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Abstract: This work proposes an FPAA reconfiguration algorithm formulated on a modified version of the open traveling salesman 
problem (OTSP), which targets the achievement of a figure of merit (FOM). Genetic algorithms (GA) were chosen to optimize the 
modified OTSP. Several modifications were made to the genetic operators to guarantee population validity along the evolutionary 
process. The efficiency of the modified GA is demonstrated over the classical GA for small-sized FPAA mapping, while the classical 
GA is used for larger FPAAs. Simulation results illustrate the applicability of the proposed evolutionary FPAA mapping algorithm 
based on the modified OTSP routine. 
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I. PAGE FORMAT 
The simultaneous deployment of digital and analog 
processing functions is the driver for a variety of application 
fields, including automotive, communications, digital 
lifestyle, energy, environmental control, healthcare, security 
and entertainment [1, 2]. Thus, recent development trends in 
mixed-signal systems-on-a-chip (SoC) answer the 
continuously increasing demands for high processing 
capabilities within low-cost integrated circuits. 
 Although signal processing is mostly digital, there are 
several analog-specific processing functions, such as 
biasing, signal conditioning and conversion, interfacing, 
intermediate-frequency filtering, etc. Moreover, the analog 
implementation of several signal processing functions 
provides several benefits over digital, such as reduced power 
consumption, high speed and high-frequency operation [3].  
 The increasing demand in analog processing functions 
has attracted new paradigms in the design of analog 
integrated circuits. While analog processing was 
traditionally available in the shape of application-specific 
integrated circuits (ASIC), optimized for performance and 
power consumption, modern analog integrated circuits target 
the implementation of certain parameter programmability 
and topological reconfigurability [4]. 
 Field programmable analog arrays (FPAA) are the analog 
counterpart of field programmable gate arrays (FPGA), 
which were proven to be a versatile solution for rapid 
prototyping and testing of digital processing systems. 
Indeed, FPAAs have gained considerable attention and have 
been a subject of research for the past two decades, to offer 
an attractive alternative to ASICs. 
 FPAAs consist of configurable analog blocks (CAB), 
which implement basic analog operations such as gain and 
integration, and a programmable interconnection network, 
which implements signal routing among the CABs in order 
to implement the desired transfer function. The CAB 
deploys the FPAA with the parameter programmability 

feature, with limited configurability to select among the 
basic analog operations. The programmable interconnection 
network implements the reconfigurability feature on the 
FPAA. Then, FPAA reconfiguration accounts for the routing 
of the programmable interconnection network, in order to 
implement the desired analog transfer function. 
 Traditionally, FPAA reconfiguration employs lookup 
tables (LUT) which store the binary control words for 
mapping several analog processing functions. LUT-based 
reconfiguration is straightforward and is mainly used in 
FPAAs which favor performance rather than generality, e.g. 
[5]. LUT-based reconfiguration however is deterministic 
and doesn’t account for post-silicon performance 
parameters, such as propagation delays, effects of random 
process drifts and device mismatch, effects of process, 
voltage and temperature (PVT) variations due to 
environmental changes, etc. [6]. All of these factors affect 
the implemented transfer function and must be accounted for 
during the reconfiguration process.    
 Alternatively, software-driven approaches for FPAA 
reconfiguration maintain the LUT-based programming for 
intra-CAB reconfiguration, but apply computational 
intelligence techniques to optimize the routing of the 
interconnection network. For example, Becker et al. has 
applied genetic algorithms for the mapping of analog filters 
[7]. Similarly, Stoica et al. has applied genetic algorithms 
for the synthesis of novel amplifier structures on a 
programmable transistor array [8]. In either of the reported 
examples, the GA searches among random routes in the 
FPAA, and thus the evolutionary process is non-transparent 
with respect to the implemented analog circuit. 
 In this work, we have proposed a novel FPAA 
reconfiguration algorithm for the implementation of analog 
filters, which treats the reconfiguration problem in similarity 
with the open traveling salesman problem (OTSP). For this 
purpose we have defined a new variation of the OTSP, 
which targets the determination of a route realizing an 
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imposed figure of merit (FOM), rather than minimum 
length. 
 We have solved the proposed variation of the OTSP 
using genetic algorithms (GA). To do so, we have proposed 
a variable length representation and a modification to the 
genetic operators in the classical AG routine to guarantee 
population validity along the evolutionary process.  
 This article is organized as follows. Section 2 presents a 
description of the high-level FPAA model developed for the 
generalization of programmable analog arrays. Next, Section 
3 presents the proposed modification to the OTSP which 
targets the achievement of a required FOM on a non-
Hamiltonian walk. Also, Section 3 describes the GA to solve 
the FOM-OTSP and proposes some modifications brought 
to the classical GA in order to gain some algorithm 
efficiency. Section 4 proposes the proposed FPAA 
reconfiguration algorithm for the mapping of analog filters, 
which employs of the evolutionary FOM-OTSP routine. 
Section 5 presents some conclusive simulation results which 
demonstrate the efficiency of the proposed modified genetic 
operators over the classical GA scheme for small-sized 
reconfiguration problems. FPAA reconfiguration is 
demonstrated for both small-sized and larger FPAAs, for the 
mapping of a Tow-Thomas cascade, and two leap-frog 
filters with arbitrary transmission zeros. Finally some 
conclusions are drawn and some research perspectives are 
formulated. 
 

II. THE FPAA HIGH-LEVEL MODEL 
The evolutionary FPAA reconfiguration algorithm was 
developed to generalize the FPAA reconfiguration process 
for the implementation of analog filters. Assuming the 
multiple loop feedback (MLF) filter topology, the high-level 
FPAA model must be able to accommodate [9]: 

• the filter backbone (BB) – consisting of a cascade of 
lossless integrators, which gives the filter order by 
generating origin poles, 

• the feedback (FB) loops – which place the poles in the 
complex plane, 

• the feedforward (FF) paths – which generates and 
places arbitrary transmission zeros in the complex 
plane. 

 We have proposed a generalized high-level FPAA model 
to accommodate the FPAA reconfiguration algorithm for 
mapping of analog filters. The proposed high-level FPAA 
model is illustrated in Figure 1. 
 

 
 

Figure 1. The high-level FPAA model. 
 
 The FPAA model is built around a grid architecture 
resembling an [n x m] matrix, exhibiting n input and n 
output ports respectively, thus being able to implement n 
parallel signal processing paths.  

 The CABs in the high-level FPAA model from Figure 1 
were designed to generalize the analog signal processing 
operations in terms of gain and filtering. The proposed CAB 
model is illustrated in Figure 2, and consists of three parallel 
paths: the direct path (DP), the feed-back (FB) path and the 
feed-forward (FF) path respectively.  
 

 
 

Figure 2. The high-level model of the CAB. 
  
 The DP consists of an amplifier, a lossless integrator 
which introduces an origin pole, two source nodes for a FB 
loop and a FF path respectively, and two summation nodes 
to terminate a FB loop and a FF path respectively. With the 
proposed high-level CAB model, the filter BB, and 
consequently the filter order, is built by the DP from 
successive CABs. 
 Further on, the CAB contains two gain elements GFB and 
GFF on the FB and FF paths respectively. Assuming that the 
FB path produces a loop containing k lossless integrators on 
the filter BB, a k

th order pole is defined, introducing a 
transfer function expressed according to Mason’s rule as:  
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 Similarly, assuming that the FF path bypasses k lossless 
integrators on the filter BB, a kth order arbitrary transmission 
zero is defined, introducing a transfer function expressed 
according to Mason’s rule as:  
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 Switches KBB, KFB and KFF state the enclosure of the 
corresponding CAB paths to the overall analog processing 
chain. The LUT for CAB programming is listed in Table 1, 
along with the implemented transfer function. 
 To be noted is that, the signal buses implementing the 
CAB local interconnections in the FPAA from Figure 1 are 
actually implemented with three parallel interconnections for 
the CAB DP, FB and FF paths respectively. Global 
interconnectivity is achieved within the switching matrices 
by employing the fat-tree interconnection network [10] 
illustrated in Figure 3. Besides the fact that the fat-tree 
interconnection network provides the FPAA with full 
reconfiguration capabilities, the binary nature of the network 
makes signal routing straightforward. 
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Table 1. LUT for CAB reconfiguration. 
 

Switch state Implemented function 

KBB KFB KFF 
High-level 
component 

Transfer 
function 

off off ON Direct path gain GFF 

ON off Off Lossless integrator 
sC

GBB  

ON ON Off 

Lossy integrator 
(FB path source and 
destination nodes in 

the same CAB) FB

BB

GsC

G

+
 

ON ON off 

k
th order pole 

(FB path source and 
destination nodes in 
the different CABs k 

and l, k>l) 

eq. (1) 

ON off ON 

Arbitrary transmission 
zero 

(FF path source and 
destination nodes in 
the different CABs k 

and l, k>l) 

eq. (2) 

 
  

 
 

Figure 3. Section from the fat-tree interconnection 
network. 

 
 For the mathematical representation of the FPAA using 
graph theory we have employed two adjacency matrices 
which are presented as follows. For resemblance with graph 
theory, the switching matrices from Figure 3 will further be 
referred to as switching nodes.  
 Transfer-function adjacency matrix AFPAA, expressed in 
(3), encodes the transfer function implemented between any 
two FPAA nodes. The route passing through a CAB, e.g. 
CABi,j, contributes its transfer function Hi,j(s) to the global 
FPAA transfer function. Any other route passes successive 
switching points implementing unity transfer function, and 
brings no contribution to the global transfer function. 
Accordingly, AFPAA is used to determine the transfer function 
implemented on the FPAA. To be noticed is that, although 
matrix A

FPAA gives specific information regarding the 
implemented transfer function, it does not give any 
information concerning the hardware resources involved, 
e.g. number of switching points, etc..  
 The distance adjacency matrix DFPAA, expressed in (4), 
encodes the number of FPAA blocks, namely switching 
points and CABs, between any two nodes, and is used to 
determine the length of a walk, or in terms of graph theory 

the cost of a walk. Thus, matrix D
FPAA gives specific 

information regarding the HW resources involved in FPAA 
reconfiguration. 
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 Further adjacency matrices can be defined to encode 
other design specifications, such as sensitivity vs. 
components, signal delays, etc. 
 

III. THE FOM-OTSP PROBLEM 
FPAA reconfiguration accounts for the determination of the 
optimal route between the required input and output nodes 
which implements the required transfer function. Thus, the 
FPAA reconfiguration problem resembles strong similarity 
with the open traveling salesman problem. 
 The open traveling salesman problem [11] (OTSP) is 
defined on a map with n cities and m roads binding the 
cities. The problem definition states the requirement to 
determine a minimum-length walk, which visits all the cities 
exactly once. 
 In the mathematical formulation of the OTSP using graph 
theory, the map is represented with an oriented graph G: 
 

},],[;,|{),( , jiEjiVjicEVG ji ≠∈∈==      (5) 

 
where V = [1…n] is the set of vertices representing the 
cities, E is the set of edges representing the roads binding 
the cities, and ci,j is the cost of edge [i, j] representing the 
length of the road binding cities i and j.  
 In graph theory, the OTSP translates to the requirement 
to determine the minimum-cost Hamiltonian walk w

* in 
graph G: 
 The main difference between the OTSP and the FPAA 
reconfiguration problem is that, while the former searches 
for a walk which visits all the vertices, the latter doesn’t 
necessarily visit all nodes. Therefore, we have relaxes the 
constraint of a Hamiltonian walk and have formulated a 
novel variation of the OTSP which states the requirement to 
determine a minimum-cost walk w* with imposed departure 
and destination nodes, which achieves a required figure of 
merit FOM*:  
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where W is the set of walks in graph G, defined as: 
 

]}1,1[,),(;|),...,,{( 121 −∈∀∈≤= + kiEvvnkvvvW iik (7) 
 
 To be noted is that the proposed FOM-OTSP formulation 
relaxes the constraint of a Hamiltonian walk. Rather than 
visiting all the nodes as was the case in the classical OTSP 
formulations, the FOM-OTSP targets the accomplishment of 
a FOM. 
 The traveling salesman problem, in either variation, is 
NP-complete [12], and thus the only method to solve the 
problem is exhaustive enumeration and evaluation [13]. This 
approach however results in unacceptably long execution 
time for large values of n.  
 Alternative approaches to solve the OTSP problem make 
use of search heuristics, e.g. Greedy search, Minimum 
Spanning tree, k-nearest neighbors, etc., which aim to 
improve the search procedure, yet result in exponential 
runtime and increased computational burden. Among other 
optimization heuristics, population-based optimization 
techniques, e.g. genetic algorithms, simulated annealing, 
colony optimization, artificial immune systems, etc., have 
been reported to find a near-optimal route in finite runtime, 
thus providing a satisfactory solution of the OTSP problem 
[12].  
 In this paper we have employed GAs to optimize the 
solution to the proposed FOM-OTSP problem. Genetic 
algorithms are a search heuristic, which operates on a 
population of solution candidates, rather than on individual 
solutions, and mimics the process of natural evolution 
towards iteratively optimizing an objective function [4, 7, 
12].  
 The block diagram of the GA-based algorithm to solve 
the FOM-OTSP is illustrated in Figure 4 and is explained as 
follows. The input argument to the GA is the map consisting 
of the city locations, the distance between cities and the 
FOM. Based on this map, a number of individuals, 
representing walks in the oriented graph, are randomly 
generated to form the initial population. Next, the 
population is evaluated and a fitness value measuring the 
cost and the FOM of the walk is attached to each of the 
individuals in the population.  
 Should the optimization criteria be fulfilled, the best 
individual from the population is provided as optimization 
result. Otherwise the evolutionary loop is entered and 
genetic operators of biological inspiration, namely selection, 
cross-over and mutation, are applied to optimize the 
population. Additionally, we have employed a survival 
operator to have the promising individuals survive from one 
generation to the next along the evolutionary process.  
 For the GA stopping criteria, we have considered the 
achievement of either of two individual stopping criteria: a 
maximum number of generations, or a maximum number of 
consecutive generations exhibiting no significant 
improvement of the objective function. 
 We have made several modifications to the classical GA 
routine as follows, in order to solve the FOM-OTSP 
problem. In accordance with the proposed variation of the 
OTSP, which searches for a minimum-length walk that 
doesn’t necessarily visit all nodes, we have defined a 
variable length representation (VLR). Accordingly, the GA 
chromosome to represent a walk in graph G is a structure 
chr expressed as 
  

)},...,,(,{ 21 LvvvLchr =        (8) 
 
where L is the number of vertices in the walk and vi, i=1…L 
are the vertices of the oriented graph from the encoded walk. 
In order to have imposed starting and ending nodes 
respectively, each chromosome must satisfy:  
 

 
 

Figure 4. The GA-based algorithm to solve the FOM-
OTSP problem. 
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where snode and enode are the starting and ending nodes of 
the walk.  
 The evaluation function must consider the fact that the 
proposed FOM-OTSP formulation defines two distinct 
objectives which have to be obtained simultaneously: 1) the 
desired FOM should be obtained on a 2) minimum-length 
walk. Accordingly, we have defined the validity of a walk in 
the graph in terms of achievement of the required FOM.  
 While the length of the walk is subject to optimization, 
the FOM is an “all or nothing” specification. Then, the 
objective function of individual i, i.e. walk wi, is expressed 
as: 
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 Objective function (10) states that, if the FOM 
specification is met the fitness function equals the length of 
the walk encoded by the individual. Otherwise, the 
individual is penalized with penalty factor p, which must be 
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sufficiently large to dominate the maximum length 
achievable by a walk in the graph.  
 Considering the random nature of the population 
generation function and the genetic operators, it is sensible 
to assume that not all individuals from the population will 
represent valid walks. We have extensively simulated the 
population creation function and the genetic operators and 
have analyzed the simulation data. Indeed, we found that for 
random population creation 70-80% of the population 
consists of invalid individuals. Similarly, after applying the 
cross-over and mutation operators 50-60% of the instances 
result in invalid individuals. Such individuals are penalized 
in the evaluation stage according to objective function (10), 
and do not contribute to the optimization process. The result 
is a considerably longer runtime of the evolutionary process, 
which increases even more with larger population sizes, 
making the classical GA operators inefficient for the 
proposed problem. 
 To compensate for this drawback, we have proposed a 
modification to the population creation function and the 
genetic operators to generate inherently valid individuals 
while still maintaining their random nature. The modified 
population creation function is implemented with a 
repetitive loop which repeats the random walk generation 
until a valid walk is determined. Similarly, the cross-over 
operator is implemented with a repetitive loop which repeats 
the random generation of the cross-over points until the 
offspring represents valid individuals. For the mutation 
operator, the random generation of the mutation loci until 
the mutation result is a valid individual. 
 

IV. THE PROPOSED FPAA MAPPING 
ALGORITHM 

The objective of the FPAA reconfiguration algorithm is to 
determine a route in the FPAA, which passes through a 
minimum number of switching nodes and implements the 
required filter transfer function.  
 Since the FPAA topology with the available degrees of 
freedom is known prior to the reconfiguration process, a 
LUT-based FPAA mapping would seem straightforward. 
However, LUT-based reconfiguration cannot take into 
account post-silicon FPAA parameters such as transmission 
delays, parasitic effects of random process drifts, device 
mismatch etc., as well as effects of process, voltage and 
temperature (PVT) variations due to environmental changes.  
 In this section we propose the employment of the 
proposed evolutionary FOM-OTSP routine to solve the 
FPAA reconfiguration problem in a software-driven 
reconfiguration approach.  
 The block diagram of the proposed FPAA 
reconfiguration algorithm is illustrated in Figure 5 and is 
explained as follows. Unlike the FOM-OTSP routine from 
Figure 4 which evaluates walks in the graph, the proposed 
FPAA reconfiguration algorithm evaluates analog filters 
mapped on the FPAA. For generality, the proposed 
reconfiguration algorithm handles the mapping of each FB 
and FF connection individually within a dedicated FOM-
OTSP, and therefore the proposed reconfiguration algorithm 
exhibits a nesting of three GAs. 
 The top-level GA loop operates towards mapping the 
filter BB on the FPAA, between the desired input and output 
nodes. In similarity to the FOM-OTSP routine, BB mapping 
operates towards implementing a minimum-length route on 
the array with the implementation of the desired transfer 

function. 
 The cost of the walk was defined to include the number 
of switching points as well as further post-silicon 
performance measures. Therefore the distance matrix for the 
FOM-OTSP routine is expressed as 

 
 

Figure 5. The proposed FPAA reconfiguration algorithm. 
 

D
FPAA

DD ε+=   (11) 
 
where D

FPAA is the FPAA distance adjacency matrix 
expressed in (4), and εD is an [nxm] matrix consisting of 
post-silicon transmission delays, which are due to random 
process drifts and PVT variation.  
 The FOM on the other hand was defined as the 
implemented transfer function, thus the transfer function 
matrix for the FOM-OTSP routine is expressed as: 
 

A
FPAA

AA ε+=   (12) 
 
where AFPAA is the FPAA transfer function adjacency matrix 
expressed in (3), and εA is an [nxm] matrix consisting of the 
post-silicon variations in the transfer function, which are due 
to random process drifts and PVT variation.  
 To be noticed is that, while the cost of the walk is subject 
to optimization, FOM is a “all or nothing” specification, the 
satisfaction of which is mandatory. 
 Although the determination of matrices εD and εA requires 
measurements on the fabricated FPAA, in this work we have 
employed a simulation-based methodology for the 
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estimation of post-silicon performance parameters, as 
illustrated in Figure 6. 
 

 
 

Figure 6. Simulation-based methodology to estimate post-
silicon performance parameters. 

 
 The proposed FPAA model was implemented in Mentor 
Graphics computer aided design (CAD) environment using 
first-order ideal models for the gain and integration 
elements. Device tolerances available from statistical 
deviation information formerly recorded in [14] have been 
applied to the ideal elements. One Monte Carlo (MC) 
simulation run was performed to emulate specific 
information regarding post-silicon performance for one 
FPAA instance. The MC simulation output data was used to 
fill in matrices εD and εA.in (11) and (12). 
 After having a population of filter BBs in the top-level 
GA, the next stage in the proposed FPAA reconfiguration 
algorithm is to perform the mapping of the required FB and 
FF loops around the BB integrators in dedicated GA loops. 
 The feedback and feedforward routes between a fixed 
starting and ending nodes must also satisfy the criteria of 
minimum length and required FOM. To handle FB mapping 
with the FOM-OTSP routine, feedback adjacency matrices 
Afb and Dfb are expressed as follows: 
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 The transpose operation in (13) expresses the fact that 
the feedback loops have an opposed orientation than the 
filter backbone. Consequently, pole order is given by 
reverse-order visiting of consecutive nodes.  
 Similarly, to handle FF mapping with the FOM-OTSP 
routine, feedforward adjacency matrices Aff and Dff have 
been expressed as: 
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 The addition of the unity matrix to D expresses the fact 

that a FF route between consecutive nodes in the oriented 
graph actually bypasses the CAB, and thus passes through 
an additional switching point. 
 The evaluation functions within the FB and FF mapping 
procedures evaluate the length and the FOM of the FB and 
FF connections respectively. Considering the nesting of 
three GA loops, the evaluation function within the top-level 
GA will estimate the length and the FOM of the analog filter 
as a whole and not of the BB, FB and FF routes 
individually.  
 The GA stopping criteria are expressed similarly to the 
FOM-OTSP routine in terms of maximum number of 
generations, and a maximum number of consecutive 
generations with no significant improvement of the objective 
function.  
 After evaluation, should the stopping criteria be satisfied, 
the evolutionary process stops and the best individual in 
provided as optimization result. Otherwise, the evolutionary 
loop is entered and genetic operators are applied to generate 
the next generations.  
 

V. SIMULATION RESULTS 
The GA-based algorithm to solve the FOM-OTSP problem 
for FPAA reconfiguration was implemented in Matlab. The 
FOM-OTSP routine was extensively simulated to investigate 
the effects of the GA parameters on the optimization 
performance, and to compare the efficiency of the classical 
GA implementation with the proposed modifications to the 
GA operators. The tests were carried out on two randomly 
generated maps with 10 and 20 cities respectively.  
 The evolution of the mean objective function value vs. 
generations for the 10 city map is illustrated in Figure 7, 
with dashed line for the classical GA operators and with 
solid line for the modified GA operators. The objective 
function value along the evolutionary process is higher for 
the classical GA implementation, illustrating the fact that the 
population is less fit to solve the optimization problem. This 
is due to the penalty factors applied to invalid individuals in 
the population. The modified GA operators on the other 
hand guarantee population validity, thus exhibiting a lower 
objective function value along the evolutionary process and 
shortening the evolution length. Also, the GA runtime with 
the modified genetic operators is considerably shorter, 
namely 27 minute in comparison to 48 minutes for the 
classical GA implementation.  
 

 
 

Figure 7. Evolution of the mean objective function value 
vs. generations for the 10 city map. 

 
 The evolution of the mean objective function value vs. 
generations for the 20 city map is illustrated in Figure 8, 
with dashed line for the classical GA operators and with 
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solid line for the modified GA operators. Again, the 
modified GA operators accounted for a shorter evolution 
length in terms of number of generations. However, given 
the much larger search space in the 20 city map, the 
modified GA operators accounted for a longer runtime due 
to the repetitive loops to generate valid individuals.  
 

 
 

Figure 8. Evolution of the mean objective function value 
vs. generations for the 20 city map. 

 
 Based on this set of tests, we have concluded that for the 
reconfiguration of small-sized FPAAs, i.e. up to 15 
switching nodes, the modified operators are suitable to 
implement the top-level GA. For large FPAAs, i.e. 20 or 
more switching nodes, the classical GA implementation will 
be used. In either case, the FB and FF mapping GAs will be 
implemented with the modified GA operators.  
 Accordingly, the parameters of the GA routines within 
the FPAA reconfiguration algorithm are set as follows. The 
top-level GA was implemented with a 50 individual 
population size and a survival rate of 5 individuals. The 
stopping criteria account for an evolution of maximum 100 
generations or 20 consecutive generations with no 
improvement to the objective function. The fulfillment of 
either of the two criteria leads to the stopping of the 
evolutionary process. The FB and FF mapping GA was 
implemented with a 20 individual population size and a 
survival rate of 2 individuals. The stopping criteria account 
for an evolution of maximum 50 generations or 10 
consecutive generations with no improvement to the 
objective function. 
 The proposed FPAA reconfiguration algorithm was 
extensively simulated in order to prove its applicability for 
the implementation of analog filters. Monte Carlo simulation 
of the FPAA model within the reconfiguration routine was 
performed with Eldo from Mentor Graphics.  

 The first design scenario illustrates the routing of a 5th 
order low-pass filter implemented with a Tow-Thomas (TT) 
biquad cascade topology, on a [3x3] FPAA. Considering the 
size of the FPAA, the modified genetic operators are 
employed in the top-level GA. The FPAA routing of the 5th 
order TT cascade is illustrated in Figure 9. 
 The evolution of the mean objective function value vs. 
generations for the top-level FOM-OTSP routine is 
illustrated in Figure 10, with dashed line for the classical 
genetic operators and solid line for the modified genetic 
operators. The comparison of the two illustrates that the 
modified GA operators indeed operate towards shortening 
evolution length and optimization runtime, demonstrating 
their efficiency over the classical GA operators for the 
small-sized FPAA reconfiguration problem. 
 The second design example illustrates the routing of two 
8th order leap-frog (LF) low-pass filters on a [5x5] FPAA. 
To illustrate the mapping of FF paths, the two filters exhibit 
a first-order arbitrary transmission zero. Considering the size 
of the FPAA, namely 24 switching nodes, the top-level GA 
was implemented with the classical genetic operators. The 
FPAA routing of the two 8th order LF filters is illustrated in 
Figure 11. 
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Figure 10. Evolution of the mean objective function value 
vs. generations for the top-level FOM-OTSP routine. 

 
VI. CONCLUSIONS 

The GA-based algorithm to solve the FOM-OTSP problem 
Recent development trends in mixed-signal systems-on-a-
chip answer the increasing demands for high-speed 
processing within low-cost integrated circuits. While most of 
the processing is digital, there are several analog-specific 
processing function. Field programmable analog arrays 
answer the requirement for a versatile hardware platform to 
host programmable analog processing functions.  

 
 

Figure 9. FPAA routing of the 5
th

 order TT cascade. 
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 This work proposes an FPAA reconfiguration algorithm 
based on the open traveling salesman problem (OTSP) for 
the mapping analog filters. For this purpose, a high-level 
model of an FPAA was defined, which is built around first-
order CABs to implement the singularities of analog filter 
transfer function.  
 A modified version of the OTSP proposed to resemble 
the FPAA reconfiguration problem. The modified OTSP 
relaxes the requirement of visiting all cities from the map, 
and rather targets the achievement of an imposed figure of 
merit with a minimum-cost route. Genetic algorithms were 
chosen as optimization heuristics to solve the modified 
version of the OTSP. To gain algorithm efficiency and 
reduce runtime, several modifications were made to the 
genetic operators, in order to guarantee population validity 
along the evolutionary process.  
 The efficiency of the modified GA is demonstrated over 
the classical GA for small-sized FPAA mapping, while the 
classical GA is used for larger FPAAs. Simulation results 
illustrate the applicability of the proposed evolutionary 
FPAA mapping algorithm based on the modified OTSP 
routine for the implementation of analog filters on FPAAs. 
 For future research, we target the integration of the 
proposed FPAA mapping algorithm along with a diagnosis 
routine into an auto-adaptive circuit, e.g. [15], in order to 
implement self-healing and self-repair features.  
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Figure 11. FPAA routing of two 8
th

 order LF filters with arbitrary transmission zeros. 


