

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

Manuscript received January 10, 2010; revised March 16, 2010

7

DESIGN OF A PROGRAMMABLE CONTROL SYSTEM

Andrei COZMA, Dan PITICA

Applied Electronics Department, Technical University of Cluj Napoca, Romania

E-mail: andrei.cozma@ael.utcluj.ro, dan.pitica@ael.utcluj.ro

Abstract: This paper presents the design of a system intended to be used for automatic control applications. The system

consists of a signal acquisition module, a programmable high speed Digital Signal Processing (DSP) core, a Microcontroller

Unit (MCU), an output module and a communication module. Both analog and digital signals can be given as input to the

system. The analog signals are digitized by a high speed analog to digital converter, while the digital signals are read through

an I2C bus. The programmable DSP core can perform basic arithmetic operations, finite and infinite impulse response

filtering and fuzzy logic operations at high speed and with a high degree of parallelism on the data received from the signal

acquisition module. The MCU is a soft processor core with a RISC instruction set and it is used for controlling the operation

of all the other modules and for implementing more complicated control algorithms that cannot be performed by the DSP

core. The output module contains multiple Pulse Width Modulated (PWM) signal generators and high speed Digital to

Analog Converters (DAC) for analog control signals generation from the digital control signals received from the MCU or

DSP core. The communication module transfers data to/from a PC through a USB connection. By integrating all the above

mentioned modules into one single chip a complete real time control core is provided.

Keywords: automatic control, microcontroller, digital signal processor

I. INTRODUCTION

Nowadays in the cases where accurate control is needed

Microcontroller Units (MCU) or Digital Signal

Processors (DSP) are used to implement the control

algorithm. Control dominated software functions are

better suited to MCUs while DSPs are preferred for

computation intensive signal processing tasks. This kind

of control systems also provide great flexibility since they

are programmable and can perform a variety of functions

without modifying the hardware itself. Compared to

analog systems, performing signal manipulation with

digital systems has numerous advantages: systems

provide predictable accuracy, they are not affected by

component aging and operating environment, and they

permit advanced operations which may be impractical or

even impossible to realize with analog components. For

example, complex adaptive filtering and error correction

algorithms can only be implemented using digital signal

processing techniques [1].

Modern control systems are implemented as Systems

on Chip (SoC) and combine the advantages provided by

the MCUs and DSPs. This kind of chip is a high-

performance multiprocessor system which incorporates

various types of hardware cores: programmable

processors, Application Specific Integrated Circuit

(ASIC) blocks, on-chip memories, peripherals, analog

components, and various interface circuits [2]. Having the

complete controller on a single chip allows the hardware

design to be simple and very inexpensive [3].

The advances in CMOS technologies have enabled the

development of complex systems on a chip by exploiting

reusable programmable processor cores which are now

characterized by low power consumption and a

diminishing die area when compared to the size of the on-

chip memories. These programmable processor cores help

shorten the time to market for new system designs

because they are already designed and verified. Typically

embedded processor cores are delivered either in a soft or

hard form. Soft cores are processor cores delivered as

synthesizable Hardware Description Language (HDL)

code and optimized synthesis scripts and thus they can

quickly be retargeted to a new semiconductor technology.

Hard cores, in turn, are designed for a certain

semiconductor technology and delivered as transistor-

level layouts, typically in the Graphic Data System II

(GDSII) format. As opposed to soft cores, hard cores

generally perform better in terms of die area and power

consumption, however, when core portability is of

primary concern, a soft core should be preferred. [2]

This paper introduces a programmable control system

that can be used for a wide range of automation

applications. The system combines the speed and signal

processing power of a DSP with the flexibility given by a

MCU thus providing an excellent environment for

implementing control algorithms that can range from very

simple ones like the classical Proportional Integral

Derivative (PID) control, to fuzzy or hybrid control

algorithms. Also more complicated control structures can

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

8

be implemented like cascade controllers or supervisory

control. Both the DSP and MCU are programmable thus

making the system highly flexible. The paper is organized

as follows: Section II presents the system’s functional

requirements, Section III gives a general description of

the system’s architecture and presents the role of each of

the system’s building blocks, Section IV presents in detail

the design and the instruction set of the programmable

DSP core, Section V shows a comparison between the

proposed system and existing solutions and Section VI

presents conclusions.

II. FUNCTIONAL REQUIREMENTS

The programmable control system presented in this paper

was designed taking into consideration the following

functional requirements:

- Accept multiple input signals coming from various

types of sensors. Both analog and digital sensors can be

connected to the system. The digital sensors are

connected trough an I2C bus. The signals coming from

the analog sensors are digitized by an Analog to Digital

Converter (ADC).

- Perform programmable signal processing algorithms

on the input signals at high speed and with a high degree

of parallelism.

- Execute PID, fuzzy or hybrid control algorithms.

Implement more complicated control structures like

cascade controllers and supervisory control.

- Transform the digital control signals into analog

signals either by employing Pulse Width Modulation

(PWM) or Digital to Analog Converters (DAC).

- The system can be configured, controlled and

monitored from a PC through an USB communication

link.

III. SYSTEM ARCHITECTURE
Fig. 1 presents the block diagram of the programmable

control system with the connections and the data flow

between the system’s components.

A. Input Module

 The input signals of the control system can be either

analog or digital, depending on the type of used sensors.

An I2C Bus Controller block reads data from multiple

sensors connected to a common I2C bus. The I2C

addresses of the sensors are configured by the MCU

through the system bus, and the I2C Bus Controller reads

the configured sensors in a serial fashion and stores the

data read from each sensor in a separate 4x16 bit data

buffer. A 16 bit ADC is used for digitizing the input

analog signals. The analog signals are multiplexed at the

ADC’s input and the results of the analog to digital

conversion are stored in separate data buffers by the

means of a programmable demultiplexer. Both the

multiplexer and demultiplexer can have two operation

modes: automatic mode, when the input/output selection

is done automatically based on a configuration

programmed by the MCU; manual mode, when the

input/output selection is controlled by the MCU.

B. Programmable DSP core

 The programmable DSP core is able to perform a

number of specialized data processing functions at high

speed and with a high degree of parallelism on the data

received from the Input module. Also control algorithms

like PID, fuzzy or hybrid algorithms can be implemented.

All the computations done by the DSP core are on 16 bit

fixed point numbers. The data coming from the input

module is fetched by the Input Controller block, from

which the DSP core will extract the data when

appropriate. The Output Controller block takes the data

that was processed by the DSP core and passes it to the

Output module or/and to the Communication module.

C. Programmable MCU

 The programmable MCU is based on the Xilinx

MicroBlaze soft processor core. It is used for controlling

the operation of all the other modules and for

implementing more complex control algorithms that

Figure. 1. Programmable control system block diagram

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

9

cannot be performed by the DSP core. It can be used for

implementing supervisory control algorithms that perform

corrections on the control parameters and can even

reprogram the DSP core while it is running in order to

achieve better control results.

The MicroBlaze embedded processor soft core is a

reduced instruction set computer (RISC) optimized for

implementation in Xilinx Field Programmable Gate

Arrays (FPGAs) [5]. In terms of its instruction-set

architecture, MicroBlaze is very similar to the RISC-

based DLX architecture described in [4]. With few

exceptions, the MicroBlaze can issue a new instruction

every cycle, maintaining single-cycle throughput under

most circumstances. MicroBlaze's primary I/O bus is the

CoreConnect bus. User-defined coprocessors are

supported through a dedicated FIFO-style connection

called FSL (Fast Simplex Link). The coprocessor(s)

interface can accelerate computationally intensive

algorithms by offloading parts or the entirety of the

computation to a user-designed hardware module [6]. The

MicroBlaze soft core processor is highly configurable,

allowing the selection a specific set of features required

by a design. The fixed feature set of the processor

includes: thirty-two 32-bit general purpose registers, 32-

bit instruction word with three operands and two

addressing modes, 32-bit address bus, single issue

pipeline [5]. In addition to these fixed features many

aspects of the MicroBlaze can be user configured: cache

size, pipeline depth (3-stage or 5-stage), embedded

peripherals, memory management unit, bus-interfaces,

floating point operations. The performance optimized

version expands the execution-pipeline to 5-stages,

allowing a top operating frequency of 210 MHz [6].

Without the MMU, MicroBlaze is limited to running

operating systems with a simplified protection and virtual

memory-model: e.g., µClinux and FreeRTOS. With the

MMU, MicroBlaze is capable of hosting operating

systems which require hardware-based paging and

protection, such as the Linux kernel [6]. The advantage of

using an open source soft core like the Xilinx MicroBlaze

comes from the fact that it is provided as part of a

embedded development kit that includes compilers and

other libraries [7].

D. System bus

 The system bus is implemented using MicroBlaze's

primary I/O bus, the CoreConnect bus. This bus is an

IBM-developed on-chip communications link that enables

chip cores from multiple sources to be interconnected to

create entire new chips. CoreConnect technology eases

the integration and reuse of processor, system and

peripheral cores within standard product platform designs

to achieve overall greater system performance. The

CoreConnect bus architecture includes the Processor

Local Bus (PLB), the On-chip Peripheral Bus (OPB), a

bus bridge, two arbiters, and a Device Control Register

(DCR) bus [8]. High-performance peripherals connect to

the high-bandwidth, low-latency PLB. Slower peripheral

cores connect to the OPB, which reduces traffic on the

PLB. There are bridging capabilities to the competing

AMBA bus architecture allowing reuse of existing SoC-

components.

E. Output module

 This module converts the digital control signals

received from either the MCU or the DSP core into

analog control signals. It contains multiple PWM

generators and a high speed DACs. The PWM generators

have a 16 bit resolution and the frequencies of the output

waves are programmable and can range between 1KHz to

10MHz.

F. Communication module

 This module is able to send/receive data to/from a PC

through an USB connection. The system sends to the

outside world data related to the system’s operation and

receives configuration parameters and programs for the

DSP core.

IV. PROGRAMMABLE DSP CORE DESIGN
The programmable DSP core can be divided into several

functional units: input controller, data processing unit,

data buffers controller and output controller.

In Fig. 2 is presented the block diagram of the

programmable DSP core.

The digital input signals are stored in separate input

buffers from where they are dispatched to the DSP blocks

by the Input controller. A DSP block can access data

from any input buffer, and multiple DSP blocks can use

data from the buffer. A DSP block has two output buffers:

- a final output buffer from where the Output controller

takes the data and sends if either to the Communication

module or to the Output module

- an intermediate output buffer from where any other

DSP block can take the data for further processing. The

access to the intermediate output buffers is controlled by

the Data buffers controller block.

The number of inputs and also the number of DSP

blocks contained by the programmable DSP can be

configured at synthesis time. The programs ran by the

DSP blocks are loaded by the MCU into the internal

memories of the DSP blocks either from a ROM memory

or from a PC connected through USB to the system. The

Output Controller receives the data output by the

programmable DSP and to transfers it through the system

bus to the Output module and to the Communication

module. The operation of this block is programmed by the

MCU.

A. Input controller

Data from each sensor connected to the system is

stored in a 4x16 bit input buffer. The sampling frequency

of each input buffer can be configured independently and

can range from 10 KHz to 10 MHz. An input buffer acts

as a FIFO. Each time data is read from the buffer the read

sample is deleted from the buffer making room for a

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

10

Figure 2. DSP core block diagram

new input sample. If the buffer isn’t read fast enough by

the data processing units the oldest samples are

automatically discarded and new samples are pushed into

the FIFO. The Input controller manages the data transfer

between the input buffers and the data processing units.

Each data processing unit has a dedicated control bus and

data bus with the input controller. This allows the

controller to service all the DSP blocks in one clock

cycle. Each DSP block sends to the Input controller the

number of the input buffer from which to get the data. If

multiple DSP blocks require data from the same input it is

possible to specify if they should receive the same

sample, or different samples should be provided to each

of them. The Input controller implements a priority

scheme to help decide which DSP block should receive

the input data in case of concurrent access. The priority

scheme is based on the following rules:

- the DSP block with the lowest index has the highest

priority in case multiple simultaneous requests are

received

- the DSP block with the oldest un-serviced request has

the highest priority

Figure. 3 Input unit

The samples received from the sensors are maximum 16

bits wide. The Input controller adds an extra bit to the

sample bits to signal to the connected blocks if new data

is available and the data retrieve request was successfully

completed. Each DSP block sends a 4 bit control request

to the Input controller with the following format:

- Bit 3 - 0 = get the same input samples as other blocks,

1 = get new input sample
- Bits 2:0 – the number of the input from which the

sample should be retrieved

Having 3 bits to specify the input number limits the

number of possible inputs to 8. Fig. 3 presents a detailed

diagram with the interconnections between the input

controller, the input buffers and DSP blocks.

B. Data processing unit

This unit is composed of multiple programmable DSP

blocks. Each DSP block runs its own program and can

take as input data from the connected sensors and data

from other DSP blocks. The DSP blocks operate on 16 bit

fixed point samples having 15 bits for the fractional part

and one sign bit. Negative numbers are represented in 2’s

complement format. Thus the data range can be

considered to be in the interval [-1.0, 1.0) with a

resolution of 1/2
15

. A DSP block is able to perform the

following types of operations:

- data transfers from input ports to internal memories

and from internal memories to output ports

- data transfers between internal memories

- arithmetic operations as addition, subtraction,

multiplication and division

- signal processing functions as finite impulse response

(FIR) filtering and infinite impulse response (IIR)

filtering

- fuzzy operations

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

11

Figure. 4 DSP block

- minimum and maximum of two numbers

 - conditional and jump instructions

Fig. 4 presents the structure of a DSP block and the

data flow between the block’s components.
The architecture of the DSP core is completely scalable

and the number of DSP blocks that are incorporated in the

DSP core can be selected at synthesis time. The program

executed by a DSP block is loaded in the instruction, data

and coefficients memories by the MCU through the

system bus.

The instruction memory can store 64 instructions. Each

instruction is 32 bits wide. A 4 stages pipeline is

implemented for instruction execution. Up to 2 arithmetic

instructions can be executed in parallel. The Instruction

Fetch Unit fetches 2 instructions at time. If the 2

instructions are arithmetic instructions they will be

scheduled for execution in parallel, and thus 2 instructions

will be executed in one step.

Following there is a description of the instructions

supported by a DSP block:

- NOP : no operation. It used only for program

alignment so that arithmetic instructions that can be

scheduled to be executed in parallel are always 64 bit

aligned.

- MOV[L] src, [rowNo], dst : moves data from src to

dst. Src and dst can be registers, data or coefficients

memory locations. If the L flag is set than the dst must be

a memory location and the rowNo operand must be

specified. In this case the following rowNo rows

following the row in which the data is moved to are

shifted to the right by one and on the first position of each

row is copied the last sample of the previous row. This is

useful when computing filters longer than one memory

row.

- INP[L,S] portNo, [rowNo], dst : moves data from an

input port specified by portNo to dst. Dst can be a register

or a data memory location. The L flag and the rowNo

parameter have the same meaning as for the MOV

instruction. The S flag specifies if the instruction should
retrieve the same data as other concurrent INP

instructions, or a new sample should be read. Port

numbers between 0x00 and 0x0F are allocated for sensor

inputs, and port numbers between 0x10 and 0x1F are

allocated for intermediate buffers inputs.

- OUTP src, portNo : moves data from src to an output

port specified by portNo. Src can be a register or a data

memory location. Port number 0x00 specifies the default

output, and port number 0x10 specifies the intermediate

buffer outputs.

- MUL[U,S,M] src1, src2, dst: multiplies src1 by src2

and stores the result in dst. Src1, src2 and dst can be

registers or data memory locations. If the U flag is set the

operands are considered to be unsigned numbers. If the S

flag is set the instruction must be followed by a SCL

(scale) instruction that specifies the scale factor of the

result. The M flag instructs the Instruction Fetch Unit that

the next instruction is also an arithmetic instruction and

should be scheduled for execution in the same step as the

current instruction. This flag is set by the compiler during

the code optimization stage.

- DIV[U,S,M] src1, src2, dst: divides src1 by src2 and

stores the result in dst. Src1, src2 and dst can be registers

or data memory locations. The U, S and M flags have the

same meaning as for the MUL instruction.

- ADD[U,S,M] src1, src2, dst: adds src1 to src2 and

stores the result in dst. Src1, src2 and dst can be registers

or data memory locations. The U, S and M flags have the

same meaning as for the MUL instruction.

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

12

- SUB[U,S,M] src1, src2, dst: subtracts src1 from src2

and stores the result in dst. Src1, src2 and dst can be

registers or data memory locations. The U, S and M flags

have the same meaning as for the MUL instruction.

- ABS[S,M] src, dst : computes the absolute value of

src and stores the result into dst. Src and dst can be

registers or data memory locations. The S and M flags

have the same meaning as for the MUL instruction.

- MIN[U,M] src1, src2, dst : computes the minimum

between src1 and src2 and stores the result in dst. Src1,

src2 and dst can be registers or data memory locations. If

the U flag is set the operands are considered to be

unsigned numbers. The M flag has the same meaning as

for the MUL instruction.

- MAX[U,M] src1, src2, dst : computes the maximum

between src1 and src2 and stores the result in dst. Src1,

src2 and dst can be registers or data memory locations. If

the U flag is set the operands are considered to be

unsigned numbers. The M flag has the same meaning as

for the MUL instruction.

- FIR[U,S] src, dst : computes the result of a finite

impulse response filter using the data and the coefficients

located in the data and coefficients memories at row src

and stores the result in a register specified by dst. A row

of memory contains 16 samples. If filters with a length

smaller than 16 are to be computed than the unused

coefficients positions must be filled with 0. If filters with

more than 16 taps are to be compute than the filtering

operation can be performed in sequential steps using

consecutive memory rows, and the intermediate results

added in the end to obtain the final result. The S and U

flags have the same meaning as for the MUL instruction.

The following equation is used to describe the

instruction’s operation:

)(*))(()(
1

0
icTikukTy

N

i∑
−

=

−= (1)

where T is the sampling period, y(kT) is the output of the

filter and moment t = kT, u(kT) is the input of the filter at

the moment t = kT and c is the filter’s taps array with

length N.

- IIR[U,S] src, dst : computes the result of an infinite

impulse response filter using the data and the coefficients

located in the data and coefficients memories at rows src

and src + 1 and stores the result in a register specified by

dst. A row of memory contains 16 samples. If filters with

a length smaller than 16 are to be computed than the

unused coefficients positions must be filled with 0. Filters

with more than 16 taps cannot be computed. The current

output value is automatically shifted in the corresponding

location from the data memory to be used in the next

filtering operation. The S and U flags have the same

meaning as for the MUL instruction. The following

equation is used to describe the instruction’s operation:

∑∑
−

=

−

=

−−−−=
1

0

1

0
)(*))1(()(*))(()(

M

j

N

i
icyTjkyicuTikukTy (2)

where T is the sampling period, y(kT) is the output of the

filter and moment t = kT, u(kT) is the input of the filter at

the moment t = kT , cu is the filter’s forward taps array

having the length N and cy is the filter’s feedback taps

array having the length M.

- IIR1[U,S] src,coeff,dst : computes a single pole

infinite response filter using the current input specified by

src, the previous output located at src + 1 and the

coefficient given by coeff. Src1, coeff and dst can be

registers. The S and U flags have the same meaning as for

the MUL instruction. The following equation is used to

describe the instruction’s operation:

))1((*)1()(*)(TkykTukTy −−+= αα (3)

where T is the sampling period, y(kT) is the output of the

filter and moment t = kT, u(kT) is the input of the filter at

the moment t = kT and α is the filter’s coefficient.

- FUZZY src1, src2, dst : computes the output of a

fuzzy controller with 2 input variables specified by src1

and src2 and stores the result in dst. The input variables

are fuzzyfied by the Fuzzy Processing Unit according to

equation (4), and afterwards all the min and max

combinations between the input variables are computed.

)(

)(
1)(

id

valic
imu

−
−= (4)

Where mu(i) is the membership function of the input

variable having the value val to the the i
th

 fuzzy set, c(i) is

the center value of the fuzzy set i and d(i) is the width of

the fuzzy set i. Based on a pre-programmed set of rules

the Fuzzy processing unit loads the useful min and max

computations into data memory, and the output is

computed by the ALU using two FIR operations and a

division according to the centroid defuzzyfication method

described by equation (5).

∑

∑

=

=
=

N

j

N

i

jmu

ioutimu
y

1

1

)(

)(*)(
 (5)

where y is the output of the fuzzy controller, mu(i) is the

truth value of rule i, out(i) is the output of rule i and N

represents the number of rules.

- CMPJNE src1, src2, addr : tests the equality

between src1 and src2, and if they aren’t equal sets the

program counter to addr. src1 and src2 are registers and

addr is an immediate value.

- CMPJLE / CMPUJLE src1, src2, addr : tests if src1

is less than src2. If the condition is true sets the program

counter to addr. src1 and src2 are registers and addr is an

immediate value. If the U flag is set the operands are

considered to be unsigned numbers.

- CMPJGE / CMPUJGE src1, src2, addr : tests if

src1 is greater than src2. If the condition is true sets the

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

13

Figure. 5 ALU block diagram

program counter to addr. Src1 and src2 are registers and

addr is an immediate value. If the U flag is set the

operands are considered to be unsigned numbers.

- SCL val : Scales the result of the previous instruction

with a number equal to val, where val is a power of 2.

The Registers memory is interfaced with the ALU and

the Fuzzy Processing Unit by a 64 bit bus, allowing for

four 16 bit words to be transferred in one clock cycle.

The filtering instructions operate directly with the data

and coefficients memories. These memories have 256

bits data busses, which allow the transfer towards the

ALU of sixteen 16 bit words in one clock cycle. The ALU

is capable of performing 2 arithmetic operations in

parallel. It contains the following processing blocks: 2

multiplication units, 2 division units, 2 addition units, 2

subtraction units, 2 absolute value units, 1 minimum /

maximum computation unit, 1 comparator unit, 1 MAC

unit with 32 inputs for filtering operations. Fig. 5 presents

the block diagram of the ALU.

It is estimated that each instruction will take 4 cycles to

execute, but it has to be seen during detailed system

design and the implementation stages if optimizations can

be made to reduce the cycle count for some instructions.

An assembler written in the Tool Command Language

(TCL) language will be used for generating the machine

code of the programs targeted for the DSP core.

C. Data buffers controller

Each DSP block communicates with an intermediate

buffer to store the results that are to be used by other DSP

blocks. These buffers are 4x16bit memory blocks and

their operation is similar to that of the input buffers. The

Data buffers controller manages the access of the DSP

blocks to the intermediate buffers. Each DSP block has

dedicated data and control lines with the controller in

order for it to be able to service all the DSP blocks in one

clock cycle.

D. Output controller

This module transfers data from the programmable

DSP to the Communication module and the Output

module. It samples the output buffers on each clock cycle

to check if new data is available. For each input from the

programmable DSP the Output controller implements an

8 bit register with the following structure:

- Bits 7:6 – 00 = input not connected, 01 = send data to

Communication module, 10 – send data to Output module

- Bits 5:0 – number of the output port from the Output

module to which data must be sent / header to be added to

the sample in case it must be sent to the Communication

module.

The configuration registers are accessible to the MCU

through the system bus and can be configured every tine

the DSP core is programmed.

V. COMPARISON WITH EXISTING SOLUTIONS

The presented system has many similarities with the

existing Digital Signal Controllers (DSC) in terms of

operation and targeted applications, but it also brings a set

of new features that are useful for implementing complex

control algorithms.

A DSC can be thought of as a hybrid of

microcontrollers and digital signal processors. Like

microcontrollers, DSCs have fast interrupt responses,

offer control-oriented peripherals like PWMs and

watchdog timers, and are usually programmed using the

C programming language, although can be programmed

using the device's native assembly language. On the DSP

side, they incorporate features found on most DSPs such

as single-cycle multiply-accumulate (MAC) units, barrel

Volume 51, Number 1, 2010 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

14

shifters, and large accumulators. DSCs are used in a wide

range of applications, but the majorities go into motor

control, power conversion, and sensor processing

applications. [9] [10]

Similar to a DSC the presented system combines the

features of a DSP and a microcontroller, but on the DSP

side it incorporates extra capabilities like finite and

infinite response filters, a fuzzy processing unit and a

logical unit for executing conditional instructions. These

features allow the DSP not only to process the input

signals but also to execute complex real time control

algorithms at higher sampling rates. The microcontroller

incorporated into the design can be programmed using the

C programming language, while the programs for the

DSP core are written using the assembly instructions

presented in Chapter IV.

All DSPs are based on a Harvard architecture with

separate busses for data and instructions. This allows both

data and instructions to be fetched simultaneously and

greatly increases throughput. The DSP core described in

this paper takes this concept further and uses separate

busses for instructions, IO data and internal data

memories. The data is stored in three separate memories

which can be accessed simultaneously, thus reducing the

execution time for filtering operations.

Like all DSPs the presented DSP core has an

instruction pipeline that allows more than one instruction

to be executed at one time. As an improvement the

arithmetic unit is able to execute two arithmetic

instructions in parallel, and also the instruction fetch unit

and instruction decode unit are optimized to fetch /

decode two instructions at a time. If the decoded

instructions are arithmetic instructions they will be

executed in parallel.

VI. CONCLUSIONS
In this paper was presented the design of a programmable

digital control system. The purpose of the design is to

provide a complete real time control solution that can be

used to control the operation of various types of systems,

starting from simple ones to complex multivariable

systems. By combining the advantages of a

programmable DSP with those of a MCU high

performance control algorithms can be implemented.

A programmable DSP core was introduced, which is to

be used for real time processing of the input signals and

also for real time execution of control algorithms. The

architecture of the DSP core is completely scalable and

the number of DSP blocks that are incorporated in the

DSP core can be selected at synthesis time. The

instruction set of the DSP contains arithmetic, signal

processing and conditional instructions. A fuzzy unit was

incorporated in the DSP core to allow the execution of

fuzzy operations on the input signals.

The design of the system is oriented towards flexibility

and scalability. Processing blocks as well as inputs and

outputs can be easily added or removed from the system

to suit the particular needs of various applications.

As a future improvement an image processing block

can be added to the system in order to give the ability to

perform real time image processing operations. This

feature will provide the possibility to use the proposed

system in control applications for autonomous robots, or

even vehicles, which employ control algorithms based on

data from different types of sensors and also on data from

video cameras.

REFERENCES

[1] E. C. Ifeachor and B. W. Jervis, “Digital Signal Processing:

A Practical Approach”, Addison Wesley Longman, Inc., Menlo

Park, CA, U.S.A., 1993

[2] Mika Kuulsa, “DSP Processor Core-Based Wireless System

Design”, PhD Thesis, 18th of August 2000

[3] “Modern Control Technologies: Components and systems,

Second edition”, Thomson Delmar Learning, 2001

[4]David A. Patterson, John L. Hennessy, “Computer

organization and design: the hardware/software interface”,

Morgan Kaufmann Publishers, 2005

[5] “Microblaze Processor Reference Guide”, Xilinx, 2008

[6] http://en.wikipedia.org/wiki/MicroBlaze, 2009

[7] Peter Wilson, “Design Recipes for FPGAs”, Newnes, 2007

[8] www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.

htm, 2009

[9] http://en.wikipedia.org/wiki/Digital_signal_controller, 2009

[10] Ross Bannatyne, “The evolution of the digital signal

controller”, Motorola Semiconductor Products, 2009

