

Volume 58, Number 1, 2017 ACTA ECHNICA NAPOCENSIS

Electronics and Telecommunications

Manuscript received March 2, 2017; revised March 10, 2017

1

 FDTD MICROWAVES SIMULATOR USING ADVANCE COMPUTER

GRAPHIC TECHNOLOGIES

Nicolae CRISAN
Technical University of Cluj-Napoca, 26-28 Baritiu Street, 400027, Cluj-Napoca, Romania

E-mail:Nicolae.Crisan@com.utcluj.ro
Phone:40-64-401241

Abstract: The paper presents several technical issues for finding and rendering solutions for Maxwell’s differential equations.

The finite difference time domain (FDTD) method used in the paper is the most wanted numerical analysis for microwaves

rendering in the time domain. Nowadays computational electrodynamics (electromagnetics) comes with more advanced and

agile techniques used in computer games. Frameworks as DirectX or OpenGL accelerate hardware using graphical processor

units (GPUs) and enabling dynamic rendering in real time. These frameworks could be used to speed up the 3D rendering

according to the FDTD demands in terms of the framerate, and, bring some new capabilities as rotation, translation, and scaling

from computer graphic to computational electrodynamics. The presented software is intended to replace some obsolete graphic

technologies or software (like Mefisto-2D or the graphic simulations based on Matlab) which are in use today in universities,

for understanding the main properties of the microwaves with new and agiler rendering techniques that are coming from

computer graphics world.

Keywords: Computer-aided, FDTD, DirectX, OpenGL, Maxwell’s equations, electromagnetic modeling

I. INTRODUCTION
A modern simulator is using the most advanced

technologies for rendering dynamic images (frame by

frame) with the help of GPUs (Graphic Processor Unit). A

dynamic process is calling, in fact, in a continuous loop,

the solver to perform calculations and brings the

representation of the one frame after another.

Figure 1. Schematic of the program framework

A user interface (UI) stands between the user actions

(commands) and input data in the rendering process. So the

main phases of the program framework are shown in figure

1. Behind the scene stands the MFC (Microsoft Foundation

Classes) for passing the events to the operating system

(OS) and back to the user interface (UI). This allows the

user to interact with the program and exchange commands

and parameters. The rendering pipeline manipulates the

graphic hardware by throwing data in the rapid exchange

between GPUs and CPU (central processing unit). These

details are invisible for the programmer who can pay more

attention to data processing directly in the system memory

(RAM). This concept enables the possibility to work more

efficient by focusing more on the main problems, not over

every detail behind the scene. In the paper, the DirectX

version 11 has been used. In this case, the DXGI (Direct X

Graphics Infrastructure) is dealing with the exchange

between hardware and Direct3D.

This approach offers the possibility to render dynamic

processes at a frame rate up to 100 frames/second. The data

exchange between CPU and GPU doesn’t overload the

CPU and allowing it to deal with the most intensive

process, the electromagnetic solver. This technique enables

rendering during the simulation in the time domain.

The proposed simulator brings the graphics

technologies from computer games to the Maxwell solver

to replace old simulators used in microwaves laboratory for

understanding the main properties of the electromagnetic

waves. In this way, the students could come closer to the

Start:
Program initialization

Define constants

Memory allocation

Set variables

and start UI

Get

commands

Keyboard

Mouse

OS

Events

Program logic

Equation solver

Graphics
Direct X,or

OpenGL
Exit?

No

Cleanup

memory
and

variables

Exit

 Volume 58, Number 1, 2017 ACTA ECHNICA NAPOCENSIS

Electronics and Telecommunications

 2

electromagnetic phenomena by contributing directly to the

solver engine and to the three-dimensional rendering.
The paper is structured as follows. Section II shortly

describes the editor interface. Section III is about
Maxwell’s equations in numerical form and their C++
implementations and the boundary conditions. Section IV
describes the use of the DirectX to represent the results on
the PC screen. Section V comes with 3D rendering and
with the special effects of the boundary conditions over the
field’s envelope and propagation modes. Finally, section
VI concludes the paper.

 II. THE EDITOR
The purpose of the program’s editor is to make the link

between the input data and the solver entries. All boundary

conditions are translated from the graphics lines, dots or

rectangles into the mathematical parameters (coordinates

and geometric properties - vertices). All lines represent

here walls and come with colors: electric wall (red line)

magnetic (blue line) or reflection walls (green line). Dots

represented by circles stand for punctiform sources and

rectangles for the propagation medium or for the animation

region (figure 3). The color selects which boundary

conditions are applied, and the coordinates of the lines

establish where the field bounds to the structure. These

conditions are required to confine to the size of the

propagation medium and to find the solutions. All lines,

dots or rectangles are seen in the program as elements in a

sequence container known as a simple linked list. The list

allows the insertion, the deletion or the modification of any

element that has been selected or drawn previously in the

editor. The editor itself prepares the list for further use

keeping elements and eventually sorting the elements after

some specific criteria before rendering (figure 2).

Figure 2. Elements’ sequence in the list

Each element comes with its data structure and a

pointer to the next element in the list. The work with

pointers and lists is an efficient way to manipulates and

prepare the elements during the editing of the microwave

structure. This could be rectangular or square only. In order

to write Maxwell’s equations in the numeric form, a wire-

frame grid approximates the entire structure. The size of

the grid is set by the user at the beginning of the design,

and the cell size is adjusted automatically to the size of the

active window. The application is an MDI type (Multi-

Document Graphic Interface) that allows the visualization

of many types of windows in a common window

framework. This is the interface that comes with the most

advanced editors like the MSOffice. Two types of windows

are allowed here by the application: the first type is for

editing (known as the child window or the editor) and the

second is for 3D rendering with DirectX (the render). All

programs that work with MFC (Microsoft Foundation

Classes) framework are following the same concept. The

editor is written in the class EMSView derived from

CScrollView class that allows scrolling up and down or

from the left to the right of the view. The MFC executable

is faster than any interpreted code or compiled code into

any intermediate language. The code speed is here the key

in making the solver faster, to keep up the solver speed with

the demanded frame rate of the screen. For a realistic

motion, the frame rate must be at least 30 frames/second to

avoid screen freezing or frames dropping. This condition

makes the solver execution time critical [1][2].

Figure 3 Editing of the boundary conditions behind

of each element with lines and colors [1]

III. THE SOLVER
The solver starts from the time-dependent Maxwell’s curl
equations (eq. 1 & eq. 2) and uses the list of elements from
figure 3 to set the boundary conditions and parameters. The
simplest case is the one-dimension representation of the
wave propagation.

𝛿𝐸̅

𝛿𝑡
=
1

𝜀0
∇𝑥𝐻 (1)

𝛿𝐻̅

𝛿𝑡
= −

1

𝜇0
𝛻𝑥𝐸̅ (2)

 In this form, equation 1 and equation 2 stand for a plane
wave in free space. In order to simplify the understanding
of the problem, one can consider only the one dimension
case. The wave is then propagating only along the z-axes
and equations 1&2 become more simple.

𝛿𝐸𝑥

𝛿𝑡
= −

1

𝜀0

𝛿𝐻𝑦

𝛿𝑧
 (3)

Address of the first element

- Variables

- Parameters

Address to the second element

Address of the second element
- Variables

- Parameters

Address to the third element

Address of the last element

- Variables
- Parameters

Address to NULL

pointer

Electric wall

Source

point

Reflection wall

 Volume 58, Number 1, 2017 ACTA ECHNICA NAPOCENSIS

Electronics and Telecommunications

 3

𝛿𝐻𝑦

𝛿𝑡
= −

1

𝜇0

𝛿𝐸𝑥

𝛿𝑧
 (4)

The electric field is oriented in the x-direction and
magnetic field in y-direction according to the equations 3
and 4. Both derivatives can be expressed in the numeric
form using finite differences in the time domain [3]. These
are approximations that consider finite intervals (Δ𝑡, Δ𝑥)
for time and space representation. Both differentials
equalities stand if and only if the interval Δ𝑥 is at least ten
times smaller than a wavelength.

𝐸𝑥
𝑛+
1
2(𝑘)−𝐸𝑥

𝑛−
1
2(𝑘)

Δ𝑡
= −

1

𝜀0

𝐻𝑥
𝑛(𝑘+

1

2
)−𝐻𝑥
𝑛(𝑘−

1

2
)

Δ𝑧
 (5)

𝐻𝑦
𝑛+1(𝑘+

1

2
)−𝐻𝑦
𝑛(𝑘+

1

2
)

Δ𝑡
= −

1

𝜇0

𝐸𝑥
𝑛+
1
2(𝑘+1)−𝐸𝑥

𝑛+
1
2(𝑘)

Δ𝑧
 (6)

 Index k stands for the distance and index n for the time
according to 𝑧 = 𝑘Δ𝑧 and 𝑡 = 𝑛Δ𝑡. The equations 5 and 6
are taking the so called the central difference
approximation form which is taking into account the
interleaving between the E and H fields. This interleaving
are in space and time simultaneously. The final form of the
fields is:

𝐸𝑥
𝑛+
1

2(𝑘) = 𝐸𝑥
𝑛−
1

2(𝑘) −
Δ𝑡

𝜀0Δ𝑧
[𝐻𝑥
𝑛 (𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑘 −
1

2
)] (7).

In equation 7 the current E field can be calculated from the
previous E field and from the difference between the
current H field along z-axes. From the Courant condition
[3], the time step interval is given by:

Δ𝑡 =
Δ𝑧

2𝑐0
, where 𝑐0 = 3 ∗ 10

8𝑚/𝑠 is the speed of light in

vacuum. Making the substitution 𝐸̃ = √
𝜀0

𝜇0
𝐸 we can

simplify the equation 7, because
1

√𝜇0𝜀0

Δ𝑡

Δ𝑧
= 0.5.

Table 1. Runtime in microseconds for 19x111 nodes

Solver Runtime
[𝝁𝒔𝒆𝒄]

Iterations

Simple For Loop 21 2109

Two For Loops 43 4218

Two Loops + Boundary conditions 49 4478

Four Loops + Boundary conditions 91 8696

Four Loops + Boundary conditions +

Color Palette + Video ram buffer

932 -

This change of the variable allows us to write the equation
7 in C code:

for (k = 1; k < nrofsegments; k++)

 ex[k] = ex[k] + 0.5 * (hy[k - 1] - hy[k]);

 Here the number of segments must be higher or at least
equal to the number of wavelengths times ten. If we intend
to visualize at least three wavelengths, then we need at least
30 segments. Even more, an over-segmentation for a fine
resolution must be taken into consideration. Here twenty

segments for each wavelength brings the finest resolution
[3]. Having in mind the critical framerate, we should have
at least 30 frames/second for a good animation. So we get
the number of the iterations of roughly 60*30 per second.
This isn’t too much, but when the problem goes two-
dimensional than, for a wire-grid, we could have 10*60*30
iterations per second. Therefore the solver must be faster
when it goes to a higher spatial dimension.
 In table 1 are shown the average values of the runtime
for the main routines of the solver. The measurements are
made progressively from the simplest solver to the more
complex one. Anyway, the overall runtime for the solver
drops under one millisecond. Normally this is too less for
an ordinary time counter (written in C) to count. If we
program a simple timer, the result will always be under the
resolution of the clock counter. The code execution is much
faster, so to solve the problem it has been used a special
procedure of measuring based on the source code in C++
imagine by Shade Gavin. The idea is to redesign the timer
and to increment the counter every microsecond instead of
one millisecond. This means that the counter is
incremented one million times for each second. A normal
unsigned integer is overloaded after one hour of
measurements. A special variable is defined to cope with
the overloading problem by initiating the counter with a
new type of variable that resembles 64 bits instead of 32.
This allows hours of measurements to search for the
average runtime value which fluctuates after every
measurement.

Figure 4. Logic diagram of the runtime measurement
approach using the micro-timer method

In table 1 the solver runtime is lower than one millisecond.
An active timer that normally increments the counter every
other millisecond it isn’t appropriate for measuring the

Start

Initializations
- Start = 0

- End = 0

Micro-timer

thread start

Counter++

Wait 1µsec

Start = Counter

Runtime routine

End = Counter

Avg [i++] = End-Start

If i < NrOfIteration

𝐸𝑛𝑑 =
1

𝑁𝑟𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 𝐴𝑣𝑔[𝑖]

𝑁𝑟𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑖=0

- Stop micro timer

- cout<<End

Stop

 Volume 58, Number 1, 2017 ACTA ECHNICA NAPOCENSIS

Electronics and Telecommunications

 4

efficiency of the solver routines. Usually, with this solver
the runtime is under one millisecond even for the most
complex approach, and one can maintain up to 100 frames
per second easily.

IV. THE BOUNDARY CONDITIONS
One of the most important operations inside the solver is
related to the boundary conditions (walls). Maxwell’s
equations are in fact differential equations with an infinite
number of solutions. These are limited by the number of
nodes. In finding these values for each node, near the
boundary of the grid, it is necessary to set some special
conditions at the limit of it, along with a closed curve line,
that is bounding the structure. One could have three types
of the boundary conditions: electric wall (PEC), magnetic
wall (PMC) or Perfectly Match Layer (PML) [4]. The PML
boundary condition is more complex in its schematic detail
for two or three dimensions, and its presentation here is
beyond the scope of the paper. But the first two conditions:
PEC and PMC that have been used in figure 6, are depicted
in figure 5.a and b in every aspect.

a. Fields near Perfect Magnetic
Conductor wall (PMC / Magnetic Wall)

b. Fields near Perfect Electric
Conductor wall (PEC / Electric Wall)

Figure 5. PMC&PEC Boundary Conditions

As one can see in figure 5.a the perpendicular E vector

to the PMC plane is canceled by the image of the vector
field as long as the magnetic H vector will be in phase with
its image. The parallel E vector with the PMC wall is in
phase with its parallel image vector. Finally, the H parallel
vector is canceled by its image along the PMC wall. In
contrast to the magnetic wall an electric wall changes the
behavior of the fields as one can remark from figure 5.b.
As a general rule, the E vector will be attenuated when goes
parallel with an electric wall. This is normal as long the
electric field it breaks down near a perfect conductor which
exhibits a large conductivity due to the induced currents.

V. PLOTTING THE RESULTS
The experiment here envisages the effect of the boundary
conditions over the transmission line. If the left and right
lines represent magnetic walls (blue), then the wave will
have a plane front (TEM – Transversal Electromagnetic
front). The front of a wave is, in fact, the locus of points
having equal phases. Generally, the TEM transmission
mode enables a plane front during propagation. When both

left and right walls are electric (PEC), and sidewalls are
magnetic then the transmission line enables the TE or the
TM propagation mode, and the wavefront is then curved.
As long the TEM mode characterized the propagation in
free space or coaxial lines, then, the second (TE or TM
mode), is characterizing the propagation along the
waveguides. In figure 6 b is the electric fields along y-axes
inside the WR-90 waveguide. This could be used in X-band
between 8.2-12.4 GHz.

Table 2. WR-90 dimensions
Frq. [GHz] a [mm] b [mm] l [mm]

8.2-12.4 22.86 10.16 228.6

The plot shows the variation of the field inside the
waveguide subject to the displacement along x
(horizontal), y (vertical) and z-axes. Electric field
approaches zero V/m near the side walls where it goes
parallel with the PEC. In the middle of the waveguide, the
magnitude of the electric field has a maximum value as
long the field goes perpendicular to the up and down PEC
walls. The waveguide is open terminated, and the wave
sees magnetic walls at both ends of the line. This explains
why the field ends with a maximum amplitude here (figure
6.b).

a. WR-90 rectangular waveguide (see Table 2 for a, b

and l parameters value) for X-band (8.2-12.4 GHz)

b. Electric field along y-axes inside the WR-90 waveguide
in TE10 mode

Figure 6. The PEC boundary conditions for left&right
walls and the PMC conditions for both ends of the line –
TE10 – propagation mode inside the WR90 waveguide.

PMC

E1 E2 H1 H2

H2 -H1 -E2 E1

Simulation

region

Image

region

PEC

E1 E2 H1 H2

-H2 H1 E2 -E1

Simulation

region

Image

region

 Volume 58, Number 1, 2017 ACTA ECHNICA NAPOCENSIS

Electronics and Telecommunications

 5

VI. CONCLUSIONS
The paper presents how the computer graphics
technologies that are coming from computer games and
multimedia applications can accelerate the simulations
used in electrodynamics. The main idea is to decrease the
processor payload when it deals with the electromagnetic
solver, using DirectX technologies. This approach drops
the solver runtime below one millisecond and paves the
way for the frame rate increasing up to 100 frames/sec.
Although, Maxwell’s equations are not solved using
CUDA (Compute Unified Device Architecture)
technologies on the GPU, but on the CPU in a classical
way. Only the graphic approach is based on the DirectX
technique, not the solver itself. The runtime results are
shown in table 1 (for the solver only) and a frame for a
given moment in the time domain is depicted in figure 6 b.
The methods based on CUDA architecture developed by
NVIDIA can accelerate more the simulation if the solver is
parallelized on GPUs. Nevertheless, a non-CUDA based
approach is running on every graphical card. Therefore, the
CUDA approach demands compatible cards only made by
NVIDIA.

REFERENCES
[1] M. F. Vaida, P. G. Pop, C. Strilețchi, L. D. Chiorean, L.
Alboaie, “Programarea în limbajul C/C++ Algoritmi de bază în
C/C++”, Ed. Casa cărții de știință, ISBN 978-606-17-0004-2,
2011
[2] E. Lengyel, “Mathematics for 3D Programming and
Computer Graphics”, Charles River Media Inc. Hingham,
Massachusetts Second Edition, ISBN 1-58450-277-0, 2004
[3] X. Wang, S. Liu, X. Li, “GPU – Accelerated Finite-
Difference Time-Domain Method for Dielectric Media Based on
CUDA”, International Journal of RF and Microwave Computer-
Aided Engineering, doi: 10.1002/mmce.20997, Wiley Periodicals
Inc., 2016
[4] G. Mur, “Absorbing boundary conditions for the finite-
difference approximation of the time-domain electromagnetic-
field equations”, IEEE Trans Electromag Compatibility, 1981
[5] A. Pekmezci, E. Topuz, L. Sevgi, “Finite Difference Time
Domain Formulation for Epsilon-Negative Medium Using Wave
Equation”, International Journal of RF and Microwave
Computer-Aided Engineering, doi: 10/1002/mmce.20965, Wiley
Periodicals Inc., 2016

