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Abstract: In the last years, prime order pairing-based cryptography has received much attention. The embedding degree 1 is very 
appealing because the computations can be performed without any extension fields, but the efficiency parameter and this 
particular value of the embedding degree imposes some limits about the possible curves. This paper presents an analysis of the 
existing algorithms for constructing such curves and how they are related to the concept of pairing friendly. The original 
contribution of this paper consists in the proposal of two new algorithms. Their results are analyzed from the efficiency and 
computational point of view. In addition, it is presented the results of pairing implementation in Java language for the curves 
generated with the successful algorithm.  
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I. INTRODUCTION 
One possible choice in implementing data privacy is to 
encrypt the data. There are multiple possibilities in doing 
this, but the advances in the mathematical theory suggest 
that the asymmetric encryption with elliptic curves presents 
some advantages. Although almost every classic asymmetric 
system can be modeled with these curves, there are many 
cryptographic constructions that can be implemented only 
with them. This area is mainly represented by pairing based 
operations, which require a special form of the elliptic curve 
equation (lower embedding degree). The most used 
construction theory for these is represented by the complex 
multiplication theory, which gives a framework and not an 
implementation.  
 The pairing implementation is heavily dependant on the 
selection of the right parameters. Their computation can be 
performed in the same field or in the extension fields. The 
theories that optimize the computations are well established 
for the extension fields of degree 2 or 3. For the degree 1, 
the computations are performed in the same field since the 
extension is included in it and thus the computation 
complexity is reduced. This lowered complexity is balanced 
by the amount of required computations.  
 For simplifying the generation, once the parameters are 
known, a search among the possible discriminant values 
shows that the first value which is suitable for this purpose is 
D=-7. The new generating algorithms are proposed for this 
particular discriminant. The generation of suitable values for 
different bit sizes is not expensive and the values for several 
bit sizes have been computed. For some of these, the 
running time of the corresponding pairing algorithm, 
implemented in Tate form with Java language, is presented. 
Although the point generation becomes harder when the bit 

size increases, choosing prime numbers with 43modq ≡  

simplifies the procedure. 

II. PAIRING FRIENDLY CURVES 
1. Definition 
An elliptic curve with small embedding degree and large 
subgroup field is called pairing friendly. This name denotes 
that in this curve the pairing computations are optimal. If it 

is considered the curve )qF(E  with embedding degree k, 

the discrete logarithm problem gives the minimum bit sizes 
for the elliptic curve parameters. From the pairings point of 
view there are two conditions that must be met: discrete 

logarithm problem must be unfeasible in the field )qF(E  

and the same problem must be unfeasible for the extension 

field )
q

F(E k . 

 The later condition is derived from the general definition 
of the pairings (there are many extensions for this definition 
and not all involves the extension as it is presented): 
 

)
q

F(E)
q

F(E)qF(E:e kk →×   (1) 

 
 If the base field for the point has the order r, the 
efficiency of the computations is: 
 

rlog

qlog
=ρ   (2) 

 
Obviously, this parameter must be as low as possible  
( 1=ρ  is the ideal case that can be attained only in special 

cases, as outlined below). 
The second condition gives the generalized ρ coefficient: 

 

rlog

qlog
k=ρ   (3) 
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 Regarding the embedding degree, there is a result due to 
Luca and Shparlinski given in [1], that basically says that the 
probability of constructing an elliptic curve with a small 
embedding degree for field of order r is much higher for 

qr <  and this probability becomes almost negligible 

otherwise. Based on this result, in [1] it is defined the 
pairing friendly curve through the existence of this subfield 

of order r and the condition that 82 /)r(logk < . The last 

condition comes from the approximation of the boundaries 
given by the security conditions (computationally 
equivalence between elliptic curve cryptography represented 
by pairings and symmetric cryptography represented by 
Advanced Encryption System schemas for 128, 192 and 256 
bits) as in [2]. 
 Ideally, the numbers involved have to be Solina’s primes 
(equal to a sum or difference of powers of 2) and to be of 
low Hamming weight (the representation have a small 
number of digits different from 0). This definition of 
Solina’s primes can be extended by using other base instead 
of 2 [3] (for example 3 as in [4], [5]) and thus using a 
variant of the original Tate algorithm that uses this base 
(mainly uses the tripling point and derives a tripling formula 
for the divisors). 
 A central point in the elliptic curve construction is 
represented by the cyclotomic polynomials. The k

th
 

cyclotomic polynomial is noted as kΦ and can be computed 

recursively from the first value: 
 

       11 −= x)x(Φ  and ∏=−

k\d

)x(d
kx Φ1  for k > 1 (4) 

 
 There is a proposition in [1] that links this polynomial 
with the elliptic curve that has embedding degree k with 
respect to an subgroup of size r. Basically it says that E has 

embedding degree k if and only if rmod)q(k 0≡Φ . The 

case of embedding degree 1 for the elliptic curve is very 
appealing because the computations are simplified (the 
efficiency is maximum as 1=ρ  and cannot be reached for 

this degree value). 
 
2. Complex multiplication methods 
There are two main methods for constructing elliptic curves 
with predefined parameters: Cocks-Pinch and Dupont-Enge-
Morain [6]). The former is more suitable from the 
computations point of view because the subgroup order is 
more restricted in the latter (it has to be of the form of a 
resultant).  
The general Cocks-Pinch method: 
• Fix a positive integer k and a positive squarefree integer 

D 

• Let r be a prime such that 1−r|k and 







=

−
1

r

D
 

• Let z be a root of unity in rZ/Z , such a z exists 
because of the above condition 

• Let 1+= z't  

• Let )r(modD/)'t('y −−= 2  

• Let 'tt ≡ and 'yy ≡ mod r 

• Let 422 /)Dyt(q +=  

If q represents a prime integer, then there exists an elliptic 

curve E defined over qF  with an subgroup with order r and 

embedding degree k.  
The Cocks-Pinch method is defined mostly for the case in 
which:  
 









=

−
1

r

D
         (5) 

 

so the equation 2aD =− has solutions in rZ . 

 
III. ALGORITHMS 

1. Sample curve 
The same curve equation gives different types of curves 
depending on the underlying field order: 
 

1xxy 32 +−=   (6) 

 
Field order Curve order Curve type 

11 10 ordinary 
97 98 supersingular 

101 100 ordinary 
103 112 ordinary 

Table 1. Field order dependency of curve type 
 
 From the Table 1 it is easily to see that sometimes 

1−= qN (this happens for values 11 and 101). 

The general idea is to find an elliptic curve with certain 
properties: 

• 1−= q)qF(E# or equivalent 

• A*)qF(E# 2=  , A – prime number 

• A factor has a low Hamming weight. 

 It is noted: )qE(G)qE(F)qF(E += (this is a formal 

addition), where A)E(F# q =  and A2)F(G# q = where it 

is noted with # the order of the points from one set (it is an 
extension of the normal order). The above curve has two 
obvious points: (0, 1) and (1, 1). These points belong to the 
second set (they have the same order 2A) for q=11. As a 
result, the addition operation between any points from the 
first set with a point from the second set will give a point 
from the second set. The Tate pairing requires a point to be 
from the first set and the second point to be independent 
from the first one. This requirement comes from the factor 

)QD(kP,jPg  that appears on the denominator of the Tate 

step. Here jP and kP represents points from the first set, and 
their sum belongs to the first set. DQ represents the divisor 
of the second point from the pairing (Q1-Q2) and these 
points are from the second set. From the above discussion 
the possibility of dividing by 0 is very low. The following 
algorithm can achieve the generation of all these points: 

• Find a point P with order A 
• Add to this point (0,1): Q = P + (0,1) 

The pairing )QD,P()P,P( ττ = , where ),()Q(QD 10−=  

The above algorithm is possible in this case because (0,1) 
has the order 2A (the order of the curve). In the general case 
step 2 in replaced by: find a point with order 2A and add 
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this point to P. 
 
2. First variant of complex multiplication 
The complex multiplication has as the starting parameter the 

value: qqaD 4
2 −=−  where qaq)qF(E# −+= 1 . 

From the constraint 1−= q)qF(E# follows a possible 

value of 2=qa , so qD 44 −=− . 

As the q value gets bigger, the discriminant grows to 
computationally unfeasible values. For example D=1000003 
gives a polynomial of order 105 with very big coefficients. 
The single possibility of handling big values for the field 
order (required by the cryptographic strength) is to control 
the discriminant of the elliptic curve.  
The following algorithm follows this idea: 
• find the numbers q, aq, A with the property 

A*qaq 21 =−+ , q prime, A low Hamming weight 

prime 
• the discriminant of the elliptic curve 2000000<D - in 

order to be computationally feasible.  
For this algorithm it is fixed the interval for q (val1…val2), 
limit1 represents the limit for the discriminant value and 
limit2 represents the limit for the Hamming weight of A. 
for q in (val1, val2): 

 for aq with q|qa| 2<  , qqaD 4
2 −=−  

        if D < limit1 

            if A*2a1q q =−+ , A –prime number with low 

Hamming weight < limit2 
            print q,aq 

As proposed in [7], there is a variant of Cocks-Pinch method 
of generating ordinary pairing-friendly curves. 
 
3. Modified cyclotomic polynomial 
In [1] is presented an exception for the first cyclotomic 

polynomial: χχΦ =)(1  and not 1−χ  as expected. All the 

generated curves are sparse families (there are two 
parameters that control the curve generation: l and χ ). The 

first curve is the simplest one and is especially good for 
computations due to her special group structure: 
 

111 === D,,k ρ                               (7) 

122 += χχ l)(p  

χχΦχ == )()(r 1  

2=)(t χ  

 
Form these parameters two curves can appear: 
 

xxy:Emodl −=⇒≡ 3240χ  

xxy:Emodl 43242 −=⇒≡χ  

 

The curve field has the structure trZtrZ)pF(E ⊕≅  

The other generated curves have the structure: 

22
2 /rZ

/r
Z)pF(E ⊕≅  and 3/rZrZ)pF(E ⊕≅ . 

From the above results, it is easily to see that for 1t ≥ on 
optimal case is the first one. The independence of the fields 
assures that the final divisors have no points in common and 

the Tate divisors will give no errors in the computation. This 
is not exactly true, because some points have not the proper 
order (in fact they belong to a subgroup with different order 
so they appear in expansions of different points). 
Again it is tested the Tate pairing of a point with itself, i.e. 

),( PPτ . For the example it is chosen the field with  

 

110101p 2 +==   (8) 

 

From this choice results 2t,5r ==  and x4xy:E 32 −= . 

These values respect the initial conditions because 

5mod0)101(1 ≡Φ . Also as a corollary, from the t value it 

results immediately this condition. To assure the 
independence of the divisor it is chosen a point with order 
10 (r*t). A quick search reveals point (93, 5). The second 
point is chosen also to have order 10: (88, 73): 

67388518593593593 =−= )),(),(),,(()),(),,(( ττ . 

 However not all the pairings can be computed here as it 

shows the following computation: ),(),(* 025934 = .  

The point (2, 0) has order 2. So it is not suitable for 
computing the Tate pairing (it falls when it is computed the 
vertical line on 2*P). The expansion of the point (93, 5) is: 

),,(),,(),,(),,(),,(),,(),,( 7463408202618227633722593

∞),,(),,( 96936422 . The orders of those points are: 10, 5, 

10, 5, 2, 5, 10, 5, 10. 
 From the above values results that the t*r field is not 
suitable for implementing the Tate pairing on it. At most a 
point with order 5 can be implemented. The expansion of 
the point (22, 37) has the right properties. It does not contain 
false points (of order different from 5) and thus it is suitable 
for computation. The density of the points with different 
orders is represented in Table 2. 
 

Order Number of points 
1 1 
2 3 
5 25 

10 72 
Table 2. Point order and generated field sizes 

 
 From the Table 2, a brute-force approach is the easiest 
for finding a point with the order r (in the specified field is 
almost one quarter of the total number of points). From the 
formula of p results that a p value with a small l it is 
desirable (as l grows). The minimum value of l is 2. 
 
4. Second  variant of complex multiplication 

1D,3,1k === ρ                            (9) 

4

1xx3x
)x(p

246 +−+
=  

1x)x()x(r 2
4 +== Φ  

1x)x(t 2 +−=  

p
32

Fa,axxy:E ∈+=  

This one has 2/r2/rp ZZ)F(E 2 ⊕≅ . 

The equation of these curves can be deduced directly from 
the complex multiplication theory. The generalized equation 
is: 
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22 Dstp4 −= , so D is the squarefree part. Following the 

discriminant values, the generalized values 1 and 3 defines 
special forms of elliptic curves: 
 

                p
32

a Fa,axxy:E1D ∈+=⇒=  

 (10) 

                p
32

b Fb,bxy:E3D ∈+=⇒=  

 
 The above forms are important because there is no need 
in computing the Hilbert polynomial (or other polynomial 
variants as Weber ones) as in [8]. 

For embedding degree 1, 1−p|r .  

 

pap)pF(E|#r −+= 1   (11) 

 

it is obvious that a trivial case is one in which 2a p = . In 

this case 1p)F(E# p −= . From the complex multiplication 

equation in the case of D=1 follows: 
 

24224 sDstp +=−=   (12) 

 
From here there are possible a number of choices: 
• s represents the subgroup order and is a prime number. 

This possibility contradicts the integrality of p, because 
 

221

2

2
1

4

24
xl

ss
p +=








+=

+
=   (13) 

 
• s has in its composition the subgroup order.  
This is describing the first curve in which lxs 2= where x 
represents the subgroup order and it is prime. As x describe 
the order of the group in which the pairing will be 
computed, it is desirable that l to be very small. The smallest 
value for it is l=2, as l=1 does not give a prime number for 
p. 
This represents the only possibility for fixed t (t=2). In the 
general case: 
 

)pa()p(pap)pF(E# 211 −−−=−+=         (14) 

 

From the fact that 1−p|r and )pF(E|#r results that 

)pa(|r 2−  for 2≠pa . The rest of the parameterized 

functions fulfil this more general condition. The simplest 

case in this situation is one in which 2−= par . For 

example: 
 

12
6 +−== xx)x()x(r Φ                (15) 

12 ++−= xx)x(t   (16) 

 

From the above equations the curve xxy:E 32
c +=  has the 

same properties (order 100 and same group structure). This 
fact is verified by computing the pairing: 
 

87))13,4(),84,68(( =τ   (17) 

 
where the points belongs to a groups with order 5 (the same 
like in the case of a=-1). As discussed previously the 
efficiency of this type of curve in the prime order fields is 

represented by 4
2

1242 ≈
+

=
)x(log

)x(log
ρ for large values of x 

where 24124 xx ≈+ . The value of 2≈ρ represents the 

efficiency regarding the pairing in the composite prime 
fields. 

In the case in which 2−= par , the maximum efficiency is 

when ppa 2≈ . This case can happen when p>15 due to 

Hasse bound theorem. Observation: the trivial choice will be 

12 += xp and xpar 2≈= . In this case of k=1, the 

efficiency cannot be greater than the above value because 
the complex multiplication equation can be written as: 
 

)rah4(rD 2−=   (18) 

 

where h represents the cofactor rh)pF(E# =  and 

2−= tar . D is represented as a product of two factors: one 

is r and the other one is rah 24 − . As r is getting larger, the 
discriminant D is getting larger because the remaining factor 
cannot be small (the efficiency is directly proportional with 
the inverse of h, so h is small). In [9] the complex 
multiplication does not give any curve with embedding 
degree 1 and the presented complex multiplication 
discriminators does not have practical values: 
 (3 × 38024920917822051230350291383772163112).  
 From the complex multiplication theory it is known that a 
computationally feasible limit of the discriminant is 10

12
. So 

that algorithm is interesting from the theoretical point of 
view because it provides an alternative to the classic Cocks-
Pinch or Dupont-Enge-Morain algorithms. From the 
implementation point of view, due to the impractical values 
of the discriminant D the algorithm cannot be implemented.  
The following algorithm searches for desired pairing: 
Input n, limit, cofactor 
while n < limit: 
    if is_prime(n): 
        p = cofactor^2*n^2 + 1 
        if is_prime(p): 
            E = EllipticCurve(GF(p),(-1,0)) 
            a =  E.order() 
            if a == p - 1: 
                print n                         
    n = n+2 
 The above algorithm represents the pseudo-code program 
that performs a brute-force finding of the desired curve. The 
searching for n with cofactor = 2 gives multiple results , but 
the filtering with the order curve is the most important 
because as it was shown above there might be fake results, 
giving ordinary curves with different embedding degree. A 
possible approach can be to keep the determinant D at low 

values. From the definition of D this means that pt 2≈ , 

otherwise if zpt += 2 where z represents the free part: 



 

Volume 53, Number 1, 2012                                                       ACTA TECHNICA NAPOCENSIS                  

                                                                                                     Electronics and Telecommunications 

________________________________________________________________________________ 

 
5 

 

      pzzp)zp(ptD 4242242 +=−+=−=  (19) 

 
In this relation z is negligible and the important part is 

represented by p . As the suitable values for p are in the 

range of 84102502 ≈ (a very rough approximation) results 

that any deviation of D from p2 implies a value outside 

the limits. The only possibility is ]p[t 2=  (the integer 

part).  
qq=1000001 
limitq = qq + 1000 
while qq < limitq: 
    if is_prime(qq): 
        tq = floor(2*sqrt(qq)) 
        p1q = qq + 1 -tq 
        p2q = qq - 1 
        rq = find_max_prime_divisor(p1q,p2q) 
        print qq,rq 
        if rq > 10: 
            if is_prime(rq): 
                print qq, rq                        
    qq = qq+2 
 There are a number of reasons why this algorithm does 
not give practical results: 

• It works only with numbers of the form dx +2 and not 

dx −2 because in the latter case the square root part is 

not so close to the main part 2/x2 and in this case the 
discriminant is getting larger values. 

• In the simulations with ],[p 10100001000000∈ the best 

value were 10000037 with a value of r of 37. This is not 
acceptable as 4≈ρ and exceeds the optimum value of 2. 

The majority of combinations had 1 as the maximum 
prime divisor (the resulting numbers are prime between 
them) or 2 (small multiples of 2).  

 
5. Generation without complex multiplication 
As a result, it is needed a family of curves that does not need 
to be computed by complex multiplication method. A family 
of such curves is given by theorem 4.21 from [10]: 
Let p be an odd prime and let pk mod0≠ . Let 

)(# pp FEN = where E is the elliptic curve kxxy −= 32 , 

then: 

• if 4mod3p ≡ then 1pN p += and thus E represents a 

supersingular curve. 

• if 4mod1p ≡ write 22 bap += where a and b are 

integers with b even and 4mod1ba ≡+ , then: 









±+

++

−+

=

p mod square anot  isk  if 

powerfourth  anot but  p, mod square a isk  if 

p modpower fourth  a isk  if 

,a21p

,a21p

,a21p

N p

 
This theorem gives the possibility of constructing curves 
with embedding degree 1 if k=1 (a fourth power of 1) and 
a=1 for example. Such an example is represented by the 
curve with p=101. An quick search with the following 
program: 

b = 1000000 
limit = b + 1000 
while b < limit: 
    p = 1 + b^2 
    if is_prime(p): 
        print b 
    b = b + 4 
gives 18 possibilities. Among these it can be chosen 
1000884. If the same program is run with the input 2

256
 

only one suitable value is found:                                         
p=11579208923731619542357098500868790785326998
4665640564039457584007913129640476 
In the general case: 
 

Akap 1221 =−+  

Akp 221 =−     (20) 

 
where A is a prime number. Form the above equations:  
 

p
k

k
)

k

k
(p 4

2

11
2

11 ≤++−    (21) 

 

For 2121 /k/k = , it results the following pp 83 ≤+  

(cannot be fulfilled). The conclusion here is that if 1≠a it is 
impossible to find a suitable value. For the rest of the cases 
there is the same conclusion (every case ends in a equation 

like pkp ≤  which does not provide suitable values). Form 

the above results that the only possibility in this case it is 

represented by 1±=a and 1−= ppN . 

 If it is considered the case with 1−=a , then 

2442 +=⇒≡ cbmodb . 
The algorithm for discovering suitable values becomes 
c = 1000000 
limit = c + 1000 
while c < limit: 
    p = 1 + (4*c + 2)^2 
    if is_prime(p): 
        cc = maximum(p) 
        print c, cc 
    c = c + 1 
 

c cc c/cc 
1000041 2000083 0.4999 
1000976 2001953 0.4999 
1000998 2001997 0.4999 

Table3. Suitable prime numbers 
 
From the Table 3 it is easily to see that the expected ρ value 

will be constant among these generated curves. The value 
corresponds to an acceptable value of 2. For example: 
• Case 1: c = 1000041, p=16001328027557, k=25 
 

25xy:)F(E
32

p −=   (22) 

 
 The generators for this curve (4253461776013, 
382634269242) or (7516808453469, 9565046703970), had 
order 4000166 and corresponds to 2=ρ . 

• Case 2: c=1000998, p=16031967952037, k=25 
The generators for this curve (6878545080939, 
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4270041569676) or (14443809921043, 7687957344804), 
had order 4003994 and corresponds to 2=ρ . In this case, 

the pairing took 32 ms and has the value of 3419889792843. 
The final Tate power can be computed by addition / 
subtraction chains (for example in [11] is presented a Lucas 
chain) [12]. In the present case, however the Tate pairing 
value is represented by a BigInteger and thus the final power 
can be computed by the following algorithm: 
A=1 
B=coefficient 
For(int i=0; i< power.bitLength(); i++)  { 
 If(power.testBit(i)) { 
  A = A.multiply(B).mod(modulus); 
     } 
    B = B.pow(2).mod(modulus); 
} 
return A; 
 The final power in this case is represented by the number 

2)1010001001101111010001(4003994 =  and thus only 22 

iterations are performed. The straightforward 

implementation of type cmodab is not computationally 
feasible due to the size of the coefficients and thus the 
reduction modulo c after each step is mandatory. Because 
the embedding degree is 1, there are no further 
optimizations possible. For the current case, k=1 implies 
z=1 and 2='t . From this point the discriminant is not so 

important because 0='y and if rk'yy 1+= and rk'tt 2+= : 

4

Dkk
rrk1

4

)rk(D)rk2(

4

Dyt
q

2
1

2
22

2

2
1

2
2

22 +
++=

++
=

+
=  

The mandatory condition here is 4mod0Dkk
2

1
2

2 ≡+ . In 

this case, q-1 is divisible by r, and thus the embedding 
degree is 1. The efficiency coefficient has the minimum 
value at k1= 

k2=2, thus r=101 45.2
rlog

qlog
≈=ρ which is not convenient. 

Another option in this case is k1=0: 
 

     
4

k
rrk1

4

)rk2(

4

Dyt
q

2
22

2

2
2

22

++=
+

=
+

=  (23) 

 
The maximum efficiency is when k2=2 and for r=101 

00.2≈ρ  which is optimal (q=10404). The only problem in 

this approach is that the group order q is not a prime 
number, but a composite one: 
 

                2
3

2
33 )rk1()rk(rk21q +=++=  (24) 

 
 Because of this situation the case in which k1=0 it is not 
useful for generating elliptic curves over prime order fields, 
but is useful for composite ones, having multiple 
applications, especially for identity based encryption 
schemas [13]. 
 

IV. NEW ALGORITHMS 
1. Minimal Hilbert representation 
In order to simplify the curve generation, the complex 
multiplication theory can be used for minimal 
representations of the Hilbert generated polynomials. 
  

Discriminant Hilbert polynomial 
3 x 
4 x-1728 
7 x+3375 
8 x-8000 

11 x+32768 
Table4. Minimal Hilbert polynomials 

 The polynomials presented in Table 4 have the property 
that they all have degree 1, thus the root modulo q is easy to 
compute. The values that are skipped (1,2,5 …) from the 
first possible discriminant values cannot appear as 
discriminant values. The value of 4 is not suitable because 
from the elliptic curve reconstruction equation: 
 

j1728

j2
x

j1728

j3
xy 32

−
+

−
+=   (25) 

 
the invariant 1728j ≠ . 

 The value 7 seems to be the best choice since it provides 
a simple Hilbert polynomial and provides suitable values for 
the invariant. 
The main steps of the algorithm are depicted below: 
• Choose the bit length of the resulting subgroup order. 
• Compute a prime number with properties (low Hamming 

weight, …), the desired bit length and with additional  
• Compute the expected value of the group order (q). 
• Compute the invariant of the elliptic curve with Hilbert 

polynomial 
• Compute and verify the properties of the resulting curve 
From the algorithm presented below it is obvious that 

2>ρ . 

• Bit length 12: the chosen value is 3389 – prime number. 
The order q is computed with the help of the following 
algorithm: 

k3=0 
r = 3389 
y=2 
kmax=1000 
found = false 
while ((found == false) & (k3 < kmax)): 
    q = 1+2*k3*r+7*r^2+r^2*k3^2 
    print q 
    if is_prime(q) :    
        print "found",k3 
        found = true 
    k3 = k3 + 1 
For the above mentioned values the algorithm gives the 

values 153 =k and 2664696143q = . 

2664692768qj =−= 3375 , with resulting curve: 

1127913710169187056532 +∗+= xxy   

This curve has order: 

2338929322664594472 **N ==   

The efficiency coefficient 6702
3389

2664696143
.

)log(
==ρ  

• Bit length 50: the prime value found is 

1232502 ++=r . For these values the above algorithm 
gives 

 2359502279849475300358991561745562q =   

 8984502279849375300358991561745562j =  
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++= x*xy 343826338847343948118601101637409632  

292755923156229874573416775827309  
and order 

== 6048372339187575300351111561745562N  

2231233112589991511742 ***  
The efficiency coefficient is improved 

2052
2312331125899915

2359502279849475300358991561745562
.

)log(
==ρ

For different bit values (100,200 and 600) examples of the 
resulted curves are in Appendix A and the pairing results are 
presented in Appendix B. Java implementation is performed 
with a modified JPBC library [12]. This algorithm is getting 
around 2≈ρ but somewhat greater and 2 is the theoretical 

bound. 
 
2. Cyclotomic polynomial representation 
The idea of cyclotomic polynomial representation is based 
on [6] and [14]. The representation of the cyclotomic field is 
performed through: 

∏
−

=

−
−

−

−=
21

1

22

1

1
/)q(

j

)
j

q
j

q(

q

)(q ζζ   (26) 

and depending of the modulus (1 or 3) of the prime q: 

         ∏
−

=

−
−=

21

1

/)q(

j

)
j

q
j

q(q ζζ  for mod = 1      (27) 

∏
−

=

−
−=−

21

1

/)q(

j

)
j

q
j

q(q ζζ  for mod = 3 (28) 

In the current case of D=7, the current formula becomes: 

))()(()(7
3

7
3
7

2
7

2
7

1
7

1
7

3

1
77

−−−

=

− −−−=∏ −=− ζζζζζζζζ
j

jj
 

)1)(1)(1(
)1)(1)(1( 6

7
4
7

2
776

7

6
7

4
7

2
7 −−−=

−−−
= ζζζζ

ζ

ζζζ
 

A possible choice for the 7
th

 root of unity as a polynomial is 
x: 
 

1xxxxxx)x( 23456
7 ++++++=Φ   (29) 

 
and thus the formula: 
 

1222427 −−−−=− xxx)x(Da  (30) 

 

represents the 7− value in the polynomial field )(Q 7ζ . 

For k=1, the k
th

 root of unity is x
7
: 
71)( xxt +=

++=
−

+= 27
2

2
)1((

4

1
)

)()2)((
)((

4

1
)( x

D

xDxt
xtxq  

)
7

)1222()1(
2427 −−−−− xxxx

 

        1)()( 23456
7 ++++++=Φ= xxxxxxxxr  (31) 

 
If there exists a value x0 for which q(x0) and r(x0) are both 

primes, then the generated curve will have the desired 

properties. These generated curves have 663622 ./ =≈ρ  

so they are suboptimal. From [14]: 
 










+=

−=

+=

422

2

1

/)D/)x(b)x(a()x(p

)x(h))x(a()x(b

)x(g)x(a

  (32) 

 
it is easy to see that in order to minimize the ρ parameter it 

is required that the representation of g(x) (the k
th

 root of 
unity) to be minimal. In the above case, the degree of this 
representation was too high (7). This condition is equivalent 

that the degree of g(x) to be lower than )x(nΦ .  

In lemma 2.3 from [14], a required condition for 

n/Q Φ∈− 7 is that n=7k. The efficiency parameter is 

proportional with the value of 
)kdeg(

k

)kdeg(

)
k

xdeg(

7

7

7

7

ΦΦ
= . 

 
k 7k 

k7Φ  deg( k7Φ ) ρ  

1 7 ...456 xxx ++++++++  
6 1.166 

2 14 ...456 xxx ++++−−−−  
6 2.333 

3 21 ...91112 xxx ++++−−−−  
12 1.75 

4 28 ...81012 xxx ++++−−−−  
12 2.333 

5 35 ...192324 xxx ++++−−−−  
24 1.458 

6 42 ...91112 xxx −−−−++++  
12 3.5 

7 49 ...283542 xxx ++++++++  
42 1.166 

8 56 ...162024 xxx ++++−−−−  
24 2.333 

9 63 ...273336 xxx ++++−−−−  
36 1.75 

10 70 ...192324 xxx −−−−++++  
24 2.916 

11 77 ...535960 xxx ++++−−−−  
60 1.283 

12 84 ...182224 xxx −−−−++++  
24 3.5 

13 91 ...657172 xxx ++++−−−−  
72 1.263 

Table5. Efficiency coefficients 
 
From the Table5 it is easily to see that even values of k give 
ρ values that are not optimized. A search for the even 

values ((2k+1)*7) reveals that the value 1.166 is the 
minimum value and it is reached in the interval (1, 5000) for 
1, 7, 49, 343, 2401. For this particular case, 
 

32
2

.)
)x(r

)x(a
log(min =≈ρ  (33) 

 
which is much worse than the previous results. 
 As a conclusion, this method does not give optimal 
curves from the embedding degree point of view. The 

polynomial x
7k

 cannot be reduced further with )x(k7Φ  

because this will give the trivial result (1). Another possible 

construction is to use the relation kk 2ζζ −=  for odd k. In 

order to apply this relation k=2 must be considered because 

it provides 2ζ  as 
7
142 ζζ = , thus 

7
141 ζζ −= . 



 

Volume 53, Number 1, 2012                                                       ACTA TECHNICA NAPOCENSIS                  

                                                                                                     Electronics and Telecommunications 

________________________________________________________________________________ 

 
8 

As 123456
14 +−+−+−= xxxxxxΦ , the same 

problem of the representation occurs in this case too. The 
efficiency coefficient is 2≥ρ .  

All the above value satisfies 43modq ≡ and thus every 

element has the Lagrange coefficient equal to 1: 
 

pmod

p

aaBAxxy 4

1

3

+

==++=  (34) 

 
 Since this operation presents a very large exponent, it is 
implemented by a ‘double and add’ algorithm presented in 
[15]. 
 

V. CONCLUSIONS 
The generation of elliptic curves with embedding degree 1 is 
not hard and a new algorithm was developed. The running 
times become larger as the bit size of the underlying field 
grows. The solutions density for this new algorithm is much 
higher than the optimal ones. The efficiency of this 
algorithm grows as the bit size of the underlying field grows. 
It is computed (Appendix A) that for 600 bits, the computed 
efficiency is 030.2=ρ . 
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Appendix A 

• Bit length 100. 

122r 49100 ++=  

q=22111467489003725830385650024662545296747687

70744071721563719083 

104.2=ρ  

• Bit length 200. 

122r 57200 ++=  

q=15328235276323889388197536205009878486021136

3356016376229985574027316725891947070670003364

98758517703246544101942857870350283 

062.2=ρ  

• Bit length 600. 

122r 25600 ++=  
030.2=ρ  

 
Appendix B 

For some of the intended subgroup sizes the Tate pairing 

was computed. The results are presented along with the 

paired points. 
• Tate pairing: 1009540039 took 16 ms  

q=1561745562753003589950227984942359 

a=1016374096394811860126338847343438 

b=677582730929874573417559231562292 

Px=362643955287941103437571966411523 

Py=916115057470821650797876771657217 

Qx=1085175173804325577041166051867696 

Qy=449838472319049454517271473610379 
• Tate pairing: 507565679276123973313698906530379 

took 62 ms 

q=22111467489003725830385650024662545296747687

70744071721563719083 

a=10880245907287547630824684932770458796812354

26874067037594845896 

b=21994475597527515640806889971622002729040027

98412092506105709986 

Px=1471379789741545005048748290249427995344539

480843895353908073109 

Py=3388399083410845210552526728359169356015662

60563516145456245240 

Qx=6945425543707505047801982445262261387059332

04869813803436632119 

Qy=1606608703232757748737737981482420487566980

128115209770057645995 
 


