. 

The advances in CMOS technologies have enabled the 

development of complex systems on a chip by exploiting 

reusable programmable processor cores which are now 

characterized by low power consumption and a 

diminishing die area when compared to the size of the on-

chip memories. These programmable processor cores help 

shorten the time to market for new system designs 

because they are already designed and verified. Typically 

embedded processor cores are delivered either in a soft or 

hard form. Soft cores are processor cores delivered as 

synthesizable Hardware Description Language (HDL) 

code and optimized synthesis scripts and thus they can 

quickly be retargeted to a new semiconductor technology. 

Hard cores, in turn, are designed for a certain 

semiconductor technology and delivered as transistor-

level layouts, typically in the Graphic Data System II 

(GDSII) format. As opposed to soft cores, hard cores 

generally perform better in terms of die area and power 

consumption, however, when core portability is of 

primary concern, a soft core should be preferred. [2] 

This paper introduces a programmable control system 

that can be used for a wide range of automation 

applications. The system combines the speed and signal 

processing power of a DSP with the flexibility given by a 

MCU thus providing an excellent environment for 

implementing control algorithms that can range from very 

simple ones like the classical Proportional Integral 

Derivative (PID) control, to fuzzy or hybrid control 

algorithms. Also more complicated control structures can 
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be implemented like cascade controllers or supervisory 

control. Both the DSP and MCU are programmable thus 

making the system highly flexible. The paper is organized 

as follows: Section II presents the system’s functional 

requirements, Section III gives a general description of 

the system’s architecture and presents the role of each of 

the system’s building blocks, Section IV presents in detail 

the design and the instruction set of the programmable 

DSP core, Section V shows a comparison between the 

proposed system and existing solutions and Section VI 

presents conclusions. 

 

II. FUNCTIONAL REQUIREMENTS 

The programmable control system presented in this paper 

was designed taking into consideration the following 

functional requirements: 

- Accept multiple input signals coming from various 

types of sensors. Both analog and digital sensors can be 

connected to the system. The digital sensors are 

connected trough an I2C bus. The signals coming from 

the analog sensors are digitized by an Analog to Digital 

Converter (ADC).  

- Perform programmable signal processing algorithms 

on the input signals at high speed and with a high degree 

of parallelism. 

- Execute PID, fuzzy or hybrid control algorithms. 

Implement more complicated control structures like 

cascade controllers and supervisory control. 

- Transform the digital control signals into analog 

signals either by employing Pulse Width Modulation 

(PWM) or Digital to Analog Converters (DAC). 

- The system can be configured, controlled and 

monitored from a PC through an USB communication 

link. 

 

III. SYSTEM ARCHITECTURE  
Fig. 1 presents the block diagram of the programmable 

control system with the connections and the data flow 

between the system’s components. 

A. Input Module 

 The input signals of the control system can be either 

analog or digital, depending on the type of used sensors.  

An I2C Bus Controller block reads data from multiple 

sensors connected to a common I2C bus. The I2C 

addresses of the sensors are configured by the MCU 

through the system bus, and the I2C Bus Controller reads 

the configured sensors in a serial fashion and stores the 

data read from each sensor in a separate 4x16 bit data 

buffer. A 16 bit ADC is used for digitizing the input 

analog signals. The analog signals are multiplexed at the 

ADC’s input and the results of the analog to digital 

conversion are stored in separate data buffers by the 

means of a programmable demultiplexer. Both the 

multiplexer and demultiplexer can have two operation 

modes: automatic mode, when the input/output selection 

is done automatically based on a configuration 

programmed by the MCU; manual mode, when the 

input/output selection is controlled by the MCU. 

 

B. Programmable DSP core 

 The programmable DSP core is able to perform a 

number of specialized data processing functions at high 

speed and with a high degree of parallelism on the data 

received from the Input module. Also control algorithms 

like PID, fuzzy or hybrid algorithms can be implemented. 

All the computations done by the DSP core are on 16 bit 

fixed point numbers. The data coming from the input 

module is fetched by the Input Controller block, from 

which the DSP core will extract the data when 

appropriate. The Output Controller block takes the data 

that was processed by the DSP core and passes it to the 

Output module or/and to the Communication module. 

 

C. Programmable MCU 

 The programmable MCU is based on the Xilinx 

MicroBlaze soft processor core. It is used for controlling 

the operation of all the other modules and for 

implementing  more   complex   control   algorithms   that  

 

 
 

Figure. 1. Programmable control system block diagram 
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cannot be performed by the DSP core. It can be used for 

implementing supervisory control algorithms that perform 

corrections on the control parameters and can even 

reprogram the DSP core while it is running in order to 

achieve better control results.  

The MicroBlaze embedded processor soft core is a 

reduced instruction set computer (RISC) optimized for 

implementation in Xilinx Field Programmable Gate 

Arrays (FPGAs) [5]. In terms of its instruction-set 

architecture, MicroBlaze is very similar to the RISC-

based DLX architecture described in [4]. With few 

exceptions, the MicroBlaze can issue a new instruction 

every cycle, maintaining single-cycle throughput under 

most circumstances. MicroBlaze's primary I/O bus is the 

CoreConnect bus. User-defined coprocessors are 

supported through a dedicated FIFO-style connection 

called FSL (Fast Simplex Link). The coprocessor(s) 

interface can accelerate computationally intensive 

algorithms by offloading parts or the entirety of the 

computation to a user-designed hardware module [6]. The 

MicroBlaze soft core processor is highly configurable, 

allowing the selection a specific set of features required 

by a design. The fixed feature set of the processor 

includes: thirty-two 32-bit general purpose registers, 32-

bit instruction word with three operands and two 

addressing modes, 32-bit address bus, single issue 

pipeline [5]. In addition to these fixed features many 

aspects of the MicroBlaze can be user configured: cache 

size, pipeline depth (3-stage or 5-stage), embedded 

peripherals, memory management unit, bus-interfaces, 

floating point operations. The performance optimized 

version expands the execution-pipeline to 5-stages, 

allowing a top operating frequency of 210 MHz [6]. 

Without the MMU, MicroBlaze is limited to running 

operating systems with a simplified protection and virtual 

memory-model: e.g., µClinux and FreeRTOS. With the 

MMU, MicroBlaze is capable of hosting operating 

systems which require hardware-based paging and 

protection, such as the Linux kernel [6]. The advantage of 

using an open source soft core like the Xilinx MicroBlaze 

comes from the fact that it is provided as part of a 

embedded development kit that includes compilers and 

other libraries [7]. 

 

D. System bus 

 The system bus is implemented using MicroBlaze's 

primary I/O bus, the CoreConnect bus. This bus is an 

IBM-developed on-chip communications link that enables 

chip cores from multiple sources to be interconnected to 

create entire new chips. CoreConnect technology eases 

the integration and reuse of processor, system and 

peripheral cores within standard product platform designs 

to achieve overall greater system performance. The 

CoreConnect bus architecture includes the Processor 

Local Bus (PLB), the On-chip Peripheral Bus (OPB), a 

bus bridge, two arbiters, and a Device Control Register 

(DCR) bus [8]. High-performance peripherals connect to 

the high-bandwidth, low-latency PLB. Slower peripheral 

cores connect to the OPB, which reduces traffic on the 

PLB. There are bridging capabilities to the competing 

AMBA bus architecture allowing reuse of existing SoC-

components. 

 

E. Output module 

 This module converts the digital control signals 

received from either the MCU or the DSP core into 

analog control signals. It contains multiple PWM 

generators and a high speed DACs. The PWM generators 

have a 16 bit resolution and the frequencies of the output 

waves are programmable and can range between 1KHz to 

10MHz.  

 

F. Communication module 

 This module is able to send/receive data to/from a PC 

through an USB connection. The system sends to the 

outside world data related to the system’s operation and 

receives configuration parameters and programs for the 

DSP core. 

 

IV. PROGRAMMABLE DSP CORE DESIGN 
The programmable DSP core can be divided into several 

functional units: input controller, data processing unit, 

data buffers controller and output controller.  

In Fig. 2 is presented the block diagram of the 

programmable DSP core. 

The digital input signals are stored in separate input 

buffers from where they are dispatched to the DSP blocks 

by the Input controller. A DSP block can access data 

from any input buffer, and multiple DSP blocks can use 

data from the buffer. A DSP block has two output buffers:  

- a final output buffer from where the Output controller 

takes the data and sends if either to the Communication 

module or to the Output module 

- an intermediate output buffer from where any other 

DSP block can take the data for further processing. The 

access to the intermediate output buffers is controlled by 

the Data buffers controller block.   

The number of inputs and also the number of DSP 

blocks contained by the programmable DSP can be 

configured at synthesis time. The programs ran by the 

DSP blocks are loaded by the MCU into the internal 

memories of the DSP blocks either from a ROM memory 

or from a PC connected through USB to the system. The 

Output Controller receives the data output by the 

programmable DSP and to transfers it through the system 

bus to the Output module and to the Communication 

module. The operation of this block is programmed by the 

MCU. 

 

A. Input controller 

Data from each sensor connected to the system is 

stored in a 4x16 bit input buffer. The sampling frequency 

of each input buffer can be configured independently and 

can range from 10 KHz to 10 MHz. An input buffer acts 

as a FIFO. Each time data is read from the buffer the read 

sample is deleted from the buffer making room for a 
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Figure 2. DSP core block diagram

 

new input sample. If the buffer isn’t read fast enough by 

the data processing units the oldest samples are 

automatically discarded and new samples are pushed into 

the FIFO. The Input controller manages the data transfer 

between the input buffers and the data processing units. 

Each data processing unit has a dedicated control bus and 

data bus with the input controller. This allows the 

controller to service all the DSP blocks in one clock 

cycle. Each DSP block sends to the Input controller the 

number of the input buffer from which to get the data. If 

multiple DSP blocks require data from the same input it is 

possible to specify if they should receive the same 

sample, or different samples should be provided to each 

of them. The Input controller implements a priority 

scheme to help decide which DSP block should receive 

the input data in case of concurrent access. The priority 

scheme is based on the following rules:  

- the DSP block with the lowest index has the highest 

priority in case multiple simultaneous requests are 

received 

- the DSP block with the oldest un-serviced request has 

the highest priority 

 

 
 

Figure. 3 Input unit 

 

The samples received from the sensors are maximum 16 

bits wide. The Input controller adds an extra bit to the 

sample bits to signal to the connected blocks if new data 

is available and the data retrieve request was successfully 

completed. Each DSP block sends a 4 bit control request 

to the Input controller with the following format: 

- Bit 3 - 0 = get the same input samples as other blocks, 

1 = get new input sample 
- Bits 2:0 – the number of the input from which the 

sample should be retrieved 

Having 3 bits to specify the input number limits the 

number of possible inputs to 8. Fig. 3 presents a detailed 

diagram with the interconnections between the input 

controller, the input buffers and DSP blocks.  

 

B. Data processing unit 

This unit is composed of multiple programmable DSP 

blocks. Each DSP block runs its own program and can 

take as input data from the connected sensors and data 

from other DSP blocks. The DSP blocks operate on 16 bit 

fixed point samples having 15 bits for the fractional part 

and one sign bit. Negative numbers are represented in 2’s 

complement format. Thus the data range can be 

considered to be in the interval [-1.0, 1.0) with a 

resolution of 1/2
15

. A DSP block is able to perform the 

following types of operations: 

- data transfers from input ports to internal memories 

and from internal memories to output ports 

- data transfers between internal memories   

- arithmetic operations as addition, subtraction, 

multiplication and division  

- signal processing functions as finite impulse response 

(FIR) filtering and infinite impulse response (IIR) 

filtering 

- fuzzy operations 
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Figure. 4 DSP block

 

- minimum and maximum of two numbers 

 - conditional and jump instructions 

Fig. 4 presents the structure of a DSP block and the 

data flow between the block’s components. 
The architecture of the DSP core is completely scalable 

and the number of DSP blocks that are incorporated in the 

DSP core can be selected at synthesis time. The program 

executed by a DSP block is loaded in the instruction, data 

and coefficients memories by the MCU through the 

system bus.  

The instruction memory can store 64 instructions. Each 

instruction is 32 bits wide. A 4 stages pipeline is 

implemented for instruction execution. Up to 2 arithmetic 

instructions can be executed in parallel. The Instruction 

Fetch Unit fetches 2 instructions at time. If the 2 

instructions are arithmetic instructions they will be 

scheduled for execution in parallel, and thus 2 instructions 

will be executed in one step. 

Following there is a description of the instructions 

supported by a DSP block: 

- NOP : no operation. It used only for program 

alignment so that arithmetic instructions that can be 

scheduled to be executed in parallel are always 64 bit 

aligned. 

- MOV[L] src, [rowNo], dst : moves data from src to 

dst. Src and dst can be registers, data or coefficients 

memory locations. If the L flag is set than the dst must be 

a memory location and the rowNo operand must be 

specified. In this case the following rowNo rows 

following the row in which the data is moved to are 

shifted to the right by one and on the first position of each 

row is copied the last sample of the previous row. This is 

useful when computing filters longer than one memory 

row.  

 

- INP[L,S] portNo, [rowNo], dst : moves data from an 

input port specified by portNo to dst. Dst can be a register  

or a data memory location. The L flag and the rowNo 

parameter have the same meaning as for the MOV 

instruction. The S flag specifies if the instruction should 
retrieve the same data as other concurrent INP 

instructions, or a new sample should be read. Port 

numbers between 0x00 and 0x0F are allocated for sensor 

inputs, and port numbers between 0x10 and 0x1F are 

allocated for intermediate buffers inputs. 

- OUTP src, portNo : moves data from src to an output 

port specified by portNo. Src can be a register or a data 

memory location. Port number 0x00 specifies the default 

output, and port number 0x10 specifies the intermediate 

buffer outputs.  

- MUL[U,S,M] src1, src2, dst: multiplies src1 by src2 

and stores the result in dst. Src1, src2 and dst can be 

registers or data memory locations. If the U flag is set the 

operands are considered to be unsigned numbers. If the S 

flag is set the instruction must be followed by a SCL 

(scale) instruction that specifies the scale factor of the 

result. The M flag instructs the Instruction Fetch Unit that 

the next instruction is also an arithmetic instruction and 

should be scheduled for execution in the same step as the 

current instruction. This flag is set by the compiler during 

the code optimization stage. 

- DIV[U,S,M] src1, src2, dst: divides src1 by src2 and 

stores the result in dst. Src1, src2 and dst can be registers 

or data memory locations. The U, S and M flags have the 

same meaning as for the MUL instruction.  

- ADD[U,S,M] src1, src2, dst: adds src1 to src2 and 

stores the result in dst. Src1, src2 and dst can be registers 

or data memory locations. The U, S and M flags have the 

same meaning as for the MUL instruction. 
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- SUB[U,S,M] src1, src2, dst: subtracts src1 from src2 

and stores the result in dst. Src1, src2 and dst can be 

registers or data memory locations. The U, S and M flags 

have the same meaning as for the MUL instruction. 

- ABS[S,M] src, dst : computes the absolute value of 

src and stores the result into dst. Src and dst can be 

registers or data memory locations. The S and M flags 

have the same meaning as for the MUL instruction. 

- MIN[U,M] src1, src2, dst : computes the minimum 

between src1 and src2 and stores the result in dst. Src1, 

src2 and dst can be registers or data memory locations. If 

the U flag is set the operands are considered to be 

unsigned numbers. The M flag has the same meaning as 

for the MUL instruction. 

- MAX[U,M] src1, src2, dst : computes the maximum 

between src1 and src2 and stores the result in dst. Src1, 

src2 and dst can be registers or data memory locations. If 

the U flag is set the operands are considered to be 

unsigned numbers. The M flag has the same meaning as 

for the MUL instruction. 

- FIR[U,S] src, dst : computes the result of a finite 

impulse response filter using the data and the coefficients 

located in the data and coefficients memories at row src 

and stores the result in a register specified by dst. A row 

of memory contains 16 samples. If filters with a length 

smaller than 16 are to be computed than the unused 

coefficients positions must be filled with 0. If filters with 

more than 16 taps are to be compute than the filtering 

operation can be performed in sequential steps using 

consecutive memory rows, and the intermediate results 

added in the end to obtain the final result. The S and U 

flags have the same meaning as for the MUL instruction. 

The following equation is used to describe the 

instruction’s operation: 
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where T is the sampling period, y(kT) is the output of the 

filter and moment t = kT, u(kT) is the input of the filter at 

the moment t = kT and c is the filter’s taps array with 

length N. 

- IIR[U,S] src, dst : computes the result of an infinite 

impulse response filter using the data and the coefficients 

located in the data and coefficients memories at rows src 

and src + 1 and stores the result in a register specified by 

dst. A row of memory contains 16 samples. If filters with 

a length smaller than 16 are to be computed than the 

unused coefficients positions must be filled with 0. Filters 

with more than 16 taps cannot be computed. The current 

output value is automatically shifted in the corresponding 

location from the data memory to be used in the next 

filtering operation. The S and U flags have the same 

meaning as for the MUL instruction. The following 

equation is used to describe the instruction’s operation: 
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where T is the sampling period, y(kT) is the output of the 

filter and moment t = kT, u(kT) is the input of the filter at 

the moment t = kT , cu is the filter’s forward taps array 

having the length N and cy is the filter’s feedback taps 

array having the  length M. 

- IIR1[U,S] src,coeff,dst : computes a single pole 

infinite response filter using the current input specified by 

src, the previous output located at src + 1 and the 

coefficient given by coeff. Src1, coeff and dst can be 

registers. The S and U flags have the same meaning as for 

the MUL instruction. The following equation is used to 

describe the instruction’s operation: 
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where T is the sampling period, y(kT) is the output of the 

filter and moment t = kT, u(kT) is the input of the filter at 

the moment t = kT and α is the filter’s coefficient. 

- FUZZY src1, src2, dst : computes the output of a 

fuzzy controller with 2 input variables specified by src1 

and src2 and stores the result in dst. The input variables 

are fuzzyfied by the Fuzzy Processing Unit according to 

equation (4), and afterwards all the min and max 

combinations between the input variables are computed.  
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Where mu(i) is the membership function of the input 

variable having the value val to the the i
th

 fuzzy set, c(i) is 

the center value of the fuzzy set i and d(i) is the width of 

the fuzzy set i. Based on a pre-programmed set of rules 

the Fuzzy processing unit loads the useful min and max 

computations into data memory, and the output is 

computed by the ALU using two FIR operations and a 

division according to the centroid defuzzyfication method 

described by equation (5). 
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where y is the output of the fuzzy controller, mu(i) is the 

truth value of rule i, out(i) is the output of rule i and N 

represents the number of rules. 

- CMPJNE src1, src2, addr : tests the equality 

between src1 and src2, and if they aren’t equal sets the 

program counter to addr. src1 and src2 are registers and 

addr is an immediate value. 

- CMPJLE / CMPUJLE src1, src2, addr : tests if src1 

is less than src2. If the condition is true sets the program 

counter to addr. src1 and src2 are registers and addr is an 

immediate value. If the U flag is set the operands are 

considered to be unsigned numbers. 

- CMPJGE / CMPUJGE src1, src2, addr : tests if 

src1 is greater than src2. If  the  condition is true  sets  the  
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Figure. 5 ALU block diagram 

 

program counter to addr. Src1 and src2 are registers and 

addr is an immediate value. If the U flag is set the 

operands are considered to be unsigned numbers. 

- SCL val : Scales the result of the previous instruction 

with a number equal to val, where val is a power of 2. 

The Registers memory is interfaced with the ALU and 

the Fuzzy Processing Unit by a 64 bit bus, allowing for 

four 16 bit words to be transferred in one clock cycle. 

The filtering instructions operate directly with the data 

and coefficients memories.  These memories have 256 

bits data busses, which allow the transfer towards the 

ALU of sixteen 16 bit words in one clock cycle. The ALU 

is capable of performing 2 arithmetic operations in 

parallel. It contains the following processing blocks: 2 

multiplication units, 2 division units, 2 addition units, 2 

subtraction units, 2 absolute value units, 1 minimum / 

maximum computation unit, 1 comparator unit, 1 MAC 

unit with 32 inputs for filtering operations. Fig. 5 presents 

the block diagram of the ALU. 

It is estimated that each instruction will take 4 cycles to 

execute, but it has to be seen during detailed system 

design and the implementation stages if optimizations can 

be made to reduce the cycle count for some instructions. 

An assembler written in the Tool Command Language 

(TCL) language will be used for generating the machine 

code of the programs targeted for the DSP core.  

 

C. Data buffers controller 

Each DSP block communicates with an intermediate 

buffer to store the results that are to be used by other DSP 

blocks. These buffers are 4x16bit memory blocks and 

their operation is similar to that of the input buffers. The 

Data buffers controller manages the access of the DSP 

blocks to the intermediate buffers. Each DSP block has 

dedicated data and control lines with the controller in  

 

order for it to be able to service all the DSP blocks in one 

clock cycle. 

 

D. Output controller 

This module transfers data from the programmable 

DSP to the Communication module and the Output 

module. It samples the output buffers on each clock cycle 

to check if new data is available. For each input from the 

programmable DSP the Output controller implements an 

8 bit register with the following structure: 

- Bits 7:6 – 00 = input not connected, 01 = send data to 

Communication module, 10 – send data to Output module 

- Bits 5:0 – number of the output port from the Output 

module to which data must be sent / header to be added to 

the sample in case it must be sent to the Communication 

module. 

The configuration registers are accessible to the MCU 

through the system bus and can be configured every tine 

the DSP core is programmed.  

 

V. COMPARISON WITH EXISTING SOLUTIONS 

The presented system has many similarities with the 

existing Digital Signal Controllers (DSC) in terms of 

operation and targeted applications, but it also brings a set 

of new features that are useful for implementing complex 

control algorithms.  

A DSC can be thought of as a hybrid of 

microcontrollers and digital signal processors. Like 

microcontrollers, DSCs have fast interrupt responses, 

offer control-oriented peripherals like PWMs and 

watchdog timers, and are usually programmed using the 

C programming language, although can be programmed 

using the device's native assembly language. On the DSP 

side, they incorporate features found on most DSPs such 

as single-cycle multiply-accumulate (MAC) units, barrel 
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shifters, and large accumulators. DSCs are used in a wide 

range of applications, but the majorities go into motor 

control, power conversion, and sensor processing 

applications. [9] [10] 

Similar to a DSC the presented system combines the 

features of a DSP and a microcontroller, but on the DSP 

side it incorporates extra capabilities like finite and 

infinite response filters, a fuzzy processing unit and a 

logical unit for executing conditional instructions. These 

features allow the DSP not only to process the input 

signals but also to execute complex real time control 

algorithms at higher sampling rates. The microcontroller 

incorporated into the design can be programmed using the 

C programming language, while the programs for the 

DSP core are written using the assembly instructions 

presented in Chapter IV. 

All DSPs are based on a Harvard architecture with 

separate busses for data and instructions. This allows both 

data and instructions to be fetched simultaneously and 

greatly increases throughput. The DSP core described in 

this paper takes this concept further and uses separate 

busses for instructions, IO data and internal data 

memories. The data is stored in three separate memories 

which can be accessed simultaneously, thus reducing the 

execution time for filtering operations. 

Like all DSPs the presented DSP core has an 

instruction pipeline that allows more than one instruction 

to be executed at one time. As an improvement the 

arithmetic unit is able to execute two arithmetic 

instructions in parallel, and also the instruction fetch unit 

and instruction decode unit are optimized to fetch / 

decode two instructions at a time. If the decoded 

instructions are arithmetic instructions they will be 

executed in parallel.  

 

VI. CONCLUSIONS 
In this paper was presented the design of a programmable 

digital control system. The purpose of the design is to 

provide a complete real time control solution that can be 

used to control the operation of various types of   systems,   

starting   from   simple   ones   to   complex multivariable 

systems.  By combining the advantages of a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

programmable DSP with those of a MCU high 

performance control algorithms can be implemented. 

A programmable DSP core was introduced, which is to 

be used for real time processing of the input signals and 

also for real time execution of control algorithms. The 

architecture of the DSP core is completely scalable and 

the number of DSP blocks that are incorporated in the 

DSP core can be selected at synthesis time. The 

instruction set of the DSP contains arithmetic, signal 

processing and conditional instructions. A fuzzy unit was 

incorporated in the DSP core to allow the execution of 

fuzzy operations on the input signals. 

The design of the system is oriented towards flexibility 

and scalability. Processing blocks as well as inputs and 

outputs can be easily added or removed from the system 

to suit the particular needs of various applications. 

As a future improvement an image processing block 

can be added to the system in order to give the ability to 

perform real time image processing operations. This 

feature will provide the possibility to use the proposed 

system in control applications for autonomous robots, or 

even vehicles, which employ control algorithms based on 

data from different types of sensors and also on data from 

video cameras.  
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