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Abstract: This paper presents a software tool for the active measurement of the one-way delay (latency) based on cyclic-path 
delay method in cloud. The principle consists in sending packets from the source node to every node belonging to a multicast 
group. Copies of the original packet will be forwarded through every possible path in the network before returning to the 
source node. The original idea is represented by the breaking of the well-known flooding rules which do not allow sending back 
the packet to the issuing node. The software tool is composed of two modules: one in C for measuring the latency on cyclic 
paths (packet generation and timestamping) and one in MATLAB for the estimation of one-way delays. The equation system 
derived from the cyclic-path delays is underdetermined, therefore the estimation of some latencies is needed. The estimation 
problem is formulated as a constrained optimization problem. The calibration was performed by means of a software tool, 
previously developed within Unified Communications Labs (UC Labs), where all the authors are currently working. The values 
of the latencies have a precision of nanoseconds and a good tracking ability of unexpected delay variations. The tool is scalable 
for both clouds orchestrated by OpenStack and physical networks, regardless of the topology and number of nodes.  
 
Keywords: active measurements; cloud; cyclic-path delay; latency. 

 
 

I. INTRODUCTION 
The one-way delay (OWD) is one of the most interesting 
characteristics of the Internet due to its unpredictable 
variations. OWD offers information related to network 
topology, congestion state or route changes. The four main 
components of OWD are processing delay, transmission 
delay, propagation delay and queueing delay.  
 In the literature we can find many solutions for 
measuring OWD using NTP (Network Time Protocol) as 
the synchronization protocol. NTP is a protocol used to 
synchronize the clock of a client to a reference time source 
[10], always consisting of a hierarchy of primary and 
secondary time servers [15]. Depending on the location of 
NTP servers, three OWD measurement setups are provided 
in [16]. Setup I uses two NTP servers located in the same 
network as the sender and receiver with an RTD less than 
1 ms, thus the uncertainty of the OWD is below ±500μs. 
Setup II makes use of one common NTP server located in 
the external GEANT network [5]. The uncertainty of the 
OWD measurement is still far below ±1 ms even if the 
synchronization conditions were much worse compared to 
the previous setup. In Setup III one common NTP server 
located in Ireland was used and the influence of 
asymmetric routing has been tested. The traffic in one 
direction is routed through the Pan-European GEANT 
network (20 ms OWD)  and the traffic in opposite direction 
is routed via the Telia network (37 ms OWD), resulting an 
average error of 8 ms, which is about one half of the OWD 
difference in both directions. The authors of [2] describe a 
hardware solution capable of inserting a timestamp in the 
packets just before sending them. This solution gives a 
higher accuracy in terms of OWD measurements (error less 

than 100 ns).  
 One of the most accurate methods of clock 
synchronization is based on attaching a Global Positioning 
System (GPS) receiver that synchronizes to the atomic 
clocks of GPS satellites [17].  However, it requires 
additional hardware systems such as antenna and 
distribution equipment for every group of hosts, which 
make its use impractical in the viewpoint of economy and 
convenience. Many architectures using the GPS system for 
measuring OWD can be found in literature. In [12] the 
authors propose an active measurement architecture which 
uses DAG boards [3] to obtain timestamps. These boards 
have their own processor and PCI interface; they are 
synchronized to a GPS receiver and achieve an order of 
precision lower than 100 ns. 
 Another GPS-based architecture is described in [11]. It 
is composed of several measurement points, a 
measurement system and a data collector. Based on the 
packet`s timestamp and packet ID delivered to the data 
collector, the OWDs are calculated and stored in a local 
database. Paper [1] tries to achieve a better trade-off 
between cost and accuracy of the OWD measurement 
system with respect to the application accuracy 
requirements. The target is an accuracy of tens of µs in end-
to-end communications with typical delays in the 
millisecond range. 
 The third category of OWD measurement systems are 
related with the IEEE 1588 synchronization method. The 
authors of [7] designed two architectures for WLAN 
networks. The first one is implemented using a Linux PC 
platform and a standard IEEE 802.11 WLAN providing a 
660 ns clock offset. The second prototype uses an 
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embedded processor which performs hardware 
timestamping and achieves a three decades better 
synchronization (1.1 ns clock offset) compared to the first 
solution. A comparison of the three synchronization 
methods presented before can be found in Table 1. 
 Paper [14] demonstrates the IEEE 1588 capability to 
synchronize the internal clocks of network equipment to 
within 10 µs. In [9] a software based master selection 
mechanism is proposed with performances up to 1 µs. 
Paper [4] improves the IEEE 1588 synchronization 
technique by dealing with the sources of timing fluctuation. 
The main sources of timing errors are repeaters, switches, 
routers and oscillators within a node. 

 
Table 1. Accuracy of time synchronization methods 

Protocol Characteristics Interface Synchronization 
accuracy 

GPS Standard Output 
from GPS receivers 

Directly 
wired 

1 µs 

NTP IPS (Internal 
Protocol Suite) 
standard for time 
synchronization 

Ethernet WAN: 10-20 ms 

LAN: <1 ms 

IEEE 
1588 

Standard for 
instrumentation 
devices 

Ethernet < 1 µs 

 
 OWAMP is an IPv4/IPv6 command line client 
application and a policy daemon used to determine one 
way delay between hosts. It is an implementation of the 
OWAMP protocol as defined in [20]. For meaningful 
measurements the clocks must be synchronized and stable 
(the usage of virtualization technologies is not 
recommended), and also the power-management features 
of most PC hardware should be disabled, avoiding clock 
instability caused by speeding up and slowing down the 
processor. In [18], the authors describe the OWAMP 
measuring tool as being composed of two inter-dependent 
protocols, the OWAMP-Control and the OWAMP-Test, 
which can ensure a complete distinction between the two 
type of entities in the system: client and server. The 
OWAMP-Control protocol runs over TCP and is used to 
initiate and manage measurement sessions and to receive 
their results. At the beginning of each session, there is a 
negotiation about the sender and receiver addresses, the 
port numbers, the time session starts and its duration, the 
packet size and the mean interval between two consecutive 
packets. The OWAMP-Test runs over UDP and is used to 
exchange test packets between sender and receiver. These 
packets include a Timestamp field that contains the time 
instant of packet emission. Besides, each packet also 
indicates if the sender is synchronized with some exterior 
system (using GPS or NTP) and includes a Sequence 
Number.  
 The one-way delay measurement literature also 
presents J-OWAMP, a Java implementation of the One-
Way Active Measurement Protocol (OWAMP). The tests 
performed in [21] show that the obtained results for both 
implementations of OWAMP (Internet2 OWAMP and J-
OWAMP) could interoperate and achieve consistent 
results. Same as the previous implementation of OWAMP 
Protocol, J-OWAMP requires synchronized and stable 
clocks. 
 Rude/Crude is a command line traffic generator and 
measurement tool for UDP, offering only IPv4 support. 
During the measurement tests, both the transmitter 
(RUDE) and the receiver (CRUDE) must have 

synchronized clocks in order to have meaningful results of 
the one-way delay. RUDE stands for Real-time UDP Data 
Emitter and CRUDE for Collector for RUDE. The latter is 
a receiver and logging utility for packets generated by 
RUDE. It generates a snapshot about each received packet. 
The snapshot includes a stream identifier specified in the 
RUDE configuration, sequence number of the packet 
within the stream, transmitting timestamp, receiving 
timestamp and the packet size in bytes. The snapshots can 
be either displayed on-the-fly in a text form on the standard 
output or logged in a binary form to the file to be decoded 
into the text form later. The timestamps indicating when 
each packet has been sent and received are stored with 1 
microsecond resolution and allow precise measurements of 
the parameters mentioned in Table 2. 

 
Table 2. Latency measurement tools 

OWD 
Measure- 
ment Tool 

Operating 
System 

Network 
Protocol 

Trans- 
port 
Protocol 

Measured 
Parameters 

OWAMP        
(J-OWAMP) 

Linux, 
Windows 

IPv4,  
IPv6 

TCP,  
UDP 

Throughput, 
packet loss, 
one-way 
delay, jitter 

RUDE/ 
CRUDE 

Linux, 
Solaris, 
SunOS,  
FreeBSD 

IPv4 UDP Throughput, 
packet loss, 
one-way 
delay, jitter 

 
 Only a few studies have evaluated the end-to-end 
network performances of cloud services. Paper [19] studies 
the performance of Amazon EC2 cloud computing system. 
The results show that even in lightly utilization of the data 
center, virtualization can still cause abnormal delay 
variations. The experiment setup is composed of 750 small 
Amazon EC2 instance pairs and 150 medium Amazon EC2 
instance pairs and 5000 ping probes ending with the 
conclusion that delay variations can be a hundred times 
larger than the propagation delay between two end hosts. 
 In [13] the authors try to find a correlation between the 
changes in delay and other QoS parameters of global 
distributed cloud computing applications by performing 
measurements done throughout 24 continuous hours 
between different network points. The latency and 
throughput are varying with some rather dramatic changes 
without having any explanation. Due to the fact that all the 
measurements in cloud-based networks are ping-based and 
have major variations we cannot discuss about accuracy 
regarding the OWD measurement. 
 Our work addresses the drawbacks of the existing 
solutions and it proposes a scalable cloud-based software 
tool using the cyclic-path delay method. Note that the 
topology in a cloud may not be predefined and the large 
number of nodes may change their activation status very 
often.      

The rest of the paper is organized as follows. Section II 
describes the cyclic-path delay measurement, followed by 
implementation in Section III. The experimental results in 
Section IV refer to a testbed orchestrated by OpenStack. 
Conclusions and future work end the paper.  
  

II. CYCLIC-PATH DELAY MEASUREMENTS  
In order to perform the measurements, a source node sends 
a probe packet that is forwarded along several nodes until 
the packet returns to the source node. The time the packet 
is processed in the intermediate nodes can be computed and 
subtracted from the total cyclic-path time.  



 

Volume 58, Number 1, 2017                                                    ACTA TECHNICA NAPOCENSIS 

                                                                                                    Electronics and Telecommunications 

________________________________________________________________________________ 

 

 
 24 

 For each link i→j in Ɛ, let 𝑥𝑖,𝑗 be the one-way delay 

from i to j on that link. Let �̂�𝑖,𝑗 be the estimate of 𝑥𝑖,𝑗. The 
estimation problem is described in [6] and is formulated as 
a constrained optimization problem, where the variables 
are �⃗� = {𝑥𝑖,𝑗} and the constraints are the measured cyclic-
path delays. Assume that L measurements are taken. Let 
𝑎𝑙{𝑖,𝑗} = 1 if link {i,j} appears along the path of the l-th 

measurement. Let ∝𝑙  be the measured cyclic-path delay in 
the l-th measurement.  The measurement constraints are 
given by A ∙ �⃗� =  �⃗� , where A is the matrix whose elements 
are {𝑎𝑙{𝑖,𝑗}} and �⃗� is a vector whose elements are {∝𝑙} . 

The aim is to determine �⃗̂� that yields the next least square 
error criteria:  
 

  𝐦𝐢𝐧{ ∫  
 

Ω
|�⃗⃗⃗� − �⃗⃗⃗�|𝟐 𝒅�⃗⃗⃗� }           (1) 

 
                           
under the constraints: 
 

Ω = {�⃗⃗⃗� | 𝒙𝒊,𝒋 > 𝟎; 𝑨 ∙ �⃗⃗⃗� =  �⃗⃗⃗� }   (2) 

                                                           

Any further information about 𝑥𝑖,𝑗 can be used as 

additional constraints in the definition of Ω. 

 
1. Analysis 
Since the estimation of the one-way delay is based on 

measuring cyclic-path delays, the authors in [6] focus on 

how many such measurements can and should be taken. 

Apparently, the more measurements are taken, the better, 

but in this case the total number of cyclic-paths would be 

huge. It is shown that in an N-node fully connected network 

the total number of cyclic-paths that start at a specific node 

and pass through each intermediate node once is: 

 

∑
(𝑁−1)!

(𝑁−𝑖)!
 𝑁−1

𝑖=2            (3) 

 

and the total number of cyclic-paths starting at any node is: 
 

𝑁 ∙ ∑
(𝑁−1)!

(𝑁−𝑖)!
> 𝑁 ∙ (𝑁 − 1)! , ∀ 𝑁 > 2𝑁−1

𝑖=2  (4) 

 
 The number of variables (delays on each link) is 𝑁 ∙
(𝑁 − 1) in a fully connected network, so there are many 
more cyclic-path measurements than there are variables. 
This leads to the conclusion that from the whole set of 
cyclic-paths, only a part of them are independent[8]. If 
there were 𝑁 ∙ (𝑁 − 1) independent cyclic-paths, then the 
system of equations obtained from the cyclic-path 
measurements would have been a determined one, so the 
one-way delays of each link could have been obtained. 
 
2. Numerical Solution Method 
A numerical procedure to simplify the computation 

developed based on approximating the integral by a sum 

over all the vectors  �⃗� with the constraint 𝑥𝑖𝑗 ≥ 0, then 

solve the equation 𝐴 ∙ �⃗� = �⃗�. Depending on the running 

time the resolution can be as fine as desired. Since the 

maximal number of independent equations that could be 

derived is 𝐸 − (𝑁 − 1), 𝑁 − 1 independent equations 

(𝜔1 = 𝛽1, 𝜔2 = 𝛽2, … , 𝜔𝑁−1 = 𝛽𝑁−1) must be added, 

where 𝜔`s are part of the variables 𝑥𝑖𝑗 . In this way a set of 

𝐸 equations with 𝐸 variables written in matrix form as 𝐵 ∙
�⃗� = ƞ⃗⃗ is obtained. The 𝐸 × 𝐸 matrix 𝐵 is: 

 

𝐵 =

(

  
 
  

𝐴
1 0 0 ⋯ 0      0 ⋯ 0
0 1 0 ⋯ 0      0 ⋯ 0
0 0 1 ⋯ 0      0 ⋯ 0
    ⋮    
0 0 0 ⋯ 1      0 ⋯ 0

  

)

  
 

        (5) 

 

with the diagonal representing the extra 𝑁 − 1 equations 
(𝜔1 = 𝛽1, 𝜔2 = 𝛽2, … , 𝜔𝑁−1 = 𝛽𝑁−1).  
 Also the ƞ⃗⃗ vector is exemplified bellow, being 
composed in the first part of the measured cyclic-path 
delays corresponding to the 𝐸 − (𝑁 − 1) independent 
equations, followed by the (𝛽1, 𝛽2, … , 𝛽𝑁−1) which will be 
further derived by applying the appropriate constraints to 
the already derived set of equations. 
 

ƞ⃗⃗  =

(

 
 
 

∝1
⋮

∝𝑁−1
𝛽1
⋮

𝛽𝑁−1)

 
 
 

                                  (6) 

 
 Due to the fact that all equations are independent, B is 
a non-singular matrix, so there exists 𝐵−1 and the vector �⃗� 
can be computed. The next step is to choose 

(𝛽1, 𝛽2, … , 𝛽𝑁−1) such that all elements of  𝛽 to be positive, 
derive the vector �⃗� and check if all elements are non-
negative (𝑥𝑖𝑗 ≥ 0, ∀𝑥𝑖𝑗). Another constraint can be derived 

from the fact that the 𝜔`s are part of the 𝑥𝑖𝑗 , hence each of 

them must fulfil an equation of the form 𝜔𝑖 + 𝐷𝑒𝑙𝑎𝑦{∙} =

𝛼𝑙 , ∀𝑙. Furthermore, 𝛽 can be restricted only to 𝛽 where 
𝛽𝑖 ≤ 𝛼𝑙.  

 Now that 𝛽 is properly chosen we can solve the 
equation: 
 

�⃗� = 𝛽−1 · ƞ⃗⃗        (7) 
 

and search for all non-negative 𝑥𝑖𝑗  to find the entire set of 

�⃗� ∈ Ω. The last step is to compute �⃗�: 
 

�⃗̂� =
1

𝑚
∑ �⃗�𝑟𝑥𝑟∈Ω               (8) 

 

where 𝑚 is the number of points in Ω.   

 
 

III. IMPLEMENTATION 
This section presents a solution for the estimation of one-
way delays from cyclic-path delay measurements. The 
cyclic-path delays measurements are performed using a 
source node that will forward a packet in the network 
which will be multiplied and will pass through all nodes in 
the network. Finally the packet will return to the source 
node, where the cyclic-path delays will be measured by 
subtracting from the arrival time the starting time. These 
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measurements are then expressed in terms of one-way 
delay variables. The resulting equation system is 
underdetermined, so an estimation of one-way delay is 
performed in order to output a final solution of one-way 
delays on each link of a network.  
 The algorithm presented in Section II was implemented 
in two main steps: cyclic-path delay measurements (C-
based application) and derivation of one-way delays 
(MATLAB). The programs are providing continuous 
estimations of OWDs on the network links that can be 
further used in routing algorithms or to monitor network 
performances. Both the C and MATLAB programs are 
designed to be topology independent and need no a priori 
configuration in order to run. 
 

1

2 3

x1,2

x2,1

x3,2

x2,3

x3,1

x1,3

n1

n2 n3

xi,j  - one-way delay between 

node i and j

 
Figure 1. Illustration of network diagram and one-way 

delays 
 
 A simple example is presented in Figure 1. The source 
node n1 starts the process by forwarding a so-called 
multicast probe packet in the network and keeps the 
starting time in a struct timeval startProgram variable. All 
the nodes interested in receiving traffic from the multicast 
group 226.1.1.1 will concatenate the received packet 
with their hostname and the processing time in each 
specific node, then will flood the newly created packet on 
all network interfaces, including to the one on which the 
packet was received, breaking the flooding rules. The 
multiplied packets will pass through all the nodes and will 
finally return to the source node n1, which only collects 
information without forwarding anymore packets. Without 
any kind of synchronization, n1 will measure the cyclic-
path delay for each incoming packet by subtracting from 
the receiving time the starting time with a precision of 
nanoseconds. All the information is written in a delay.txt 
file that will be further processed by the MATLAB 
program. 
 Since we are interested only in the one-way delays on 
the network links, the processing time in each of the nodes 
the packets are passing through should be subtracted from 
the cyclic-path delay. In order to do this the incoming 
packets are timestamped when they reach the Unix Kernel 
by using the SO_TIMESTAMPNS socket option with a 
nanoseconds resolution[8]. The setsockopt() receives as 
parameters the software timestamping option 
SO_TIMESTAMPNS and an int enabled =1 variable 
which sets the SO_TIMESTAMPNS option to TRUE. The 
message diagram of the whole measurement process is 
illustrated using Figure 2. 

n2 n3
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Source noden2 n3
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Figure 2. Message diagram in the cyclic-path delay 

measurement process 
  
 The second part of the implementation consists of a 
software program written in MATLAB whose purpose is 
to parse the delay.txt file, to extract the 𝐸 − (𝑁 − 1), to 
add the extra (𝑁 − 1)  equations and finally to output the 
OWDs on each directed link of the tested network. Since 
the cyclic-path delay measurements are performed only on 
the source node, only there should be installed MATLAB.  
 

IV. EXPERIMENTAL RESULTS 
The implemented solution will be deployed and tested on 
several network topologies created in two private 
OpenStack cloud architectures. A detailed analysis of the 
results and a comparison with an existing OWD 
measurement tool will be performed to demonstrate its 
correct functionality. 
 
1. Fully Connected 3-Node Network Deployed in Compute 

Node 2 
The OpenStack cloud architecture of this testbed is 
composed of a cloud controller and two compute nodes. 
Three CentOS 7 VMs were created in Compute Node 2 
with the following specifications: a) Virtual Machine n1 
used as source node – has the role of starting the 
measurement process, collecting and processing data; b) 
Virtual Machine n2, n3 – have the role of receiving and 
forwarding packets.  VMs n2 and n3 have m1.small flavor 
of OpenStack, this means that they are running on 2GB 
RAM, 1 VCPU and 20GB HDD each. VM n1 has 
m1.medium flavor, so it is running on 4GB RAM, 2 VCPU 
and 40GB HDD.  

n1

n2 n310.0.23.0/24
.5 .3

router (172.16.16.0/24) 

public

.2
7 .2
8

.2
6

Figure 3. Fully connected 3-node network deployed in 
Compute Node 2 
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 By using the Horizon interface of OpenStack the 
network topology can be displayed (Figure 3). All VMs are 
connected on eth0 to a virtual router in the network 
172.16.16.0. The router is connected to the public network 
and gives the VMs access to Internet for downloading 
installation packages. The other network interfaces are 
used to build the fully connected 3-node network. 
 
2. Fully Connected 3-Node Network Deployed on Two 

Compute Nodes 
The same network topology as the one described before is 
used here too, but this time the node n3 is launched in 
Compute Node 1. By using the Horizon interface of 
OpenStack it can be seen that the network topology is not 
influenced by the fact that the VMs are running in different 
Compute Nodes (Figure 4). 
 

n1

n2 n310.0.25.0/24
.4 .3

router (172.16.16.0/24) 

public

.2
7 .3
0

.2
6

 
Figure 4. Fully connected 3-node network deployed in 

two Compute Nodes  
 

3. Comparison with RUDE/ CRUDE 
 
In order to test the performance of the estimation tool, a 
comparison with the reference tool RUDE/CRUDE was 
performed. As mentioned earlier, RUDE/CRUDE requires 
precise synchronization between the network nodes. 
However, the best we could do was to provide NTP 
synchronization. Moreover, RUDE/ CRUDE only allows 
measuring OWD between two nodes at a time, while the 
tool presented in this paper is scalable to higher networks. 
While this comparison is far from perfect, it gives us a 
basic idea on the order of magnitude of the expected 
results. The output of RUDE/CRUDE is given in the 
snippet below: 
 
[root@scilab rude]# crude -s 0030 
Flow_ID=30 
Packets: received=101   out-of-seq=0   
lost(est)=0 

Total bytes received=136855 
Sequence numbers: first=0   last=100 
Delay: average = 0.002310   jitter=0.000020   

seconds 
Absolute maximum jitter=0.000535   seconds 
Throughput=68450.1   Bps (from first to last 

packet received) 
 
crude: captured/processed 101 packets 

[root@scilab rude]# crude -s 0030 
Runtime statistics results: 
--------------------------- 

 
Flow_ID=30 

Packets: received=101   out-of-seq=0   
lost(est)=0 

Total bytes received=136855 

Sequence numbers: first=0   last=100 

Delay: average = 0.002098   jitter=0.000018   
seconds 
Absolute maximum jitter=0.000427   seconds 

Throughput=68451.7   Bps (from first to last 
packet received) 
 

crude: captured/processed 101 packets 

 
 The results presented above show that the average 
OWD measured by RUDE/CRUDE has the order of 
magnitude of milliseconds. In this particular case, the 
OWD values are around 2 ms. A simple ping test however 
shows that the RTT between these two nodes is less than 
1ms. We believe that these differences are caused by the 
poor synchronization accuracy provided by NTP. The next 
experiment was performed using our estimation tool. It 
runs for 200 seconds on the network topology with 3-
nodes. There is no other traffic on the network except the 
small amount of traffic generated by the multicastOWD.c 
program. 
 Figures 5-10 shows that the results obtained with the 
multicastOWD tool are in the order of hundreds of 
microseconds, comparable to the results provided by 
ICMP, far less than the ones obtained with 
RUDE/CRUDE.  
 

 
Figure 5. Estimation of OWD on the network link n1-n2 

for a fully connected 3-node network  
 

 
Figure 6. Estimation of OWD on the network link n2-n1 

for a fully connected 3-node network  
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Figure 7. Estimation of OWD on the network link n1-n3 

for a fully connected 3-node network  

 

 
Figure 8. Estimation of OWD on the network link n3-n1 

for a fully connected 3-node network  

 
 

 
Figure 9. Estimation of OWD on the network link n2-n3 

for a fully connected 3-node network  

 

 
Figure 10. Estimation of OWDs on the network link n3-n2 

for a fully connected 3-node network 
 
An interesting observation reffers to the peak values that 
are almost constant in value on the majority of the network 
links. There are high peaks around 40 seconds that are 
present on 4 of the 6 links of the network (n1n2, n2 
n1, n2 n3, n3n2). In the rest of the time the network 
performance looks normal with values of OWDs around 
hundred microseconds. Moreover it can easily be observed 
that these peaks occur almost simultaneously on every link, 
which leads to the conclusion that the prioritizing 
algorithm of OpenStack is responsible. 
  
4. Comparison with other OWD Measurement Tool  
The first experiment aims to compare the results obtained 
using the proposed estimation method with another OWD 
measurement tool, previously developed within Unified 
Communications Laboratories (UCLabs - 
http://users.utcluj.ro/~uclabs/) [21]. This software tool 
called measureEstOWD performs the active measurement 
of the round-trip time and estimates the latency as RTT/2. 
Both tools ran 200 seconds to measure the OWD from 
n1n2 and from n2n1. The outputs of both the 
measureEstOWD.c and multicastOWD.c methods are 
plotted in Figure 11 and Figure 12.  
 

 
Figure 11. multicastOWD.c and measureEstOWD.c 

outputs for link n1 n2 
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Both solutions provide similar results whenever there is no 
traffic on the network. The output of measureEstOWD.c 
program performs an average of the OWDs and output 
results once per second, while the multicastOWD.c outputs 
a set of OWDs once at every 200 milliseconds. The main 
difference between the two outputs consists in peaks that 
can be easily observed. This is due to the fact that the 
multicastOWD.c program performs the estimation more 
often. Thus this increases the possibility of measuring 
higher latencies due to the OpenStack tendency of 
prioritizing certain management processes. In opposition, 
the measureEstOWD performs an averaging over a period 
of 1 second.  
 

 
Figure 12. multicastOWD.c and measureEstOWD.c 

outputs for link n2 n1 
 
 
5. Tracking Accuracy of the Estimation Tool 
In this experiment an additional delay of 10 ms from 
second 60 until second 120 on the network link n2 n3 is 
introduced. This test aims to measure the tracking ability 
of the estimation tool in case of abrupt delay variations. 
According to Figure 13 the response time of the 
measurement tool is very small and the variations are 
detected. Moreover, the estimation method is not prone to 

errors in case of link asymmetry, which often occurs in real 
life scenarios. 

 
6. The Effect of the Measurement Process Duration on the 

Estimation Accuracy 
Let us investigate now the behavior of the multicastOWD 

program when one of the network links has a delay higher 

than the timer set for cyclic-path delay measurement 

process (e.g. 200 ms). However, this only holds supposing 

that the sum of the OWDs on the longest path will not 

exceed this value. Otherwise, the OWD on some of the 

links composing that path will not be estimated at all. This 

however does not affect the measurement process on the 

other links. We will set an additional delay of 250 ms on 

the network interface of node n2 which is connected to 

node n3. By setting this interval, no packet will be 

forwarded from n2 n3 in the interval of 200 ms, so the 

OWD of this link can not be measured. Figure 14 shows 

that link n2 n3 does not appear on the graph, but in the 

same time, it does not influence the measurement and the 

estimation process. 

 

 
Figure 14. OWDs output with delays higher than program 

runtime (e.g. 200 ms) 

 

 

 
Figure 13. Additional OWD introduced on one of the links 
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7. Estimating OWDs in a Fully-Connected 3-Node 

Network Deployed on Two Compute Nodes 
In this experiment the OWD estimation tool is deployed in 

a fully connected 3-node network. The aim of this approach 

is to split the traffic injected by the cyclic-path delay 

measurement process between the two Compute Nodes of 

the OpenStack architecture in UC Labs in order to observe 

the OWD variations. Compute Node 2 hosts the nodes n1 

and n2, while Compute Node 1 hosts node n3. 

 

 
Figure 15. Estimation of OWD for the links n1-n2 and 

respectively n2-n1  

 

 
Figure 16. Estimation of OWD for the links n1-n3 and 

respectively n3-n1 

 

 
Figure 17. Estimation of OWD for the links n2-n3 and 

respectively n3-n2 

 

 
Figure 18. Estimation of all OWDs for a fully connected 3-node network deployed on two Compute Nodes 

 

 
 The OWDs between the nodes n1 and n2 are illustrated 
in Figure 15 and their values are approximately the same 
as in the previous experiments since both the VMs are 
running on Compute Node 2. The OWD on the other links 
is higher due to the fact that the traffic on these links is 
transmitted using GRE tunnels and it passes through 
physical network links and interfaces. 
 The peaks in terms of OWD are not present anymore 
for the links n1 n2 and n2 n1, mainly because part of 
the traffic is forwarded to Compute Node 1. The delays 
caused by the communication with Compute Node 1 which 
spreads the traffic in time, together with the computational 
power of Compute Node 2, seems to be enough for OWDs 
between nodes n1 and n2 without high delays.   
 The other four directional links which forward traffic 
between the two Compute Nodes have poorer, but expected 
network performances in terms of OWD (Figures 16-17). 
The peaks caused by the hardware characteristics of 

Compute Node 1 are still present though (Figure 18). 
 

V. CONCLUSIONS AND FUTURE WORK 
 This paper presented a new implementation of the 
cyclic-path delay method, suitable for the active 
measurement of latencies in cloud-based networks, with a 
precision of nanoseconds and no need for clock 
synchronization. The solution is scalable due to its 
principle of being independent of topology and number of 
nodes, the only requirement being higher computational 
power for the node responsible with the MATLAB data 
processing. The tracking ability of the estimation tool in 
case of unexpected delay variations was also tested. The 
OWD variations artificially introduced on the network 
links are immediately detected, hence the network 
performances in terms of OWD are updated in real time. 
Future work envisages the deployment of this 
measurement method in a multi-side cloud testbed. 
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Furthermore we plan to use this software implementation 
in conjunction with other QoS tools for routing decisions 
in software-defined networks.        
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