

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received February 18, 2017; revised March 19, 2017

22

ACTIVE MEASUREMENT OF THE LATENCY IN CLOUD-BASED

NETWORKS

Adrian TAUT Iustin A. IVANCIU Eduard LUCHIAN Virgil DOBROTA

Technical University of Cluj-Napoca, Communications Department, 400027 Cluj-Napoca, Romania,
Phone: +40-264-401226, Fax: +40-264-401916,

Emails: adriantaut@gmail.com, {Iustin.Ivanciu, Eduard.Luchian, Virgil.Dobrota}@com.utcluj.ro

Abstract: This paper presents a software tool for the active measurement of the one-way delay (latency) based on cyclic-path
delay method in cloud. The principle consists in sending packets from the source node to every node belonging to a multicast
group. Copies of the original packet will be forwarded through every possible path in the network before returning to the
source node. The original idea is represented by the breaking of the well-known flooding rules which do not allow sending back
the packet to the issuing node. The software tool is composed of two modules: one in C for measuring the latency on cyclic
paths (packet generation and timestamping) and one in MATLAB for the estimation of one-way delays. The equation system
derived from the cyclic-path delays is underdetermined, therefore the estimation of some latencies is needed. The estimation
problem is formulated as a constrained optimization problem. The calibration was performed by means of a software tool,
previously developed within Unified Communications Labs (UC Labs), where all the authors are currently working. The values
of the latencies have a precision of nanoseconds and a good tracking ability of unexpected delay variations. The tool is scalable
for both clouds orchestrated by OpenStack and physical networks, regardless of the topology and number of nodes.

Keywords: active measurements; cloud; cyclic-path delay; latency.

I. INTRODUCTION
The one-way delay (OWD) is one of the most interesting
characteristics of the Internet due to its unpredictable
variations. OWD offers information related to network
topology, congestion state or route changes. The four main
components of OWD are processing delay, transmission
delay, propagation delay and queueing delay.
 In the literature we can find many solutions for
measuring OWD using NTP (Network Time Protocol) as
the synchronization protocol. NTP is a protocol used to
synchronize the clock of a client to a reference time source
[10], always consisting of a hierarchy of primary and
secondary time servers [15]. Depending on the location of
NTP servers, three OWD measurement setups are provided
in [16]. Setup I uses two NTP servers located in the same
network as the sender and receiver with an RTD less than
1 ms, thus the uncertainty of the OWD is below ±500μs.
Setup II makes use of one common NTP server located in
the external GEANT network [5]. The uncertainty of the
OWD measurement is still far below ±1 ms even if the
synchronization conditions were much worse compared to
the previous setup. In Setup III one common NTP server
located in Ireland was used and the influence of
asymmetric routing has been tested. The traffic in one
direction is routed through the Pan-European GEANT
network (20 ms OWD) and the traffic in opposite direction
is routed via the Telia network (37 ms OWD), resulting an
average error of 8 ms, which is about one half of the OWD
difference in both directions. The authors of [2] describe a
hardware solution capable of inserting a timestamp in the
packets just before sending them. This solution gives a
higher accuracy in terms of OWD measurements (error less

than 100 ns).
 One of the most accurate methods of clock
synchronization is based on attaching a Global Positioning
System (GPS) receiver that synchronizes to the atomic
clocks of GPS satellites [17]. However, it requires
additional hardware systems such as antenna and
distribution equipment for every group of hosts, which
make its use impractical in the viewpoint of economy and
convenience. Many architectures using the GPS system for
measuring OWD can be found in literature. In [12] the
authors propose an active measurement architecture which
uses DAG boards [3] to obtain timestamps. These boards
have their own processor and PCI interface; they are
synchronized to a GPS receiver and achieve an order of
precision lower than 100 ns.
 Another GPS-based architecture is described in [11]. It
is composed of several measurement points, a
measurement system and a data collector. Based on the
packet`s timestamp and packet ID delivered to the data
collector, the OWDs are calculated and stored in a local
database. Paper [1] tries to achieve a better trade-off
between cost and accuracy of the OWD measurement
system with respect to the application accuracy
requirements. The target is an accuracy of tens of µs in end-
to-end communications with typical delays in the
millisecond range.
 The third category of OWD measurement systems are
related with the IEEE 1588 synchronization method. The
authors of [7] designed two architectures for WLAN
networks. The first one is implemented using a Linux PC
platform and a standard IEEE 802.11 WLAN providing a
660 ns clock offset. The second prototype uses an

mailto:adriantaut@gmail.com

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 23

embedded processor which performs hardware
timestamping and achieves a three decades better
synchronization (1.1 ns clock offset) compared to the first
solution. A comparison of the three synchronization
methods presented before can be found in Table 1.
 Paper [14] demonstrates the IEEE 1588 capability to
synchronize the internal clocks of network equipment to
within 10 µs. In [9] a software based master selection
mechanism is proposed with performances up to 1 µs.
Paper [4] improves the IEEE 1588 synchronization
technique by dealing with the sources of timing fluctuation.
The main sources of timing errors are repeaters, switches,
routers and oscillators within a node.

Table 1. Accuracy of time synchronization methods

Protocol Characteristics Interface Synchronization
accuracy

GPS Standard Output
from GPS receivers

Directly
wired

1 µs

NTP IPS (Internal
Protocol Suite)
standard for time
synchronization

Ethernet WAN: 10-20 ms

LAN: <1 ms

IEEE
1588

Standard for
instrumentation
devices

Ethernet < 1 µs

 OWAMP is an IPv4/IPv6 command line client
application and a policy daemon used to determine one
way delay between hosts. It is an implementation of the
OWAMP protocol as defined in [20]. For meaningful
measurements the clocks must be synchronized and stable
(the usage of virtualization technologies is not
recommended), and also the power-management features
of most PC hardware should be disabled, avoiding clock
instability caused by speeding up and slowing down the
processor. In [18], the authors describe the OWAMP
measuring tool as being composed of two inter-dependent
protocols, the OWAMP-Control and the OWAMP-Test,
which can ensure a complete distinction between the two
type of entities in the system: client and server. The
OWAMP-Control protocol runs over TCP and is used to
initiate and manage measurement sessions and to receive
their results. At the beginning of each session, there is a
negotiation about the sender and receiver addresses, the
port numbers, the time session starts and its duration, the
packet size and the mean interval between two consecutive
packets. The OWAMP-Test runs over UDP and is used to
exchange test packets between sender and receiver. These
packets include a Timestamp field that contains the time
instant of packet emission. Besides, each packet also
indicates if the sender is synchronized with some exterior
system (using GPS or NTP) and includes a Sequence
Number.
 The one-way delay measurement literature also
presents J-OWAMP, a Java implementation of the One-
Way Active Measurement Protocol (OWAMP). The tests
performed in [21] show that the obtained results for both
implementations of OWAMP (Internet2 OWAMP and J-
OWAMP) could interoperate and achieve consistent
results. Same as the previous implementation of OWAMP
Protocol, J-OWAMP requires synchronized and stable
clocks.
 Rude/Crude is a command line traffic generator and
measurement tool for UDP, offering only IPv4 support.
During the measurement tests, both the transmitter
(RUDE) and the receiver (CRUDE) must have

synchronized clocks in order to have meaningful results of
the one-way delay. RUDE stands for Real-time UDP Data
Emitter and CRUDE for Collector for RUDE. The latter is
a receiver and logging utility for packets generated by
RUDE. It generates a snapshot about each received packet.
The snapshot includes a stream identifier specified in the
RUDE configuration, sequence number of the packet
within the stream, transmitting timestamp, receiving
timestamp and the packet size in bytes. The snapshots can
be either displayed on-the-fly in a text form on the standard
output or logged in a binary form to the file to be decoded
into the text form later. The timestamps indicating when
each packet has been sent and received are stored with 1
microsecond resolution and allow precise measurements of
the parameters mentioned in Table 2.

Table 2. Latency measurement tools

OWD
Measure-
ment Tool

Operating
System

Network
Protocol

Trans-
port
Protocol

Measured
Parameters

OWAMP
(J-OWAMP)

Linux,
Windows

IPv4,
IPv6

TCP,
UDP

Throughput,
packet loss,
one-way
delay, jitter

RUDE/
CRUDE

Linux,
Solaris,
SunOS,
FreeBSD

IPv4 UDP Throughput,
packet loss,
one-way
delay, jitter

 Only a few studies have evaluated the end-to-end
network performances of cloud services. Paper [19] studies
the performance of Amazon EC2 cloud computing system.
The results show that even in lightly utilization of the data
center, virtualization can still cause abnormal delay
variations. The experiment setup is composed of 750 small
Amazon EC2 instance pairs and 150 medium Amazon EC2
instance pairs and 5000 ping probes ending with the
conclusion that delay variations can be a hundred times
larger than the propagation delay between two end hosts.
 In [13] the authors try to find a correlation between the
changes in delay and other QoS parameters of global
distributed cloud computing applications by performing
measurements done throughout 24 continuous hours
between different network points. The latency and
throughput are varying with some rather dramatic changes
without having any explanation. Due to the fact that all the
measurements in cloud-based networks are ping-based and
have major variations we cannot discuss about accuracy
regarding the OWD measurement.
 Our work addresses the drawbacks of the existing
solutions and it proposes a scalable cloud-based software
tool using the cyclic-path delay method. Note that the
topology in a cloud may not be predefined and the large
number of nodes may change their activation status very
often.

The rest of the paper is organized as follows. Section II
describes the cyclic-path delay measurement, followed by
implementation in Section III. The experimental results in
Section IV refer to a testbed orchestrated by OpenStack.
Conclusions and future work end the paper.

II. CYCLIC-PATH DELAY MEASUREMENTS
In order to perform the measurements, a source node sends
a probe packet that is forwarded along several nodes until
the packet returns to the source node. The time the packet
is processed in the intermediate nodes can be computed and
subtracted from the total cyclic-path time.

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 24

 For each link i→j in Ɛ, let 𝑥𝑖,𝑗 be the one-way delay

from i to j on that link. Let �̂�𝑖,𝑗 be the estimate of 𝑥𝑖,𝑗. The
estimation problem is described in [6] and is formulated as
a constrained optimization problem, where the variables
are �⃗� = {𝑥𝑖,𝑗} and the constraints are the measured cyclic-
path delays. Assume that L measurements are taken. Let
𝑎𝑙{𝑖,𝑗} = 1 if link {i,j} appears along the path of the l-th

measurement. Let ∝𝑙 be the measured cyclic-path delay in
the l-th measurement. The measurement constraints are
given by A ∙ �⃗� = �⃗� , where A is the matrix whose elements
are {𝑎𝑙{𝑖,𝑗}} and �⃗� is a vector whose elements are {∝𝑙} .

The aim is to determine �⃗̂� that yields the next least square
error criteria:

 𝐦𝐢𝐧{ ∫

Ω
|�⃗⃗⃗� − �⃗⃗⃗�|𝟐 𝒅�⃗⃗⃗� } (1)

under the constraints:

Ω = {�⃗⃗⃗� | 𝒙𝒊,𝒋 > 𝟎; 𝑨 ∙ �⃗⃗⃗� = �⃗⃗⃗� } (2)

Any further information about 𝑥𝑖,𝑗 can be used as

additional constraints in the definition of Ω.

1. Analysis
Since the estimation of the one-way delay is based on

measuring cyclic-path delays, the authors in [6] focus on

how many such measurements can and should be taken.

Apparently, the more measurements are taken, the better,

but in this case the total number of cyclic-paths would be

huge. It is shown that in an N-node fully connected network

the total number of cyclic-paths that start at a specific node

and pass through each intermediate node once is:

∑
(𝑁−1)!

(𝑁−𝑖)!
 𝑁−1

𝑖=2 (3)

and the total number of cyclic-paths starting at any node is:

𝑁 ∙ ∑
(𝑁−1)!

(𝑁−𝑖)!
> 𝑁 ∙ (𝑁 − 1)! , ∀ 𝑁 > 2𝑁−1

𝑖=2 (4)

 The number of variables (delays on each link) is 𝑁 ∙
(𝑁 − 1) in a fully connected network, so there are many
more cyclic-path measurements than there are variables.
This leads to the conclusion that from the whole set of
cyclic-paths, only a part of them are independent[8]. If
there were 𝑁 ∙ (𝑁 − 1) independent cyclic-paths, then the
system of equations obtained from the cyclic-path
measurements would have been a determined one, so the
one-way delays of each link could have been obtained.

2. Numerical Solution Method
A numerical procedure to simplify the computation

developed based on approximating the integral by a sum

over all the vectors �⃗� with the constraint 𝑥𝑖𝑗 ≥ 0, then

solve the equation 𝐴 ∙ �⃗� = �⃗�. Depending on the running

time the resolution can be as fine as desired. Since the

maximal number of independent equations that could be

derived is 𝐸 − (𝑁 − 1), 𝑁 − 1 independent equations

(𝜔1 = 𝛽1, 𝜔2 = 𝛽2, … , 𝜔𝑁−1 = 𝛽𝑁−1) must be added,

where 𝜔`s are part of the variables 𝑥𝑖𝑗 . In this way a set of

𝐸 equations with 𝐸 variables written in matrix form as 𝐵 ∙
�⃗� = ƞ⃗⃗ is obtained. The 𝐸 × 𝐸 matrix 𝐵 is:

𝐵 =

(

𝐴
1 0 0 ⋯ 0 0 ⋯ 0
0 1 0 ⋯ 0 0 ⋯ 0
0 0 1 ⋯ 0 0 ⋯ 0
 ⋮
0 0 0 ⋯ 1 0 ⋯ 0

)

 (5)

with the diagonal representing the extra 𝑁 − 1 equations
(𝜔1 = 𝛽1, 𝜔2 = 𝛽2, … , 𝜔𝑁−1 = 𝛽𝑁−1).
 Also the ƞ⃗⃗ vector is exemplified bellow, being
composed in the first part of the measured cyclic-path
delays corresponding to the 𝐸 − (𝑁 − 1) independent
equations, followed by the (𝛽1, 𝛽2, … , 𝛽𝑁−1) which will be
further derived by applying the appropriate constraints to
the already derived set of equations.

ƞ⃗⃗ =

(

∝1
⋮

∝𝑁−1
𝛽1
⋮

𝛽𝑁−1)

 (6)

 Due to the fact that all equations are independent, B is
a non-singular matrix, so there exists 𝐵−1 and the vector �⃗�
can be computed. The next step is to choose

(𝛽1, 𝛽2, … , 𝛽𝑁−1) such that all elements of 𝛽 to be positive,
derive the vector �⃗� and check if all elements are non-
negative (𝑥𝑖𝑗 ≥ 0, ∀𝑥𝑖𝑗). Another constraint can be derived

from the fact that the 𝜔`s are part of the 𝑥𝑖𝑗 , hence each of

them must fulfil an equation of the form 𝜔𝑖 + 𝐷𝑒𝑙𝑎𝑦{∙} =

𝛼𝑙 , ∀𝑙. Furthermore, 𝛽 can be restricted only to 𝛽 where
𝛽𝑖 ≤ 𝛼𝑙.

 Now that 𝛽 is properly chosen we can solve the
equation:

�⃗� = 𝛽−1 · ƞ⃗⃗ (7)

and search for all non-negative 𝑥𝑖𝑗 to find the entire set of

�⃗� ∈ Ω. The last step is to compute �⃗�:

�⃗̂� =
1

𝑚
∑ �⃗�𝑟𝑥𝑟∈Ω (8)

where 𝑚 is the number of points in Ω.

III. IMPLEMENTATION
This section presents a solution for the estimation of one-
way delays from cyclic-path delay measurements. The
cyclic-path delays measurements are performed using a
source node that will forward a packet in the network
which will be multiplied and will pass through all nodes in
the network. Finally the packet will return to the source
node, where the cyclic-path delays will be measured by
subtracting from the arrival time the starting time. These

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 25

measurements are then expressed in terms of one-way
delay variables. The resulting equation system is
underdetermined, so an estimation of one-way delay is
performed in order to output a final solution of one-way
delays on each link of a network.
 The algorithm presented in Section II was implemented
in two main steps: cyclic-path delay measurements (C-
based application) and derivation of one-way delays
(MATLAB). The programs are providing continuous
estimations of OWDs on the network links that can be
further used in routing algorithms or to monitor network
performances. Both the C and MATLAB programs are
designed to be topology independent and need no a priori
configuration in order to run.

1

2 3

x1,2

x2,1

x3,2

x2,3

x3,1

x1,3

n1

n2 n3

xi,j - one-way delay between

node i and j

Figure 1. Illustration of network diagram and one-way

delays

 A simple example is presented in Figure 1. The source
node n1 starts the process by forwarding a so-called
multicast probe packet in the network and keeps the
starting time in a struct timeval startProgram variable. All
the nodes interested in receiving traffic from the multicast
group 226.1.1.1 will concatenate the received packet
with their hostname and the processing time in each
specific node, then will flood the newly created packet on
all network interfaces, including to the one on which the
packet was received, breaking the flooding rules. The
multiplied packets will pass through all the nodes and will
finally return to the source node n1, which only collects
information without forwarding anymore packets. Without
any kind of synchronization, n1 will measure the cyclic-
path delay for each incoming packet by subtracting from
the receiving time the starting time with a precision of
nanoseconds. All the information is written in a delay.txt
file that will be further processed by the MATLAB
program.
 Since we are interested only in the one-way delays on
the network links, the processing time in each of the nodes
the packets are passing through should be subtracted from
the cyclic-path delay. In order to do this the incoming
packets are timestamped when they reach the Unix Kernel
by using the SO_TIMESTAMPNS socket option with a
nanoseconds resolution[8]. The setsockopt() receives as
parameters the software timestamping option
SO_TIMESTAMPNS and an int enabled =1 variable
which sets the SO_TIMESTAMPNS option to TRUE. The
message diagram of the whole measurement process is
illustrated using Figure 2.

n2 n3
n1

Source noden2 n3

R
T

T
 n

3
-n

2
-n

3

R
T

T
 n

1
-n

3
-n

1

R
T

T
 n

1
-n

2
-n

1

R
T

T
 n

1
-n

2
-n

3
-n

1

Figure 2. Message diagram in the cyclic-path delay

measurement process

 The second part of the implementation consists of a
software program written in MATLAB whose purpose is
to parse the delay.txt file, to extract the 𝐸 − (𝑁 − 1), to
add the extra (𝑁 − 1) equations and finally to output the
OWDs on each directed link of the tested network. Since
the cyclic-path delay measurements are performed only on
the source node, only there should be installed MATLAB.

IV. EXPERIMENTAL RESULTS
The implemented solution will be deployed and tested on
several network topologies created in two private
OpenStack cloud architectures. A detailed analysis of the
results and a comparison with an existing OWD
measurement tool will be performed to demonstrate its
correct functionality.

1. Fully Connected 3-Node Network Deployed in Compute

Node 2
The OpenStack cloud architecture of this testbed is
composed of a cloud controller and two compute nodes.
Three CentOS 7 VMs were created in Compute Node 2
with the following specifications: a) Virtual Machine n1
used as source node – has the role of starting the
measurement process, collecting and processing data; b)
Virtual Machine n2, n3 – have the role of receiving and
forwarding packets. VMs n2 and n3 have m1.small flavor
of OpenStack, this means that they are running on 2GB
RAM, 1 VCPU and 20GB HDD each. VM n1 has
m1.medium flavor, so it is running on 4GB RAM, 2 VCPU
and 40GB HDD.

n1

n2 n310.0.23.0/24
.5 .3

router (172.16.16.0/24)

public

.2
7 .2
8

.2
6

Figure 3. Fully connected 3-node network deployed in
Compute Node 2

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 26

 By using the Horizon interface of OpenStack the
network topology can be displayed (Figure 3). All VMs are
connected on eth0 to a virtual router in the network
172.16.16.0. The router is connected to the public network
and gives the VMs access to Internet for downloading
installation packages. The other network interfaces are
used to build the fully connected 3-node network.

2. Fully Connected 3-Node Network Deployed on Two

Compute Nodes
The same network topology as the one described before is
used here too, but this time the node n3 is launched in
Compute Node 1. By using the Horizon interface of
OpenStack it can be seen that the network topology is not
influenced by the fact that the VMs are running in different
Compute Nodes (Figure 4).

n1

n2 n310.0.25.0/24
.4 .3

router (172.16.16.0/24)

public

.2
7 .3
0

.2
6

Figure 4. Fully connected 3-node network deployed in

two Compute Nodes

3. Comparison with RUDE/ CRUDE

In order to test the performance of the estimation tool, a
comparison with the reference tool RUDE/CRUDE was
performed. As mentioned earlier, RUDE/CRUDE requires
precise synchronization between the network nodes.
However, the best we could do was to provide NTP
synchronization. Moreover, RUDE/ CRUDE only allows
measuring OWD between two nodes at a time, while the
tool presented in this paper is scalable to higher networks.
While this comparison is far from perfect, it gives us a
basic idea on the order of magnitude of the expected
results. The output of RUDE/CRUDE is given in the
snippet below:

[root@scilab rude]# crude -s 0030
Flow_ID=30
Packets: received=101 out-of-seq=0
lost(est)=0

Total bytes received=136855
Sequence numbers: first=0 last=100
Delay: average = 0.002310 jitter=0.000020

seconds
Absolute maximum jitter=0.000535 seconds
Throughput=68450.1 Bps (from first to last

packet received)

crude: captured/processed 101 packets

[root@scilab rude]# crude -s 0030
Runtime statistics results:

Flow_ID=30

Packets: received=101 out-of-seq=0
lost(est)=0

Total bytes received=136855

Sequence numbers: first=0 last=100

Delay: average = 0.002098 jitter=0.000018
seconds
Absolute maximum jitter=0.000427 seconds

Throughput=68451.7 Bps (from first to last
packet received)

crude: captured/processed 101 packets

 The results presented above show that the average
OWD measured by RUDE/CRUDE has the order of
magnitude of milliseconds. In this particular case, the
OWD values are around 2 ms. A simple ping test however
shows that the RTT between these two nodes is less than
1ms. We believe that these differences are caused by the
poor synchronization accuracy provided by NTP. The next
experiment was performed using our estimation tool. It
runs for 200 seconds on the network topology with 3-
nodes. There is no other traffic on the network except the
small amount of traffic generated by the multicastOWD.c
program.
 Figures 5-10 shows that the results obtained with the
multicastOWD tool are in the order of hundreds of
microseconds, comparable to the results provided by
ICMP, far less than the ones obtained with
RUDE/CRUDE.

Figure 5. Estimation of OWD on the network link n1-n2

for a fully connected 3-node network

Figure 6. Estimation of OWD on the network link n2-n1

for a fully connected 3-node network

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 27

Figure 7. Estimation of OWD on the network link n1-n3

for a fully connected 3-node network

Figure 8. Estimation of OWD on the network link n3-n1

for a fully connected 3-node network

Figure 9. Estimation of OWD on the network link n2-n3

for a fully connected 3-node network

Figure 10. Estimation of OWDs on the network link n3-n2

for a fully connected 3-node network

An interesting observation reffers to the peak values that
are almost constant in value on the majority of the network
links. There are high peaks around 40 seconds that are
present on 4 of the 6 links of the network (n1n2, n2
n1, n2 n3, n3n2). In the rest of the time the network
performance looks normal with values of OWDs around
hundred microseconds. Moreover it can easily be observed
that these peaks occur almost simultaneously on every link,
which leads to the conclusion that the prioritizing
algorithm of OpenStack is responsible.

4. Comparison with other OWD Measurement Tool
The first experiment aims to compare the results obtained
using the proposed estimation method with another OWD
measurement tool, previously developed within Unified
Communications Laboratories (UCLabs -
http://users.utcluj.ro/~uclabs/) [21]. This software tool
called measureEstOWD performs the active measurement
of the round-trip time and estimates the latency as RTT/2.
Both tools ran 200 seconds to measure the OWD from
n1n2 and from n2n1. The outputs of both the
measureEstOWD.c and multicastOWD.c methods are
plotted in Figure 11 and Figure 12.

Figure 11. multicastOWD.c and measureEstOWD.c

outputs for link n1 n2

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 28

Both solutions provide similar results whenever there is no
traffic on the network. The output of measureEstOWD.c
program performs an average of the OWDs and output
results once per second, while the multicastOWD.c outputs
a set of OWDs once at every 200 milliseconds. The main
difference between the two outputs consists in peaks that
can be easily observed. This is due to the fact that the
multicastOWD.c program performs the estimation more
often. Thus this increases the possibility of measuring
higher latencies due to the OpenStack tendency of
prioritizing certain management processes. In opposition,
the measureEstOWD performs an averaging over a period
of 1 second.

Figure 12. multicastOWD.c and measureEstOWD.c

outputs for link n2 n1

5. Tracking Accuracy of the Estimation Tool
In this experiment an additional delay of 10 ms from
second 60 until second 120 on the network link n2 n3 is
introduced. This test aims to measure the tracking ability
of the estimation tool in case of abrupt delay variations.
According to Figure 13 the response time of the
measurement tool is very small and the variations are
detected. Moreover, the estimation method is not prone to

errors in case of link asymmetry, which often occurs in real
life scenarios.

6. The Effect of the Measurement Process Duration on the

Estimation Accuracy
Let us investigate now the behavior of the multicastOWD

program when one of the network links has a delay higher

than the timer set for cyclic-path delay measurement

process (e.g. 200 ms). However, this only holds supposing

that the sum of the OWDs on the longest path will not

exceed this value. Otherwise, the OWD on some of the

links composing that path will not be estimated at all. This

however does not affect the measurement process on the

other links. We will set an additional delay of 250 ms on

the network interface of node n2 which is connected to

node n3. By setting this interval, no packet will be

forwarded from n2 n3 in the interval of 200 ms, so the

OWD of this link can not be measured. Figure 14 shows

that link n2 n3 does not appear on the graph, but in the

same time, it does not influence the measurement and the

estimation process.

Figure 14. OWDs output with delays higher than program

runtime (e.g. 200 ms)

Figure 13. Additional OWD introduced on one of the links

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 29

7. Estimating OWDs in a Fully-Connected 3-Node

Network Deployed on Two Compute Nodes
In this experiment the OWD estimation tool is deployed in

a fully connected 3-node network. The aim of this approach

is to split the traffic injected by the cyclic-path delay

measurement process between the two Compute Nodes of

the OpenStack architecture in UC Labs in order to observe

the OWD variations. Compute Node 2 hosts the nodes n1

and n2, while Compute Node 1 hosts node n3.

Figure 15. Estimation of OWD for the links n1-n2 and

respectively n2-n1

Figure 16. Estimation of OWD for the links n1-n3 and

respectively n3-n1

Figure 17. Estimation of OWD for the links n2-n3 and

respectively n3-n2

Figure 18. Estimation of all OWDs for a fully connected 3-node network deployed on two Compute Nodes

 The OWDs between the nodes n1 and n2 are illustrated
in Figure 15 and their values are approximately the same
as in the previous experiments since both the VMs are
running on Compute Node 2. The OWD on the other links
is higher due to the fact that the traffic on these links is
transmitted using GRE tunnels and it passes through
physical network links and interfaces.
 The peaks in terms of OWD are not present anymore
for the links n1 n2 and n2 n1, mainly because part of
the traffic is forwarded to Compute Node 1. The delays
caused by the communication with Compute Node 1 which
spreads the traffic in time, together with the computational
power of Compute Node 2, seems to be enough for OWDs
between nodes n1 and n2 without high delays.
 The other four directional links which forward traffic
between the two Compute Nodes have poorer, but expected
network performances in terms of OWD (Figures 16-17).
The peaks caused by the hardware characteristics of

Compute Node 1 are still present though (Figure 18).

V. CONCLUSIONS AND FUTURE WORK
 This paper presented a new implementation of the
cyclic-path delay method, suitable for the active
measurement of latencies in cloud-based networks, with a
precision of nanoseconds and no need for clock
synchronization. The solution is scalable due to its
principle of being independent of topology and number of
nodes, the only requirement being higher computational
power for the node responsible with the MATLAB data
processing. The tracking ability of the estimation tool in
case of unexpected delay variations was also tested. The
OWD variations artificially introduced on the network
links are immediately detected, hence the network
performances in terms of OWD are updated in real time.
Future work envisages the deployment of this
measurement method in a multi-side cloud testbed.

Volume 58, Number 1, 2017 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 30

Furthermore we plan to use this software implementation
in conjunction with other QoS tools for routing decisions
in software-defined networks.

ACKNOWLEDGMENTS
This work was partially supported by the CHIST-ERA
“DIONASYS” project. However the views expressed in
this paper are solely those of the authors and do not
necessarily represent the views of the entire project.

REFERENCES
[1] D. Adami, R. Garroppo, S. Giordano, and S. Lucetti, "On
synchronization techniques: performance and impact on time
metrics monitoring", Int. J. Commun. Syst., Vol. 16, No. 4, pp.
273-290, 2003.

[2] D. Constantinescu, P. Carlsson, A. Popescu, and A. A.
Nilsson, “Measurement of one-way Internet packet delay”,
Proceedings of 17th Nordic Teletraffic Seminar - NTS17, Oslo,
Norway, pp.1-11, August 2004.

[3] “The dag project,” September 2010. [Online]. Available:
http://dag.cs.waikato.ac.nz//, [Accessed: June, 2016].

[4] J. Eidson, and B. Hamilton, “IEEE-1588 Node
Synchronization Improvement by High Stability Oscillators”,
Workshop on IEEE-1588, Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and
Control Systems, NISTIR 7070 , pp. 102-112, September 2003.

[5] GÉANT Project (GN4-1), Geant.net, 2017 [Online].
Available: http://www.geant.net/, [Accessed: February, 2017].

[6] O. Gurewitz, and M. Sidi, "Estimating one-way delays from
cyclic-path delay measurements," Proceedings IEEE INFOCOM
2001 Conference on Computer Communications, Vol.2, pp.
1038-1044, 2001.

[7] J. Kannisto, T. Vanhatupa, M. Hännikäinen, and T.D.
Hämäläinen, “Software and hardware prototypes of the
IEEE1588 precision time protocol on wireless LAN”, Proc. of
14th IEEE Workshop on Local and Metropolitan Area Networks
LANMAN 2005, Chania, Greece, pp.1-6, 8-21 Sept. 2005.

[8] Kernel.org, 2016. [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/timesta
mping/timestamping.c. [Accessed: 15- Jun- 2016].

[9] D. Lee, and G. Allan, "A solution for fault-tolerant IEEE-
1588", Workshop on IEEE-1588, Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and
Control Systems, NISTIR 7070 , pp. 225-231, September 2003.

[10] D. Mills, J. Martin, J. Burbank, and
W. Kasch, “Network Time Protocol (Version 4) specification,
implementation and analysis, RFC 5905, IETF, June 2010.

[11] S. Niccolini, M. Molina, F. Raspall, and S. Tartarelli,
“Design and implementation of a One Way Delay passive
measurement system”, Proc. of Network Operations and
Management Symposium, Seoul, South Korea, Vol.1, pp. 469-
482, April 2004.

[12] A. Pásztor, and D. Veitch, “A precision infrastructure for
active probing”, Citeseer, 2001.

[13] J. M. Pedersen, M.T. Riaz, J.C. Junior, B. Dubalski, D.
Ledzinski, and A. Patel, “Assessing measurements of QoS for
global cloud computing services”, IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing
DASC 2011, pp. 682-689, 2011.

[14] M. Rowe, “IEEE 1588 keeps time in sync”, Test &
Measurement World, 2005, [Online]. Available:
http://www.reedelectronics.com/tmworld/article/CA529830?text
=synthetic+instruments, [Accessed: February, 2017].

[15] A.S. Sethi, H. Gao, and D. Mills, “Management of the
Network Time Protocol (NTP) with SNMP”, Computer and
Information Sciences Report, 98-09, 1997.

[16] V. Smotlacha, “One-way delay measurement using NTP
synchronization”, Proc. TERENA Networking Conf. 2013, pp. 1-
18, 2013.

[17] K. Stangherlin, W. Lautenschläger, V. Guadagnin, L.
Balbinot, R. Balbinot, and V. Roesler, “One-way delay
measurement in wired and wireless mobile full-mesh networks”,
IEEE Wireless Communications and Networking Conference
WCNC 2011, pp. 1044-1049, March 2011.

[18] H. Veiga, R. Valadas, P. Salvador, A. Nogueira, T.
Pfeiffenberger, and F. Strohmeier, “OWAMP Performance and
Interoperability Tests”, 4th International Workshop on Internet
Performance, Simulation, Monitoring and Measurement IPS-
MoMe 2006, Salzburg, pp.1-10, 2006.

[19] G. Wang, and T. E. Ng, “The impact of virtualization on
network performance of amazon ec2 data center”, Proc. of IEEE
INFOCOM 2010, pp. 1-9, 2010.

[20] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M.
Zekauskas, “A One-way Active Measurement Protocol
(OWAMP)”, RFC 4656, IETF 2006.

[21] M.V. Ulinic, A.B. Rus, and V. Dobrota, “OpenFlow-Based
Implementation of a Gearbox-Like Routing Algorithm Selection
in Runtime”, ACTA TECHNICA NAPOCENSIS, Electronics and
Telecommunications, ISSN 1221-6542, Vol.55, No.2, pp.23-32,
2014.

