
 

Volume 52, Number 1, 2011                                                      ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 

Manuscript received November 23, 2010; revised April 3, 2011 

7 

PROGRAMMABLE CONTROL SYSTEM WITH APPLICATIONS IN 

DIRECT CURRENT MOTORS CONTROL 
 

Andrei COZMA, Dan PITICA 

Applied Electronics Department, Technical University of Cluj Napoca, Romania 

E-mail: andrei.cozma@ael.utcluj.ro, dan.pitica@ael.utcluj.ro 
 

 
Abstract - This paper presents a programmable control system with applications in Direct Current (DC) motors speed 
control. The system consists of a signal acquisition module, a programmable high speed Digital Signal Processor (DSP), a 
Microcontroller Unit (MCU), an output module and a communication module. A speed and position sensor integrated in the 
data acquisition module provides through an I2C bus data related to the motor’s shaft speed, position and rotation direction. 
The DSP can perform basic arithmetic operations, finite and infinite impulse response filtering and fuzzy logic operations at 
high speed and with a high degree of parallelism on the data received from the signal acquisition module. The MCU is a soft 
processor core with a RISC instruction set and it is used for controlling the operation of all the other modules and for 
implementing more complicated control algorithms that cannot be performed by the DSP. The output module contains a 
Pulse Width Modulated (PWM) block for generating the DC motor’s control signal. The communication module transfers 
data to/from a PC through a USB connection. By integrating all the above mentioned modules into one single chip a complete 
real time control core is provided. 
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I. INTRODUCTION   
Nowadays programmable Microcontroller Units (MCU) 
and Digital Signal Processors (DSP) are used to 
implement the control algorithms of the complex modern 
control systems. The MCUs are preferred for running 
control functions that have a great degree of complexity 
but do not require a very fast update rate while DSPs are 
preferred for computation intensive signal processing 
tasks. MCUs are optimized to perform a wide array of 
logical, diagnostic and arithmetic operations on almost 
any combination of input data from various sources, 
while DSPs are very efficient at repetitive, numerically 
intensive tasks [1]. This kind of control systems also 
provide great flexibility since they are programmable and 
can perform a variety of functions without modifying the 
hardware. Compared to analog systems, performing 
signal manipulation with digital systems has numerous 
advantages: systems provide predictable accuracy, they 
are not affected by component aging and operating 
environment, and they permit advanced operations which 
may be impractical or even impossible to realize with 
analog components [2]. 

Modern control systems are implemented as Systems 
on Chip (SoC) and combine the advantages provided by 
the MCUs and DSPs. This kind of chip is a high-
performance multiprocessor system which incorporates 
various types of hardware cores: programmable 
processors, Application Specific Integrated Circuit 
(ASIC) blocks, on-chip memories, peripherals, analog 
components, and various interface circuits [3]. Having the 
complete controller on a single chip allows the hardware 
design to be simple and very inexpensive. By combining 
the MCU’s control-orientated attributes with the DSP’s 

fast calculation capability a new category of device has 
emerged, known as the digital signal controller (DSC).  

The actuator is an indispensable part of any control 
system. It converts electric, pneumatic, or hydraulic 
energy into mechanical motion. The most common type 
of actuator is the electric motor. Depending on the type of 
power they use electric motors are classified as either 
Direct Current (DC) or Alternating Current (AC). AC 
motors tend to be smaller, more reliable, and less 
expensive than the DC motors but they generally run at a 
fixed speed that is determined by the line frequency. DC 
motors have speed-control capability, which means that 
speed, torque, and even direction of rotation can be 
changed at any time to meet new conditions [4]. One 
technique for controlling a DC motor’s speed is PWM. In 
this system, power is supplied to the motor in the form of 
DC pulses of a fixed voltage. The width of the pulses is 
varied to control the motor’s speed. If the frequency of 
the pulses is high enough then the motor’s inductance 
averages them, and it runs smoothly [4]. 

This paper introduces a DC motor speed control 
application based on a programmable control system. The 
purpose of the control system is to adjust the speed of a 
permanent magnet DC motor so that it follows a reference 
speed trajectory. The controller consists of two parts: a 
speed controller implemented in the DSP and a supervisor 
implemented in the MCU. By combining the speed and 
signal processing power of a DSP with the flexibility 
given by a MCU the presented system provides an 
excellent environment for implementing control 
algorithms that can range from very simple ones like the 
classical Proportional Integral Derivative (PID) control, 
to fuzzy or  hybrid  control  algorithms.  Also more 
complex  
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control structures can be implemented like cascade 
controllers or supervisory control. Both the DSP and 
MCU are programmable thus making the system highly 
flexible. The paper is organized as follows: Section II 
gives a general description of the system’s architecture 
and presents the role of each of the system’s building 
blocks, Section III presents a particularization of the 
control system for a DC motor speed control application, 
Section IV describes in detail the design of the speed 
controller, Section V provides information related to the 
hardware used for implementing the system and presents 
some experimental results and Section VI presents 
conclusions. 
 

II. SYSTEM ARCHITECTURE 
Fig. 1 presents the block diagram of the programmable 
control system with the connections and the data flow 
between the system’s components. 
 
A. Input Module 

The input signals of the control system can be either 
analog or digital, depending on the type of used sensors.  
An I2C Bus Controller block is responsible for reading 
data from multiple sensors connected to a common I2C 
bus. The I2C addresses of the sensors are configured by 
the MCU through the system bus, and the I2C Bus 
Controller reads the configured sensors in a serial fashion 
and stores the data read from each sensor in a separate 
data buffer. A 16 bit ADC is used for digitizing the input 
analog signals. The analog signals are multiplexed at the 
ADC’s input and the results of the analog to digital 
conversion are stored in separate data buffers by the 
means of a programmable demultiplexer. Both the 
multiplexer and demultiplexer can have two operation 
modes: automatic mode, when the input/output selection 
is done automatically based on a configuration 
programmed by the MCU; manual mode, when the 
input/output selection is controlled by the MCU. 
 
B. Programmable DSP core 

The programmable DSP core is responsible for 
processing the data received from the Input module and is  

able to perform a number of specialized data processing 
functions at high speed and with a high degree of 
parallelism. These functions enable the system to process 
the input signals and also to implement control algorithms 
like PID, fuzzy or hybrid algorithms. The instruction set 
can be extended to incorporate new basic data processing 
functions or to add compound instructions based on the 
basic functions. All the computations done by the DSP 
core are on 16 bit fixed point numbers having one sign bit 
and 15 fractional part bits. This format is known as Q15. 
The data coming from the input module is fetched by the 
Input Controller block from which the DSP core will 
extract the data when appropriate. The Output Controller 
block takes the data that was processed by the DSP core 
and passes it to the Output module or/and to the 
Communication module. 

The programmable DSP core contains multiple DSP 
blocks which run in parallel and are able to communicate 
with each other through shared memories. The 
architecture of the DSP core is completely scalable and 
the number of DSP blocks that are incorporated in the 
DSP core, as well as the number of inputs and outputs can 
be selected at synthesis time depending on the system’s 
characteristics. The programs ran by the DSP blocks are 
loaded by the MCU into the internal instruction and data 
memories of the DSP blocks either from a ROM memory 
or from a PC connected through USB to the system. The 
instruction memory of each DSP block can store 64 
instructions. Each instruction is 32 bits wide. A 4 stages 
pipeline is implemented for instruction execution and up 
to 2 arithmetic instructions can be executed in parallel. 

The Output Controller receives the data output by the 
programmable DSP and transfers it through the system 
bus to the Output module and to the Communication 
module. The operation of this block is programmed by the 
MCU. 
 More details related to the DSP core design can be 
found in [7]. 
 
D. System bus 
 The system bus is implemented using MicroBlaze's 
primary  I/O  bus,  the  CoreConnect  bus. This  bus  is  an 

 
Figure 1. Programmable control system block diagram 

IBM-developed on-chip communications link that enables 
chip cores from multiple sources to be interconnected to 

create entire new chips. CoreConnect technology eases 
the integration and reuse of processor, system and 



 

Volume 52, Number 1, 2011                                                      ACTA TECHNICA NAPOCENSIS                                       

Electronics and Telecommunications 

________________________________________________________________________________ 

 

9 

peripheral cores within standard product platform designs 
to achieve overall greater system performance. The 
CoreConnect bus architecture includes the Processor 
Local Bus (PLB), the On-chip Peripheral Bus (OPB), a 
bus bridge, two arbiters, and a Device Control Register 
(DCR) bus [8]. High-performance peripherals connect to 
the high-bandwidth, low-latency PLB. Slower peripheral 
cores connect to the OPB, which reduces traffic on the 
PLB. There are bridging capabilities to the competing 
AMBA bus architecture allowing reuse of existing SoC-
components. 
 
E. Output module 
 This module is responsible for converting the digital 
control signals received from either the MCU or the DSP 
core into analog control signals. It contains multiple 
PWM generators and a high speed DACs. The PWM 
generators have a 16 bit resolution and the frequencies of 
the output waves are programmable.  
 
F. Communication module 
 The Communication module is able to send/receive 
data to/from a PC through an USB connection. The 
system sends to the outside world data related to the 
system’s operation and receives configuration parameters 
and programs for the DSP core. 
 
III. DC MOTOR CONTROLLER ARCHITECTURE 
Fig. 2 presents a block diagram of the DC motor 
controller with the connections and the data flow between 
the system’s components. 
 
A. I2C Speed and Position Sensor 

The I2C Speed and Position Sensor computes the 
speed and position of the motor’s shaft based on the 
signals received from two Hall sensors situated next to 
the motor’s shaft, at a 90° angle from each other. On the 
motor’s shaft there is a disc with three magnets, which 
pass in front of the Hall sensors as the shaft is turning. 
The magnets are placed 120° apart from each other. 
When a magnet passes in front of a Hall sensor an 

electrical pulse is generated. Four 1MHz counters are 
used to count the number of clock cycles between two 
consecutive pulses generated by a Hall sensor. For each 
sensor two counters are used: one for counting the cycles 
between two consecutive rising edges and one for 
counting the cycles between two consecutive falling 
edges. Once all the four counters have generated a result, 
the results are averaged and the final speed value is ready 
to be read by the other blocks through the I2C bus.  

The position of the motor’s shaft is determined by 
counting the number of rotations that the motor is 
performing in a direction since the last position data was 
read from the sensor. The accuracy of the position 
reading is of 1/3 of a full shaft rotation. 

The sensor contains an I2C slave module which 
allows it to communicate with the rest of the system 
through and I2C bus. The most significant 3 bits of the 
module’s I2C address can be externally configured by 
connecting the I2C address pins 1:3 to either ground or 
VCC.  
 
B. DSP  

The DSP processes the data related to the motor’s 
speed and position and computes the command for 
controlling the motor’s armature voltage. 
Two DSP programmable cores are used to implement the 
data processing and motor speed control algorithms. The 
first DSP core computes the speed of the motor in 
rotations per second from the data receiver from the I2C 
Speed and Position Sensor block. The computed speed is 
passed to the second DSP core and is also sent to the 
module’s output to be used by the communication module 
and the MCU. Using a Proportional and Integral (PI) 
control algorithm the second DSP core computes the 
motor command so that the motor’s speed follows the 
reference speed received from the MCU. The computed 
command represents the fill factor of the PWM signal 
used to control the motor’s armature voltage. A detailed 
description of the control algorithm is presented in 
Section V.  
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Figure 2. Control system block diagram 

 
Both DSP cores have the same internal structure, the 

only difference between them is the program that is 
executed. The DSP core structure was simplified in 

respect to what was presented in Section II:  the unused 
Fuzzy Processing Unit was removed from the design to 
reduce the size. The heart of a DSP core is the control 
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unit, which controls the operation of all the other internal 
blocks based on the program stored in the instructions 
memories. The fetch and decode unit fetches the 
instructions from the instructions memory, performs some 
preliminary decoding and passes the decoded instructions 
to the control unit. The ALU executes all the arithmetic 
and logical operations using data from the registers, data 
and coefficients memories. In case of logical operations 
that are executed as part of a conditional jump instruction 
the ALU also signals to the fetch and decode unit the 
result of the logical operation in order to properly 
compute the address of the next instruction to be fetched 
from the instructions memory. An IO controller manages 
the data transfer with the outside world.  

The input data of the DSP is stored in four circular 
buffers from where it is retrieved by the DSP cores for 
further processing. The four inputs of the DSP are the 
actual speed and position of the motor and the reference 
speed and position to be used by the control algorithm. 
An input controller manages the interaction between the 
DSP cores and the input buffers. The data output by the 
DSP cores is stored in two output circular buffers from 
where it is retrieved by the output controller block to be 
dispatched to other components in the system.  
 
C. MCU 

The MCU controls the operation of all the other 
modules and implements supervisory control. The 
following features were selected for the processor’s 
implementation: 
- Clock frequency: 50MHz 
- Local memory size: 32KB 
- Standard peripherals : Interrupt controller, 32 bit 
timer, RS232 controller, GPIO controller 

Besides the standard peripherals two custom 
peripherals were implemented: 
- An I2C controller for controlling the operation of the 
I2C speed and position sensor. 
- A peripheral with four 32 bit registers that can be 
used for reading the speed, position and command values 
from the system and for providing the reference speed to 
the DSP. 

The advantage of using an open source soft core like 
the Xilinx MicroBlaze comes from the fact that it is 
provided as part of a embedded development kit that 
includes compilers and other libraries [9]. 
 
D. Motor Driver 

The Motor Driver generates a 50KHz PWM signal to 
control the motor’s armature voltage. 

 
IV. SPEED CONTROLLER DESIGN 

Fig. 3 presents the block diagram of the DC motor speed 
and position controller. The aim of the controller is to 
control the speed of the DC motor and the number of 
rotations the DC motor performs so that at the end of a 
control sequence the motor would have rotated with a 
specified average speed following a known speed 
trajectory and would have performed a specified number 
of rotations. 

The controller is divided in two components: a speed 
controller implemented in the DSP and a position 

controller implemented in the MCU. The reference speed 
trajectory is generated by the MCU. 
 
A. DSP speed controller 

The speed and position sensor provides to the system 
speed information that specifies the number of clock 
cycles generated by a 1MHz clock in the period of time 
necessary for the motor’s shaft to perform 1/3 of a 
complete rotation. In order for the speed controller to use 
this information it has to be first converted into rotations 
per second. The conversion is done using the following 
equation: 
 

][
*3

106

rps
C

SRPS =        (1) 

 
where: - SRPS – speed in rotations per second (rps) 
  - C – 1 MHz clock cycle counts received from the 
speed sensor 

The job of the Speed Processor block is to perform 
this conversion. Since all the operations inside the DSP 
are done using the Q15 fixed point format equation (1) 
cannot be directly implemented so the following equation 
is used: 
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where: - S – speed 

- C – 1 MHz clock cycle counts received from the 
speed sensor 
The Speed Processor block is implemented by one of 

the two DSP cores present in the DSP. The computed 
speed is passed to the Speed Controller block which is 
implemented by the second DSP core. Based on the 
current speed of the motor and the reference speed 
received from the MCU the speed controller block 
computes the motor’s command using a PI control 
algorithm according to equation (3).  
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where: - T – sampling period 
  - SRef(kT) – reference speed at time kT 
  - Smeas(kT) – measured speed at time kT  

- C(kT) – command at time kT 
  - kP – proportional gain 

- kI – integral gain 
The total execution time of the control algorithm is 

given by the execution time of the slowest DSP core, 
which is the Speed Controller which requires 44 clock 
cycles to execute the program. On a Spartan 3e FPGA the 
maximum frequency at which the entire system can 
operate is around 52MHz, thus giving a controller 
maximum controller update rate of around 1.2MHz.  
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Figure 3.  Speed controller block diagram 

 
B. MCU position controller 

In the current design the job of the MCU is to generate 
the speed trajectory that the motor must follow, to 
supervise the number of rotations that the motor’s shaft 
has performed and to correct the speed trajectory in such 
a way that at the end of a control cycle the number of 
rotations gets as close as possible to the desired number. 
The speed trajectory is generated based on two 
parameters: average speed and number of rotations that 
must be performed with the specified average speed. The 
speed trajectory is computed so that it has a trapezoidal 
form, with equal rise and fall times, which expand for 
15% (7.5% rise and 7.5% fall) of the total time needed to 
complete the specified number of rotations with the 
specified average speed. Fig. 4 presents the general shape 
of the speed trajectory, and the main parameters that 
characterize the trajectory. The key parameter for 
computing the speed trajectory is the slope Kv, because it 
is used to determine the speed value at every moment of 
time during the rise and fall stages, and also the 
maximum speed. The slope is determined using the 
following equation: 
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The speed reference is updated with a periodicity T of 
10ms. When a new speed value is computed also an ideal 
position value is computed using the following equation: 
 

TTkSTkpkTp *))1(())1(()( −+−=    (6) 

 
where: - T – sampling period 

- p(kT) – position value at time kT 

- S(kT) – reference speed at time kT 

 

Time 

Speed 

Rise time (Tr) Fall time (Tf) 

Maximum speed (vmax) 

Slope (Kv) 

Total time (T) 

Slope (Kv) 

 
 

Figure 4. Speed trajectory 

 
The error between the ideal position and the real position 
received from the position sensor is used to correct the 
speed reference provided to the DSP speed controller 
according to equation (7). 
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where: - T – sampling period 
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  - Sc(kT) – corrected speed reference at time kT 
  - SI(kT) – ideal speed reference at time kT 
  - pR(kT) – real position at time kT 
  - pI(kT) – ideal position at time kT 

- kP – proportional gain 
- kI – integral gain 

 
V. EXPERIMENTAL RESULTS 

The DC motor control system was implemented on a 
Digilent Nexys2 1200 FPGA development board. For this 
FPGA the maximum frequency at which the system can 
operate is 52MHz and the used gate count is 67% of the 
total gate count of the FPGA. Below is presented a list of 
the used hardware components: 
- Digilent Nexys2 1200 FPGA board 
- Digilent Pmod HB5 board (H bridge)  
- 12V power source 
- USB cable  
- 12V permanent magnet DC motor with integrated 
Hall sensors 

Table 1 presents a set of experimental results that 
were obtained by using the control system with this 
hardware. 
 

Ref. Speed 
[rps] 

Ref. 
Rotations 

Actual 
Speed [rps] 

Actual 
Rotation 

No 
40 800 39.52 799.67 
50 1500 50.24 1501.00 
60 1800 60.57 1801.67 
70 2100 69.91 2098.33 

 
Table 1. Position control experiments results 

 
Fig. 5 presents the ideal and real speed trajectories for 

a control experiment having the reference speed set to 
50[rps] and the number of reference rotations set to 1500. 

 

 
 

Figure 5. Position control experiment plot 
 

VI. CONCLUSIONS 
In this paper was presented a complete real time control 
solution that can be used in a wide range of automation 
applications. Also a particularization of the solution for a 
permanent magnet DC control application was 
introduced. By combining the advantages of a 
programmable DSP with those of a MCU high 
performance control algorithms can be implemented. A 
programmable DSP core was introduced, which is to be 
used for real time processing of the input signals and also 
for real time execution of control algorithms. The 
architecture of the DSP core is completely scalable and 

the number of DSP blocks that are incorporated in the 
DSP core can be selected at synthesis time. The design of 
the system is oriented towards flexibility and scalability. 
Processing blocks as well as inputs and outputs can be 
easily added or removed from the system to suit the 
particular needs of various applications. As shown by the 
DC motor control application the generic control system 
can be very easily adapted to the needs of a particular 
application by adding or removing features for both the 
DSP and the MCU and by adding custom input and 
output blocks. The presented system has many similarities 
with the existing Digital Signal Controllers (DSC) in 
terms of operation and targeted applications, but it also 
brings a set of new features that are useful for 
implementing complex control algorithms. 
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