

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received February 16, 2015; revised February 24, 2015

21

AN EVOLUTIONARY FPAA RECONFIGURATION ALGORITHM BASED

ON THE OPEN TRAVELING SALESMAN PROBLEM

Claudia FARAGÓ Paul FARAGÓ Sorin HINTEA Gabriel OLTEAN

Technical University of Cluj-Napoca, Romania
Str. Baritiu 26-28, 400027 Cluj-Napoca, Phone/Fax +40264591340, Claudia.Farago@bel.utcluj.ro

Abstract: This work proposes an FPAA reconfiguration algorithm formulated on a modified version of the open traveling salesman
problem (OTSP), which targets the achievement of a figure of merit (FOM). Genetic algorithms (GA) were chosen to optimize the
modified OTSP. Several modifications were made to the genetic operators to guarantee population validity along the evolutionary
process. The efficiency of the modified GA is demonstrated over the classical GA for small-sized FPAA mapping, while the classical
GA is used for larger FPAAs. Simulation results illustrate the applicability of the proposed evolutionary FPAA mapping algorithm
based on the modified OTSP routine.

Keywords: Field programmable analog array, analog filter, open traveling salesman problem, genetic algorithms.

I. PAGE FORMAT
The simultaneous deployment of digital and analog
processing functions is the driver for a variety of application
fields, including automotive, communications, digital
lifestyle, energy, environmental control, healthcare, security
and entertainment [1, 2]. Thus, recent development trends in
mixed-signal systems-on-a-chip (SoC) answer the
continuously increasing demands for high processing
capabilities within low-cost integrated circuits.
 Although signal processing is mostly digital, there are
several analog-specific processing functions, such as
biasing, signal conditioning and conversion, interfacing,
intermediate-frequency filtering, etc. Moreover, the analog
implementation of several signal processing functions
provides several benefits over digital, such as reduced power
consumption, high speed and high-frequency operation [3].
 The increasing demand in analog processing functions
has attracted new paradigms in the design of analog
integrated circuits. While analog processing was
traditionally available in the shape of application-specific
integrated circuits (ASIC), optimized for performance and
power consumption, modern analog integrated circuits target
the implementation of certain parameter programmability
and topological reconfigurability [4].
 Field programmable analog arrays (FPAA) are the analog
counterpart of field programmable gate arrays (FPGA),
which were proven to be a versatile solution for rapid
prototyping and testing of digital processing systems.
Indeed, FPAAs have gained considerable attention and have
been a subject of research for the past two decades, to offer
an attractive alternative to ASICs.
 FPAAs consist of configurable analog blocks (CAB),
which implement basic analog operations such as gain and
integration, and a programmable interconnection network,
which implements signal routing among the CABs in order
to implement the desired transfer function. The CAB
deploys the FPAA with the parameter programmability

feature, with limited configurability to select among the
basic analog operations. The programmable interconnection
network implements the reconfigurability feature on the
FPAA. Then, FPAA reconfiguration accounts for the routing
of the programmable interconnection network, in order to
implement the desired analog transfer function.
 Traditionally, FPAA reconfiguration employs lookup
tables (LUT) which store the binary control words for
mapping several analog processing functions. LUT-based
reconfiguration is straightforward and is mainly used in
FPAAs which favor performance rather than generality, e.g.
[5]. LUT-based reconfiguration however is deterministic
and doesn’t account for post-silicon performance
parameters, such as propagation delays, effects of random
process drifts and device mismatch, effects of process,
voltage and temperature (PVT) variations due to
environmental changes, etc. [6]. All of these factors affect
the implemented transfer function and must be accounted for
during the reconfiguration process.
 Alternatively, software-driven approaches for FPAA
reconfiguration maintain the LUT-based programming for
intra-CAB reconfiguration, but apply computational
intelligence techniques to optimize the routing of the
interconnection network. For example, Becker et al. has
applied genetic algorithms for the mapping of analog filters
[7]. Similarly, Stoica et al. has applied genetic algorithms
for the synthesis of novel amplifier structures on a
programmable transistor array [8]. In either of the reported
examples, the GA searches among random routes in the
FPAA, and thus the evolutionary process is non-transparent
with respect to the implemented analog circuit.
 In this work, we have proposed a novel FPAA
reconfiguration algorithm for the implementation of analog
filters, which treats the reconfiguration problem in similarity
with the open traveling salesman problem (OTSP). For this
purpose we have defined a new variation of the OTSP,
which targets the determination of a route realizing an

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 22

imposed figure of merit (FOM), rather than minimum
length.
 We have solved the proposed variation of the OTSP
using genetic algorithms (GA). To do so, we have proposed
a variable length representation and a modification to the
genetic operators in the classical AG routine to guarantee
population validity along the evolutionary process.
 This article is organized as follows. Section 2 presents a
description of the high-level FPAA model developed for the
generalization of programmable analog arrays. Next, Section
3 presents the proposed modification to the OTSP which
targets the achievement of a required FOM on a non-
Hamiltonian walk. Also, Section 3 describes the GA to solve
the FOM-OTSP and proposes some modifications brought
to the classical GA in order to gain some algorithm
efficiency. Section 4 proposes the proposed FPAA
reconfiguration algorithm for the mapping of analog filters,
which employs of the evolutionary FOM-OTSP routine.
Section 5 presents some conclusive simulation results which
demonstrate the efficiency of the proposed modified genetic
operators over the classical GA scheme for small-sized
reconfiguration problems. FPAA reconfiguration is
demonstrated for both small-sized and larger FPAAs, for the
mapping of a Tow-Thomas cascade, and two leap-frog
filters with arbitrary transmission zeros. Finally some
conclusions are drawn and some research perspectives are
formulated.

II. THE FPAA HIGH-LEVEL MODEL
The evolutionary FPAA reconfiguration algorithm was
developed to generalize the FPAA reconfiguration process
for the implementation of analog filters. Assuming the
multiple loop feedback (MLF) filter topology, the high-level
FPAA model must be able to accommodate [9]:

• the filter backbone (BB) – consisting of a cascade of
lossless integrators, which gives the filter order by
generating origin poles,

• the feedback (FB) loops – which place the poles in the
complex plane,

• the feedforward (FF) paths – which generates and
places arbitrary transmission zeros in the complex
plane.

 We have proposed a generalized high-level FPAA model
to accommodate the FPAA reconfiguration algorithm for
mapping of analog filters. The proposed high-level FPAA
model is illustrated in Figure 1.

Figure 1. The high-level FPAA model.

 The FPAA model is built around a grid architecture
resembling an [n x m] matrix, exhibiting n input and n
output ports respectively, thus being able to implement n
parallel signal processing paths.

 The CABs in the high-level FPAA model from Figure 1
were designed to generalize the analog signal processing
operations in terms of gain and filtering. The proposed CAB
model is illustrated in Figure 2, and consists of three parallel
paths: the direct path (DP), the feed-back (FB) path and the
feed-forward (FF) path respectively.

Figure 2. The high-level model of the CAB.

 The DP consists of an amplifier, a lossless integrator
which introduces an origin pole, two source nodes for a FB
loop and a FF path respectively, and two summation nodes
to terminate a FB loop and a FF path respectively. With the
proposed high-level CAB model, the filter BB, and
consequently the filter order, is built by the DP from
successive CABs.
 Further on, the CAB contains two gain elements GFB and
GFF on the FB and FF paths respectively. Assuming that the
FB path produces a loop containing k lossless integrators on
the filter BB, a k

th order pole is defined, introducing a
transfer function expressed according to Mason’s rule as:

∏∏∏∏

∏

+==+=

−

=

=

+
=

n

lki i

l

i i

k

li iBBkFB
lkn

i i
n

n

i iBBpole

CCGFsCs

G
sT

111

1)()(
(1)

 Similarly, assuming that the FF path bypasses k lossless
integrators on the filter BB, a kth order arbitrary transmission
zero is defined, introducing a transfer function expressed
according to Mason’s rule as:

01

01
1

1
0

...

...

bsbsa

bsbsb
H

n
n

k
k

+++

+++
⋅

−
−

 (2)

 Switches KBB, KFB and KFF state the enclosure of the
corresponding CAB paths to the overall analog processing
chain. The LUT for CAB programming is listed in Table 1,
along with the implemented transfer function.
 To be noted is that, the signal buses implementing the
CAB local interconnections in the FPAA from Figure 1 are
actually implemented with three parallel interconnections for
the CAB DP, FB and FF paths respectively. Global
interconnectivity is achieved within the switching matrices
by employing the fat-tree interconnection network [10]
illustrated in Figure 3. Besides the fact that the fat-tree
interconnection network provides the FPAA with full
reconfiguration capabilities, the binary nature of the network
makes signal routing straightforward.

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 23

Table 1. LUT for CAB reconfiguration.

Switch state Implemented function

KBB KFB KFF
High-level
component

Transfer
function

off off ON Direct path gain GFF

ON off Off Lossless integrator
sC

GBB

ON ON Off

Lossy integrator
(FB path source and
destination nodes in

the same CAB) FB

BB

GsC

G

+

ON ON off

k
th order pole

(FB path source and
destination nodes in
the different CABs k

and l, k>l)

eq. (1)

ON off ON

Arbitrary transmission
zero

(FF path source and
destination nodes in
the different CABs k

and l, k>l)

eq. (2)

Figure 3. Section from the fat-tree interconnection
network.

 For the mathematical representation of the FPAA using
graph theory we have employed two adjacency matrices
which are presented as follows. For resemblance with graph
theory, the switching matrices from Figure 3 will further be
referred to as switching nodes.
 Transfer-function adjacency matrix AFPAA, expressed in
(3), encodes the transfer function implemented between any
two FPAA nodes. The route passing through a CAB, e.g.
CABi,j, contributes its transfer function Hi,j(s) to the global
FPAA transfer function. Any other route passes successive
switching points implementing unity transfer function, and
brings no contribution to the global transfer function.
Accordingly, AFPAA is used to determine the transfer function
implemented on the FPAA. To be noticed is that, although
matrix A

FPAA gives specific information regarding the
implemented transfer function, it does not give any
information concerning the hardware resources involved,
e.g. number of switching points, etc..
 The distance adjacency matrix DFPAA, expressed in (4),
encodes the number of FPAA blocks, namely switching
points and CABs, between any two nodes, and is used to
determine the length of a walk, or in terms of graph theory

the cost of a walk. Thus, matrix D
FPAA gives specific

information regarding the HW resources involved in FPAA
reconfiguration.























=

0111

1011

1)(01

11)(0

12

11

L

MLMMM

L

L

L

sH

sH

A
FPAA (3)























−+

−

+

=

011

1023

102

1310

L

MLMMM

L

L

L

mmm

m

m

m

D
FPAA (4)

 Further adjacency matrices can be defined to encode
other design specifications, such as sensitivity vs.
components, signal delays, etc.

III. THE FOM-OTSP PROBLEM
FPAA reconfiguration accounts for the determination of the
optimal route between the required input and output nodes
which implements the required transfer function. Thus, the
FPAA reconfiguration problem resembles strong similarity
with the open traveling salesman problem.
 The open traveling salesman problem [11] (OTSP) is
defined on a map with n cities and m roads binding the
cities. The problem definition states the requirement to
determine a minimum-length walk, which visits all the cities
exactly once.
 In the mathematical formulation of the OTSP using graph
theory, the map is represented with an oriented graph G:

},],[;,|{),(, jiEjiVjicEVG ji ≠∈∈== (5)

where V = [1…n] is the set of vertices representing the
cities, E is the set of edges representing the roads binding
the cities, and ci,j is the cost of edge [i, j] representing the
length of the road binding cities i and j.
 In graph theory, the OTSP translates to the requirement
to determine the minimum-cost Hamiltonian walk w

* in
graph G:
 The main difference between the OTSP and the FPAA
reconfiguration problem is that, while the former searches
for a walk which visits all the vertices, the latter doesn’t
necessarily visit all nodes. Therefore, we have relaxes the
constraint of a Hamiltonian walk and have formulated a
novel variation of the OTSP which states the requirement to
determine a minimum-cost walk w* with imposed departure
and destination nodes, which achieves a required figure of
merit FOM*:

**

**

)(

)](,1[),(cos)(cos|

FOMwFOMand

WcardjwtwtWw j

=

∈∀≤⊂
 (6)

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 24

where W is the set of walks in graph G, defined as:

]}1,1[,),(;|),...,,{(121 −∈∀∈≤= + kiEvvnkvvvW iik (7)

 To be noted is that the proposed FOM-OTSP formulation
relaxes the constraint of a Hamiltonian walk. Rather than
visiting all the nodes as was the case in the classical OTSP
formulations, the FOM-OTSP targets the accomplishment of
a FOM.
 The traveling salesman problem, in either variation, is
NP-complete [12], and thus the only method to solve the
problem is exhaustive enumeration and evaluation [13]. This
approach however results in unacceptably long execution
time for large values of n.
 Alternative approaches to solve the OTSP problem make
use of search heuristics, e.g. Greedy search, Minimum
Spanning tree, k-nearest neighbors, etc., which aim to
improve the search procedure, yet result in exponential
runtime and increased computational burden. Among other
optimization heuristics, population-based optimization
techniques, e.g. genetic algorithms, simulated annealing,
colony optimization, artificial immune systems, etc., have
been reported to find a near-optimal route in finite runtime,
thus providing a satisfactory solution of the OTSP problem
[12].
 In this paper we have employed GAs to optimize the
solution to the proposed FOM-OTSP problem. Genetic
algorithms are a search heuristic, which operates on a
population of solution candidates, rather than on individual
solutions, and mimics the process of natural evolution
towards iteratively optimizing an objective function [4, 7,
12].
 The block diagram of the GA-based algorithm to solve
the FOM-OTSP is illustrated in Figure 4 and is explained as
follows. The input argument to the GA is the map consisting
of the city locations, the distance between cities and the
FOM. Based on this map, a number of individuals,
representing walks in the oriented graph, are randomly
generated to form the initial population. Next, the
population is evaluated and a fitness value measuring the
cost and the FOM of the walk is attached to each of the
individuals in the population.
 Should the optimization criteria be fulfilled, the best
individual from the population is provided as optimization
result. Otherwise the evolutionary loop is entered and
genetic operators of biological inspiration, namely selection,
cross-over and mutation, are applied to optimize the
population. Additionally, we have employed a survival
operator to have the promising individuals survive from one
generation to the next along the evolutionary process.
 For the GA stopping criteria, we have considered the
achievement of either of two individual stopping criteria: a
maximum number of generations, or a maximum number of
consecutive generations exhibiting no significant
improvement of the objective function.
 We have made several modifications to the classical GA
routine as follows, in order to solve the FOM-OTSP
problem. In accordance with the proposed variation of the
OTSP, which searches for a minimum-length walk that
doesn’t necessarily visit all nodes, we have defined a
variable length representation (VLR). Accordingly, the GA
chromosome to represent a walk in graph G is a structure
chr expressed as

)},...,,(,{ 21 LvvvLchr = (8)

where L is the number of vertices in the walk and vi, i=1…L
are the vertices of the oriented graph from the encoded walk.
In order to have imposed starting and ending nodes
respectively, each chromosome must satisfy:

Figure 4. The GA-based algorithm to solve the FOM-
OTSP problem.

Eenodev

EvsnodeEvvLi

L

ii

∈

∈∈⇒=∀ −

],[

,],[,],[...2 11 (9)

where snode and enode are the starting and ending nodes of
the walk.
 The evaluation function must consider the fact that the
proposed FOM-OTSP formulation defines two distinct
objectives which have to be obtained simultaneously: 1) the
desired FOM should be obtained on a 2) minimum-length
walk. Accordingly, we have defined the validity of a walk in
the graph in terms of achievement of the required FOM.
 While the length of the walk is subject to optimization,
the FOM is an “all or nothing” specification. Then, the
objective function of individual i, i.e. walk wi, is expressed
as:







≠

=
=

*

*

)(,

)(),(
)(

FOMwFOMifp

FOMwFOMifwlength
wOF

i

ii
i (10)

 Objective function (10) states that, if the FOM
specification is met the fitness function equals the length of
the walk encoded by the individual. Otherwise, the
individual is penalized with penalty factor p, which must be

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 25

sufficiently large to dominate the maximum length
achievable by a walk in the graph.
 Considering the random nature of the population
generation function and the genetic operators, it is sensible
to assume that not all individuals from the population will
represent valid walks. We have extensively simulated the
population creation function and the genetic operators and
have analyzed the simulation data. Indeed, we found that for
random population creation 70-80% of the population
consists of invalid individuals. Similarly, after applying the
cross-over and mutation operators 50-60% of the instances
result in invalid individuals. Such individuals are penalized
in the evaluation stage according to objective function (10),
and do not contribute to the optimization process. The result
is a considerably longer runtime of the evolutionary process,
which increases even more with larger population sizes,
making the classical GA operators inefficient for the
proposed problem.
 To compensate for this drawback, we have proposed a
modification to the population creation function and the
genetic operators to generate inherently valid individuals
while still maintaining their random nature. The modified
population creation function is implemented with a
repetitive loop which repeats the random walk generation
until a valid walk is determined. Similarly, the cross-over
operator is implemented with a repetitive loop which repeats
the random generation of the cross-over points until the
offspring represents valid individuals. For the mutation
operator, the random generation of the mutation loci until
the mutation result is a valid individual.

IV. THE PROPOSED FPAA MAPPING
ALGORITHM

The objective of the FPAA reconfiguration algorithm is to
determine a route in the FPAA, which passes through a
minimum number of switching nodes and implements the
required filter transfer function.
 Since the FPAA topology with the available degrees of
freedom is known prior to the reconfiguration process, a
LUT-based FPAA mapping would seem straightforward.
However, LUT-based reconfiguration cannot take into
account post-silicon FPAA parameters such as transmission
delays, parasitic effects of random process drifts, device
mismatch etc., as well as effects of process, voltage and
temperature (PVT) variations due to environmental changes.
 In this section we propose the employment of the
proposed evolutionary FOM-OTSP routine to solve the
FPAA reconfiguration problem in a software-driven
reconfiguration approach.
 The block diagram of the proposed FPAA
reconfiguration algorithm is illustrated in Figure 5 and is
explained as follows. Unlike the FOM-OTSP routine from
Figure 4 which evaluates walks in the graph, the proposed
FPAA reconfiguration algorithm evaluates analog filters
mapped on the FPAA. For generality, the proposed
reconfiguration algorithm handles the mapping of each FB
and FF connection individually within a dedicated FOM-
OTSP, and therefore the proposed reconfiguration algorithm
exhibits a nesting of three GAs.
 The top-level GA loop operates towards mapping the
filter BB on the FPAA, between the desired input and output
nodes. In similarity to the FOM-OTSP routine, BB mapping
operates towards implementing a minimum-length route on
the array with the implementation of the desired transfer

function.
 The cost of the walk was defined to include the number
of switching points as well as further post-silicon
performance measures. Therefore the distance matrix for the
FOM-OTSP routine is expressed as

Figure 5. The proposed FPAA reconfiguration algorithm.

D
FPAA

DD ε+= (11)

where D

FPAA is the FPAA distance adjacency matrix
expressed in (4), and εD is an [nxm] matrix consisting of
post-silicon transmission delays, which are due to random
process drifts and PVT variation.
 The FOM on the other hand was defined as the
implemented transfer function, thus the transfer function
matrix for the FOM-OTSP routine is expressed as:

A
FPAA

AA ε+= (12)

where AFPAA is the FPAA transfer function adjacency matrix
expressed in (3), and εA is an [nxm] matrix consisting of the
post-silicon variations in the transfer function, which are due
to random process drifts and PVT variation.
 To be noticed is that, while the cost of the walk is subject
to optimization, FOM is a “all or nothing” specification, the
satisfaction of which is mandatory.
 Although the determination of matrices εD and εA requires
measurements on the fabricated FPAA, in this work we have
employed a simulation-based methodology for the

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 26

estimation of post-silicon performance parameters, as
illustrated in Figure 6.

Figure 6. Simulation-based methodology to estimate post-
silicon performance parameters.

 The proposed FPAA model was implemented in Mentor
Graphics computer aided design (CAD) environment using
first-order ideal models for the gain and integration
elements. Device tolerances available from statistical
deviation information formerly recorded in [14] have been
applied to the ideal elements. One Monte Carlo (MC)
simulation run was performed to emulate specific
information regarding post-silicon performance for one
FPAA instance. The MC simulation output data was used to
fill in matrices εD and εA.in (11) and (12).
 After having a population of filter BBs in the top-level
GA, the next stage in the proposed FPAA reconfiguration
algorithm is to perform the mapping of the required FB and
FF loops around the BB integrators in dedicated GA loops.
 The feedback and feedforward routes between a fixed
starting and ending nodes must also satisfy the criteria of
minimum length and required FOM. To handle FB mapping
with the FOM-OTSP routine, feedback adjacency matrices
Afb and Dfb are expressed as follows:





=

=

'

'

DD

AA

fb

fb
 (13)

 The transpose operation in (13) expresses the fact that
the feedback loops have an opposed orientation than the
filter backbone. Consequently, pole order is given by
reverse-order visiting of consecutive nodes.
 Similarly, to handle FF mapping with the FOM-OTSP
routine, feedforward adjacency matrices Aff and Dff have
been expressed as:






































+=

=

0000

0000

0100

0010

L

MLMMM

L

L

L

DD

AA

ff

ff

 (14)

 The addition of the unity matrix to D expresses the fact

that a FF route between consecutive nodes in the oriented
graph actually bypasses the CAB, and thus passes through
an additional switching point.
 The evaluation functions within the FB and FF mapping
procedures evaluate the length and the FOM of the FB and
FF connections respectively. Considering the nesting of
three GA loops, the evaluation function within the top-level
GA will estimate the length and the FOM of the analog filter
as a whole and not of the BB, FB and FF routes
individually.
 The GA stopping criteria are expressed similarly to the
FOM-OTSP routine in terms of maximum number of
generations, and a maximum number of consecutive
generations with no significant improvement of the objective
function.
 After evaluation, should the stopping criteria be satisfied,
the evolutionary process stops and the best individual in
provided as optimization result. Otherwise, the evolutionary
loop is entered and genetic operators are applied to generate
the next generations.

V. SIMULATION RESULTS
The GA-based algorithm to solve the FOM-OTSP problem
for FPAA reconfiguration was implemented in Matlab. The
FOM-OTSP routine was extensively simulated to investigate
the effects of the GA parameters on the optimization
performance, and to compare the efficiency of the classical
GA implementation with the proposed modifications to the
GA operators. The tests were carried out on two randomly
generated maps with 10 and 20 cities respectively.
 The evolution of the mean objective function value vs.
generations for the 10 city map is illustrated in Figure 7,
with dashed line for the classical GA operators and with
solid line for the modified GA operators. The objective
function value along the evolutionary process is higher for
the classical GA implementation, illustrating the fact that the
population is less fit to solve the optimization problem. This
is due to the penalty factors applied to invalid individuals in
the population. The modified GA operators on the other
hand guarantee population validity, thus exhibiting a lower
objective function value along the evolutionary process and
shortening the evolution length. Also, the GA runtime with
the modified genetic operators is considerably shorter,
namely 27 minute in comparison to 48 minutes for the
classical GA implementation.

Figure 7. Evolution of the mean objective function value
vs. generations for the 10 city map.

 The evolution of the mean objective function value vs.
generations for the 20 city map is illustrated in Figure 8,
with dashed line for the classical GA operators and with

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 27

solid line for the modified GA operators. Again, the
modified GA operators accounted for a shorter evolution
length in terms of number of generations. However, given
the much larger search space in the 20 city map, the
modified GA operators accounted for a longer runtime due
to the repetitive loops to generate valid individuals.

Figure 8. Evolution of the mean objective function value
vs. generations for the 20 city map.

 Based on this set of tests, we have concluded that for the
reconfiguration of small-sized FPAAs, i.e. up to 15
switching nodes, the modified operators are suitable to
implement the top-level GA. For large FPAAs, i.e. 20 or
more switching nodes, the classical GA implementation will
be used. In either case, the FB and FF mapping GAs will be
implemented with the modified GA operators.
 Accordingly, the parameters of the GA routines within
the FPAA reconfiguration algorithm are set as follows. The
top-level GA was implemented with a 50 individual
population size and a survival rate of 5 individuals. The
stopping criteria account for an evolution of maximum 100
generations or 20 consecutive generations with no
improvement to the objective function. The fulfillment of
either of the two criteria leads to the stopping of the
evolutionary process. The FB and FF mapping GA was
implemented with a 20 individual population size and a
survival rate of 2 individuals. The stopping criteria account
for an evolution of maximum 50 generations or 10
consecutive generations with no improvement to the
objective function.
 The proposed FPAA reconfiguration algorithm was
extensively simulated in order to prove its applicability for
the implementation of analog filters. Monte Carlo simulation
of the FPAA model within the reconfiguration routine was
performed with Eldo from Mentor Graphics.

 The first design scenario illustrates the routing of a 5th
order low-pass filter implemented with a Tow-Thomas (TT)
biquad cascade topology, on a [3x3] FPAA. Considering the
size of the FPAA, the modified genetic operators are
employed in the top-level GA. The FPAA routing of the 5th
order TT cascade is illustrated in Figure 9.
 The evolution of the mean objective function value vs.
generations for the top-level FOM-OTSP routine is
illustrated in Figure 10, with dashed line for the classical
genetic operators and solid line for the modified genetic
operators. The comparison of the two illustrates that the
modified GA operators indeed operate towards shortening
evolution length and optimization runtime, demonstrating
their efficiency over the classical GA operators for the
small-sized FPAA reconfiguration problem.
 The second design example illustrates the routing of two
8th order leap-frog (LF) low-pass filters on a [5x5] FPAA.
To illustrate the mapping of FF paths, the two filters exhibit
a first-order arbitrary transmission zero. Considering the size
of the FPAA, namely 24 switching nodes, the top-level GA
was implemented with the classical genetic operators. The
FPAA routing of the two 8th order LF filters is illustrated in
Figure 11.

O
bj

ec
ti

ve
 f

un
ct

io
n

va
lu

e

Figure 10. Evolution of the mean objective function value
vs. generations for the top-level FOM-OTSP routine.

VI. CONCLUSIONS

The GA-based algorithm to solve the FOM-OTSP problem
Recent development trends in mixed-signal systems-on-a-
chip answer the increasing demands for high-speed
processing within low-cost integrated circuits. While most of
the processing is digital, there are several analog-specific
processing function. Field programmable analog arrays
answer the requirement for a versatile hardware platform to
host programmable analog processing functions.

Figure 9. FPAA routing of the 5
th

 order TT cascade.

Volume 56, Number 1, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 28

 This work proposes an FPAA reconfiguration algorithm
based on the open traveling salesman problem (OTSP) for
the mapping analog filters. For this purpose, a high-level
model of an FPAA was defined, which is built around first-
order CABs to implement the singularities of analog filter
transfer function.
 A modified version of the OTSP proposed to resemble
the FPAA reconfiguration problem. The modified OTSP
relaxes the requirement of visiting all cities from the map,
and rather targets the achievement of an imposed figure of
merit with a minimum-cost route. Genetic algorithms were
chosen as optimization heuristics to solve the modified
version of the OTSP. To gain algorithm efficiency and
reduce runtime, several modifications were made to the
genetic operators, in order to guarantee population validity
along the evolutionary process.
 The efficiency of the modified GA is demonstrated over
the classical GA for small-sized FPAA mapping, while the
classical GA is used for larger FPAAs. Simulation results
illustrate the applicability of the proposed evolutionary
FPAA mapping algorithm based on the modified OTSP
routine for the implementation of analog filters on FPAAs.
 For future research, we target the integration of the
proposed FPAA mapping algorithm along with a diagnosis
routine into an auto-adaptive circuit, e.g. [15], in order to
implement self-healing and self-repair features.

ACKNOWLEDGEMENTS
This paper is supported by the Sectoral Operational
Programme Human Resources Development
POSDRU/159/1.5/S/137516 financed from the European
Social Fund and by the Romanian Government.

REFERENCES
[1] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R.
Mahnkopf, J. Pelka, J.-U. Pfeiffer, A. Rouzaud, M. Tartagni, C.
Van Hoof, J. Wagner, “Towards a “More-than-Moore” roadmap”,
Report from the CATRENE Scientific Committee, November 8,
2011. [Online]. Available:
http://www2.imec.be/content/user/File/MtM%20WG%20report.pd
f [Accessed: 13 February 2015].
[2] European Nanoelectronics Initiative Advisory Council
(ENIAC), Draft of the Annual Work Programme 2012, Version 9,
2011. [Online]. Available:
http://www.aeneas-office.eu/web/downloads/strategic-
docs/awp_2012_v9.pdf [Accessed: 13 February 2015].
[3] T. Ndjountche, CMOS Analog Integrated Circuits: High-Speed

and Power-Efficient Design, CRC Press, 2011.
[4] S. Hintea, G Csipkes, D. Csipkes, L. Festila, R. Groza, P.
Farago, M.Cirlugea, Reconfigurable Analog Circuits for Mobile
Communications - Variable topology filters and design
automation, Editura Casa cărtii de ştiinţa, 2011.
[5] D. Csipkes, G. Csipkes, S. Hintea, H. Fernandez-Canque, “An
analog array approach to variable topology filters for multi-mode
receivers”, Electronics and Electrical Engineering, no. 9, pp. 43 –
48, 2010.
[6] P. Farago, D. Bogăţeanu, E. Ceuca, C. Moisă, S. Hintea,
“Device mismatch analysis and effect compensation in
fundamental analog cells”, 2013 36th International Spring
Seminar on Electronics Technology (ISSE), pp. 280 – 285, 2013.
[7] J. Becker, Y. Manoli, “Synthesis of Analog Filters on a
Continuous-Time FPAA Using a Genetic Algorithm”,
International Conference on Field Programmable Logic and

Applications, pp. 1-4, 2006.
[8] A. Stoica, R. Zebulum., D. Keymeulen, R. Tawel, T. Daud, A.
Thakoor, “Reconfigurable VLSI Architecture for Evolvable
Hardware: From Experimental Field Programable Transistor Array
to Evolution-Oriented Chips”, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 9, pp. 227-232, 2001.
[9] P. Farago, L. Feştilă, P. Söser, S. Hintea, “Automatic Filter

Synthesis Based on Tree Generation and Evolutionary

Optimization”, Knowledge-Based And Intelligent Information And
Engineering Systems, Lecture Notes in Computer Science, vol.
6884, pp. 455-464, 2011
[10] R.D. Kanphade, Programmable and Reconfigurable Analog

Signal Processing Using OTA1 Based Functionalities, PhD
Thesys, Sant Gadge Baba Amravati University, 2009.
[11] Z. Čičková, I. Brezina, J. Pekár, “Open Traveling Salesman
Problem with Time Windows”, 1st Logistics International
Conference Belgrade, Serbia, 28 - 30 November, pp. 40-43, 2013.
[12] M. R. Bonyadi, M. R. Azghadi, H. Shah-Hosseini,
“Population-Based Optimization Algorithms for Solving the
Travelling Salesman Problem”, in Ed. F. Greco, Travelling
Salesman Problem, ISBN 978-953-7619-10-7, I-Tech, Vienna,
Austria, September 2008.
[13] J. H. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor: University of Michigan Press, 1975.
[14] P. Farago, D. Bogăţeanu, E. Ceuca, C. Moisă, S. Hintea,
“Device mismatch analysis and effect compensation in
fundamental analog cells”, 2013 36th International Spring
Seminar on Electronics Technology (ISSE), pp. 280 – 285, 2013.
[15] P. Faragó, G. Csipkes, D. Csipkes, C. Faragó, S. Hintea, “An
FPAA Approach to Adaptive Filter Design with Evolutionary
Software-driven Reconfiguration”, Elektronika ir Elektrotechnika,
vol 20, no 5, pp. 89-96 , 2014.

Figure 11. FPAA routing of two 8
th

 order LF filters with arbitrary transmission zeros.

