

Volume 52, Number 1, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

Manuscript received November 23, 2010; revised April 3, 2011

7

PROGRAMMABLE CONTROL SYSTEM WITH APPLICATIONS IN

DIRECT CURRENT MOTORS CONTROL

Andrei COZMA, Dan PITICA

Applied Electronics Department, Technical University of Cluj Napoca, Romania

E-mail: andrei.cozma@ael.utcluj.ro, dan.pitica@ael.utcluj.ro

Abstract - This paper presents a programmable control system with applications in Direct Current (DC) motors speed
control. The system consists of a signal acquisition module, a programmable high speed Digital Signal Processor (DSP), a
Microcontroller Unit (MCU), an output module and a communication module. A speed and position sensor integrated in the
data acquisition module provides through an I2C bus data related to the motor’s shaft speed, position and rotation direction.
The DSP can perform basic arithmetic operations, finite and infinite impulse response filtering and fuzzy logic operations at
high speed and with a high degree of parallelism on the data received from the signal acquisition module. The MCU is a soft
processor core with a RISC instruction set and it is used for controlling the operation of all the other modules and for
implementing more complicated control algorithms that cannot be performed by the DSP. The output module contains a
Pulse Width Modulated (PWM) block for generating the DC motor’s control signal. The communication module transfers
data to/from a PC through a USB connection. By integrating all the above mentioned modules into one single chip a complete
real time control core is provided.

Keywords: automatic control, direct current motor, digital signal controller

I. INTRODUCTION
Nowadays programmable Microcontroller Units (MCU)
and Digital Signal Processors (DSP) are used to
implement the control algorithms of the complex modern
control systems. The MCUs are preferred for running
control functions that have a great degree of complexity
but do not require a very fast update rate while DSPs are
preferred for computation intensive signal processing
tasks. MCUs are optimized to perform a wide array of
logical, diagnostic and arithmetic operations on almost
any combination of input data from various sources,
while DSPs are very efficient at repetitive, numerically
intensive tasks [1]. This kind of control systems also
provide great flexibility since they are programmable and
can perform a variety of functions without modifying the
hardware. Compared to analog systems, performing
signal manipulation with digital systems has numerous
advantages: systems provide predictable accuracy, they
are not affected by component aging and operating
environment, and they permit advanced operations which
may be impractical or even impossible to realize with
analog components [2].

Modern control systems are implemented as Systems
on Chip (SoC) and combine the advantages provided by
the MCUs and DSPs. This kind of chip is a high-
performance multiprocessor system which incorporates
various types of hardware cores: programmable
processors, Application Specific Integrated Circuit
(ASIC) blocks, on-chip memories, peripherals, analog
components, and various interface circuits [3]. Having the
complete controller on a single chip allows the hardware
design to be simple and very inexpensive. By combining
the MCU’s control-orientated attributes with the DSP’s

fast calculation capability a new category of device has
emerged, known as the digital signal controller (DSC).

The actuator is an indispensable part of any control
system. It converts electric, pneumatic, or hydraulic
energy into mechanical motion. The most common type
of actuator is the electric motor. Depending on the type of
power they use electric motors are classified as either
Direct Current (DC) or Alternating Current (AC). AC
motors tend to be smaller, more reliable, and less
expensive than the DC motors but they generally run at a
fixed speed that is determined by the line frequency. DC
motors have speed-control capability, which means that
speed, torque, and even direction of rotation can be
changed at any time to meet new conditions [4]. One
technique for controlling a DC motor’s speed is PWM. In
this system, power is supplied to the motor in the form of
DC pulses of a fixed voltage. The width of the pulses is
varied to control the motor’s speed. If the frequency of
the pulses is high enough then the motor’s inductance
averages them, and it runs smoothly [4].

This paper introduces a DC motor speed control
application based on a programmable control system. The
purpose of the control system is to adjust the speed of a
permanent magnet DC motor so that it follows a reference
speed trajectory. The controller consists of two parts: a
speed controller implemented in the DSP and a supervisor
implemented in the MCU. By combining the speed and
signal processing power of a DSP with the flexibility
given by a MCU the presented system provides an
excellent environment for implementing control
algorithms that can range from very simple ones like the
classical Proportional Integral Derivative (PID) control,
to fuzzy or hybrid control algorithms. Also more
complex

Volume 52, Number 1, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

8

control structures can be implemented like cascade
controllers or supervisory control. Both the DSP and
MCU are programmable thus making the system highly
flexible. The paper is organized as follows: Section II
gives a general description of the system’s architecture
and presents the role of each of the system’s building
blocks, Section III presents a particularization of the
control system for a DC motor speed control application,
Section IV describes in detail the design of the speed
controller, Section V provides information related to the
hardware used for implementing the system and presents
some experimental results and Section VI presents
conclusions.

II. SYSTEM ARCHITECTURE
Fig. 1 presents the block diagram of the programmable
control system with the connections and the data flow
between the system’s components.

A. Input Module

The input signals of the control system can be either
analog or digital, depending on the type of used sensors.
An I2C Bus Controller block is responsible for reading
data from multiple sensors connected to a common I2C
bus. The I2C addresses of the sensors are configured by
the MCU through the system bus, and the I2C Bus
Controller reads the configured sensors in a serial fashion
and stores the data read from each sensor in a separate
data buffer. A 16 bit ADC is used for digitizing the input
analog signals. The analog signals are multiplexed at the
ADC’s input and the results of the analog to digital
conversion are stored in separate data buffers by the
means of a programmable demultiplexer. Both the
multiplexer and demultiplexer can have two operation
modes: automatic mode, when the input/output selection
is done automatically based on a configuration
programmed by the MCU; manual mode, when the
input/output selection is controlled by the MCU.

B. Programmable DSP core

The programmable DSP core is responsible for
processing the data received from the Input module and is

able to perform a number of specialized data processing
functions at high speed and with a high degree of
parallelism. These functions enable the system to process
the input signals and also to implement control algorithms
like PID, fuzzy or hybrid algorithms. The instruction set
can be extended to incorporate new basic data processing
functions or to add compound instructions based on the
basic functions. All the computations done by the DSP
core are on 16 bit fixed point numbers having one sign bit
and 15 fractional part bits. This format is known as Q15.
The data coming from the input module is fetched by the
Input Controller block from which the DSP core will
extract the data when appropriate. The Output Controller
block takes the data that was processed by the DSP core
and passes it to the Output module or/and to the
Communication module.

The programmable DSP core contains multiple DSP
blocks which run in parallel and are able to communicate
with each other through shared memories. The
architecture of the DSP core is completely scalable and
the number of DSP blocks that are incorporated in the
DSP core, as well as the number of inputs and outputs can
be selected at synthesis time depending on the system’s
characteristics. The programs ran by the DSP blocks are
loaded by the MCU into the internal instruction and data
memories of the DSP blocks either from a ROM memory
or from a PC connected through USB to the system. The
instruction memory of each DSP block can store 64
instructions. Each instruction is 32 bits wide. A 4 stages
pipeline is implemented for instruction execution and up
to 2 arithmetic instructions can be executed in parallel.

The Output Controller receives the data output by the
programmable DSP and transfers it through the system
bus to the Output module and to the Communication
module. The operation of this block is programmed by the
MCU.
 More details related to the DSP core design can be
found in [7].

D. System bus
 The system bus is implemented using MicroBlaze's
primary I/O bus, the CoreConnect bus. This bus is an

Figure 1. Programmable control system block diagram

IBM-developed on-chip communications link that enables
chip cores from multiple sources to be interconnected to

create entire new chips. CoreConnect technology eases
the integration and reuse of processor, system and

Volume 52, Number 1, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

9

peripheral cores within standard product platform designs
to achieve overall greater system performance. The
CoreConnect bus architecture includes the Processor
Local Bus (PLB), the On-chip Peripheral Bus (OPB), a
bus bridge, two arbiters, and a Device Control Register
(DCR) bus [8]. High-performance peripherals connect to
the high-bandwidth, low-latency PLB. Slower peripheral
cores connect to the OPB, which reduces traffic on the
PLB. There are bridging capabilities to the competing
AMBA bus architecture allowing reuse of existing SoC-
components.

E. Output module
 This module is responsible for converting the digital
control signals received from either the MCU or the DSP
core into analog control signals. It contains multiple
PWM generators and a high speed DACs. The PWM
generators have a 16 bit resolution and the frequencies of
the output waves are programmable.

F. Communication module
 The Communication module is able to send/receive
data to/from a PC through an USB connection. The
system sends to the outside world data related to the
system’s operation and receives configuration parameters
and programs for the DSP core.

III. DC MOTOR CONTROLLER ARCHITECTURE
Fig. 2 presents a block diagram of the DC motor
controller with the connections and the data flow between
the system’s components.

A. I2C Speed and Position Sensor

The I2C Speed and Position Sensor computes the
speed and position of the motor’s shaft based on the
signals received from two Hall sensors situated next to
the motor’s shaft, at a 90° angle from each other. On the
motor’s shaft there is a disc with three magnets, which
pass in front of the Hall sensors as the shaft is turning.
The magnets are placed 120° apart from each other.
When a magnet passes in front of a Hall sensor an

electrical pulse is generated. Four 1MHz counters are
used to count the number of clock cycles between two
consecutive pulses generated by a Hall sensor. For each
sensor two counters are used: one for counting the cycles
between two consecutive rising edges and one for
counting the cycles between two consecutive falling
edges. Once all the four counters have generated a result,
the results are averaged and the final speed value is ready
to be read by the other blocks through the I2C bus.

The position of the motor’s shaft is determined by
counting the number of rotations that the motor is
performing in a direction since the last position data was
read from the sensor. The accuracy of the position
reading is of 1/3 of a full shaft rotation.

The sensor contains an I2C slave module which
allows it to communicate with the rest of the system
through and I2C bus. The most significant 3 bits of the
module’s I2C address can be externally configured by
connecting the I2C address pins 1:3 to either ground or
VCC.

B. DSP

The DSP processes the data related to the motor’s
speed and position and computes the command for
controlling the motor’s armature voltage.
Two DSP programmable cores are used to implement the
data processing and motor speed control algorithms. The
first DSP core computes the speed of the motor in
rotations per second from the data receiver from the I2C
Speed and Position Sensor block. The computed speed is
passed to the second DSP core and is also sent to the
module’s output to be used by the communication module
and the MCU. Using a Proportional and Integral (PI)
control algorithm the second DSP core computes the
motor command so that the motor’s speed follows the
reference speed received from the MCU. The computed
command represents the fill factor of the PWM signal
used to control the motor’s armature voltage. A detailed
description of the control algorithm is presented in
Section V.

I2C Speed and

Position Sensor
D SP

M CU

DC Motor

Motor Driver

U SB

Comm unication
Module

PC Application
D ata

C om mandPWM

Data

I2C Contro ller

I2C Bus

I2C Address

Speed /

Position

Em bedded Control System

Figure 2. Control system block diagram

Both DSP cores have the same internal structure, the

only difference between them is the program that is
executed. The DSP core structure was simplified in

respect to what was presented in Section II: the unused
Fuzzy Processing Unit was removed from the design to
reduce the size. The heart of a DSP core is the control

Volume 52, Number 1, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

10

unit, which controls the operation of all the other internal
blocks based on the program stored in the instructions
memories. The fetch and decode unit fetches the
instructions from the instructions memory, performs some
preliminary decoding and passes the decoded instructions
to the control unit. The ALU executes all the arithmetic
and logical operations using data from the registers, data
and coefficients memories. In case of logical operations
that are executed as part of a conditional jump instruction
the ALU also signals to the fetch and decode unit the
result of the logical operation in order to properly
compute the address of the next instruction to be fetched
from the instructions memory. An IO controller manages
the data transfer with the outside world.

The input data of the DSP is stored in four circular
buffers from where it is retrieved by the DSP cores for
further processing. The four inputs of the DSP are the
actual speed and position of the motor and the reference
speed and position to be used by the control algorithm.
An input controller manages the interaction between the
DSP cores and the input buffers. The data output by the
DSP cores is stored in two output circular buffers from
where it is retrieved by the output controller block to be
dispatched to other components in the system.

C. MCU

The MCU controls the operation of all the other
modules and implements supervisory control. The
following features were selected for the processor’s
implementation:
- Clock frequency: 50MHz
- Local memory size: 32KB
- Standard peripherals : Interrupt controller, 32 bit
timer, RS232 controller, GPIO controller

Besides the standard peripherals two custom
peripherals were implemented:
- An I2C controller for controlling the operation of the
I2C speed and position sensor.
- A peripheral with four 32 bit registers that can be
used for reading the speed, position and command values
from the system and for providing the reference speed to
the DSP.

The advantage of using an open source soft core like
the Xilinx MicroBlaze comes from the fact that it is
provided as part of a embedded development kit that
includes compilers and other libraries [9].

D. Motor Driver

The Motor Driver generates a 50KHz PWM signal to
control the motor’s armature voltage.

IV. SPEED CONTROLLER DESIGN

Fig. 3 presents the block diagram of the DC motor speed
and position controller. The aim of the controller is to
control the speed of the DC motor and the number of
rotations the DC motor performs so that at the end of a
control sequence the motor would have rotated with a
specified average speed following a known speed
trajectory and would have performed a specified number
of rotations.

The controller is divided in two components: a speed
controller implemented in the DSP and a position

controller implemented in the MCU. The reference speed
trajectory is generated by the MCU.

A. DSP speed controller

The speed and position sensor provides to the system
speed information that specifies the number of clock
cycles generated by a 1MHz clock in the period of time
necessary for the motor’s shaft to perform 1/3 of a
complete rotation. In order for the speed controller to use
this information it has to be first converted into rotations
per second. The conversion is done using the following
equation:

][
*3

106

rps
C

SRPS = (1)

where: - SRPS – speed in rotations per second (rps)
 - C – 1 MHz clock cycle counts received from the
speed sensor

The job of the Speed Processor block is to perform
this conversion. Since all the operations inside the DSP
are done using the Q15 fixed point format equation (1)
cannot be directly implemented so the following equation
is used:

RPSS

C
S *005.0

2
11

== (2)

where: - S – speed

- C – 1 MHz clock cycle counts received from the
speed sensor
The Speed Processor block is implemented by one of

the two DSP cores present in the DSP. The computed
speed is passed to the Speed Controller block which is
implemented by the second DSP core. Based on the
current speed of the motor and the reference speed
received from the MCU the speed controller block
computes the motor’s command using a PI control
algorithm according to equation (3).

∑
=

−

+−=

N

k

measfI

measfP

kTSkTSk

kTSkTSkkTC

1

Re

Re

))()((*

))()((*)(

 (3)

where: - T – sampling period
 - SRef(kT) – reference speed at time kT
 - Smeas(kT) – measured speed at time kT

- C(kT) – command at time kT
 - kP – proportional gain

- kI – integral gain
The total execution time of the control algorithm is

given by the execution time of the slowest DSP core,
which is the Speed Controller which requires 44 clock
cycles to execute the program. On a Spartan 3e FPGA the
maximum frequency at which the entire system can
operate is around 52MHz, thus giving a controller
maximum controller update rate of around 1.2MHz.

Volume 52, Number 1, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

11

Speed Controller

(PI)

Speed Reference

Generator

Position
Controller (PI)

Speed Processor
DC

Motor

Speed & Position

Sensor

Speed
Data

Position

X

 Speed

Position
Reference

Generator

Ref.
Speed

 Ref. Speed

 Correction

Ref.
Speed

X

 Ref.

 Position

+

+

_

_

DSP

MCU

X

 Corrected
 Ref. Speed

+

_

 Command (PWM) 100

0

Figure 3. Speed controller block diagram

B. MCU position controller

In the current design the job of the MCU is to generate
the speed trajectory that the motor must follow, to
supervise the number of rotations that the motor’s shaft
has performed and to correct the speed trajectory in such
a way that at the end of a control cycle the number of
rotations gets as close as possible to the desired number.
The speed trajectory is generated based on two
parameters: average speed and number of rotations that
must be performed with the specified average speed. The
speed trajectory is computed so that it has a trapezoidal
form, with equal rise and fall times, which expand for
15% (7.5% rise and 7.5% fall) of the total time needed to
complete the specified number of rotations with the
specified average speed. Fig. 4 presents the general shape
of the speed trajectory, and the main parameters that
characterize the trajectory. The key parameter for
computing the speed trajectory is the slope Kv, because it
is used to determine the speed value at every moment of
time during the rise and fall stages, and also the
maximum speed. The slope is determined using the
following equation:

Tcc

v
K

dtTTtKdtTKtdtK
T

v

med

v

T

TT

fv

TT

T

rv

T

vmed

f

f

r

r

⋅−⋅
=⇒

−−⋅+⋅+⋅= ∫∫∫

−

−

)1(

))((
1

0 (4)

where
med

v represents the average speed and

T

T

T

T
c

fr
== (5)

The speed reference is updated with a periodicity T of
10ms. When a new speed value is computed also an ideal
position value is computed using the following equation:

TTkSTkpkTp *))1(())1(()(−+−= (6)

where: - T – sampling period

- p(kT) – position value at time kT

- S(kT) – reference speed at time kT

Time

Speed

Rise time (Tr) Fall time (Tf)

Maximum speed (vmax)

Slope (Kv)

Total time (T)

Slope (Kv)

Figure 4. Speed trajectory

The error between the ideal position and the real position
received from the position sensor is used to correct the
speed reference provided to the DSP speed controller
according to equation (7).

∑
=

−

+−+=

N

k

RII

RIPIC

kTpkTpk

kTpkTpkkTSkTS

1

))()((*

))()((*)()(
 (7)

where: - T – sampling period

Volume 52, Number 1, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

12

 - Sc(kT) – corrected speed reference at time kT
 - SI(kT) – ideal speed reference at time kT
 - pR(kT) – real position at time kT
 - pI(kT) – ideal position at time kT

- kP – proportional gain
- kI – integral gain

V. EXPERIMENTAL RESULTS

The DC motor control system was implemented on a
Digilent Nexys2 1200 FPGA development board. For this
FPGA the maximum frequency at which the system can
operate is 52MHz and the used gate count is 67% of the
total gate count of the FPGA. Below is presented a list of
the used hardware components:
- Digilent Nexys2 1200 FPGA board
- Digilent Pmod HB5 board (H bridge)
- 12V power source
- USB cable
- 12V permanent magnet DC motor with integrated
Hall sensors

Table 1 presents a set of experimental results that
were obtained by using the control system with this
hardware.

Ref. Speed
[rps]

Ref.
Rotations

Actual
Speed [rps]

Actual
Rotation

No
40 800 39.52 799.67
50 1500 50.24 1501.00
60 1800 60.57 1801.67
70 2100 69.91 2098.33

Table 1. Position control experiments results

Fig. 5 presents the ideal and real speed trajectories for

a control experiment having the reference speed set to
50[rps] and the number of reference rotations set to 1500.

Figure 5. Position control experiment plot

VI. CONCLUSIONS
In this paper was presented a complete real time control
solution that can be used in a wide range of automation
applications. Also a particularization of the solution for a
permanent magnet DC control application was
introduced. By combining the advantages of a
programmable DSP with those of a MCU high
performance control algorithms can be implemented. A
programmable DSP core was introduced, which is to be
used for real time processing of the input signals and also
for real time execution of control algorithms. The
architecture of the DSP core is completely scalable and

the number of DSP blocks that are incorporated in the
DSP core can be selected at synthesis time. The design of
the system is oriented towards flexibility and scalability.
Processing blocks as well as inputs and outputs can be
easily added or removed from the system to suit the
particular needs of various applications. As shown by the
DC motor control application the generic control system
can be very easily adapted to the needs of a particular
application by adding or removing features for both the
DSP and the MCU and by adding custom input and
output blocks. The presented system has many similarities
with the existing Digital Signal Controllers (DSC) in
terms of operation and targeted applications, but it also
brings a set of new features that are useful for
implementing complex control algorithms.

REFERENCES
[1] Ross Bannatyne, “The evolution of the digital signal
controller”, Motorola Semiconductor Products, 2009
[2] E. C. Ifeachor and B. W. Jervis, “Digital Signal Processing:
A Practical Approach”, Addison Wesley Longman, Inc., Menlo
Par k, CA, U.S.A., 1993
[3] Mika Kuulsa, “DSP Processor Core-Based Wireless System
Design”, PhD Thesis, 18th of August 2000
[4] “Modern Control Technologies: Components and systems,
Second edition”, Thomson Delmar Learning, 2001
[5] David A. Patterson,John L. Hennessy, “Computer
organization and design: the hardware/software interface”,
Morgan Kaufmann Publishers, 2005
[6] “Microblaze Processor Reference Guide”, Xilinx, 2008
[7] Andrei Cozma, Dan Pitica, “Design of a Programmable
Control System”, ACTA Technica Napocensis, Volume 51/1,
2010
[8] http://en.wikipedia.org/wiki/MicroBlaze, 2009
[9] Peter Wilson, “Design Recipes for FPGAs”, Newnes, 2007

